Home | History | Annotate | Download | only in Imath
      1 
      2 ///////////////////////////////////////////////////////////////////////////
      3 //
      4 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
      5 // Digital Ltd. LLC
      6 //
      7 // All rights reserved.
      8 //
      9 // Redistribution and use in source and binary forms, with or without
     10 // modification, are permitted provided that the following conditions are
     11 // met:
     12 // *       Redistributions of source code must retain the above copyright
     13 // notice, this list of conditions and the following disclaimer.
     14 // *       Redistributions in binary form must reproduce the above
     15 // copyright notice, this list of conditions and the following disclaimer
     16 // in the documentation and/or other materials provided with the
     17 // distribution.
     18 // *       Neither the name of Industrial Light & Magic nor the names of
     19 // its contributors may be used to endorse or promote products derived
     20 // from this software without specific prior written permission.
     21 //
     22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     25 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     26 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     27 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     28 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     32 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33 //
     34 ///////////////////////////////////////////////////////////////////////////
     35 
     36 //-----------------------------------------------------------------------------
     37 //
     38 //	Routines that generate pseudo-random numbers compatible
     39 //	with the standard erand48(), nrand48(), etc. functions.
     40 //
     41 //-----------------------------------------------------------------------------
     42 
     43 #include "ImathRandom.h"
     44 #include "ImathInt64.h"
     45 
     46 namespace Imath {
     47 namespace {
     48 
     49 //
     50 // Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48()
     51 //
     52 
     53 unsigned short staticState[3] = {0, 0, 0};
     54 
     55 
     56 void
     57 rand48Next (unsigned short state[3])
     58 {
     59     //
     60     // drand48() and friends are all based on a linear congruential
     61     // sequence,
     62     //
     63     //   x[n+1] = (a * x[n] + c) % m,
     64     //
     65     // where a and c are as specified below, and m == (1 << 48)
     66     //
     67 
     68     static const Int64 a = Int64 (0x5deece66dLL);
     69     static const Int64 c = Int64 (0xbLL);
     70 
     71     //
     72     // Assemble the 48-bit value x[n] from the
     73     // three 16-bit values stored in state.
     74     //
     75 
     76     Int64 x = (Int64 (state[2]) << 32) |
     77           (Int64 (state[1]) << 16) |
     78            Int64 (state[0]);
     79 
     80     //
     81     // Compute x[n+1], except for the "modulo m" part.
     82     //
     83 
     84     x = a * x + c;
     85 
     86     //
     87     // Disassemble the 48 least significant bits of x[n+1] into
     88     // three 16-bit values.  Discard the 16 most significant bits;
     89     // this takes care of the "modulo m" operation.
     90     //
     91     // We assume that sizeof (unsigned short) == 2.
     92     //
     93 
     94     state[2] = (unsigned short)(x >> 32);
     95     state[1] = (unsigned short)(x >> 16);
     96     state[0] = (unsigned short)(x);
     97 }
     98 
     99 } // namespace
    100 
    101 
    102 double
    103 erand48 (unsigned short state[3])
    104 {
    105     //
    106     // Generate double-precision floating-point values between 0.0 and 1.0:
    107     //
    108     // The exponent is set to 0x3ff, which indicates a value greater
    109     // than or equal to 1.0, and less than 2.0.  The 48 most significant
    110     // bits of the significand (mantissa) are filled with pseudo-random
    111     // bits generated by rand48Next().  The remaining 4 bits are a copy
    112     // of the 4 most significant bits of the significand.  This results
    113     // in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff,
    114     // which correspond to uniformly distributed floating-point values
    115     // between 1.0 and 1.99999999999999978.  Subtracting 1.0 from those
    116     // values produces numbers between 0.0 and 0.99999999999999978, that
    117     // is, between 0.0 and 1.0-DBL_EPSILON.
    118     //
    119 
    120     rand48Next (state);
    121 
    122     union {double d; Int64 i;} u;
    123 
    124     u.i = (Int64 (0x3ff)    << 52) |	// sign and exponent
    125       (Int64 (state[2]) << 36) |	// significand
    126       (Int64 (state[1]) << 20) |
    127       (Int64 (state[0]) <<  4) |
    128       (Int64 (state[2]) >> 12);
    129 
    130     return u.d - 1;
    131 }
    132 
    133 
    134 double
    135 drand48 ()
    136 {
    137     return Imath::erand48 (staticState);
    138 }
    139 
    140 
    141 long int
    142 nrand48 (unsigned short state[3])
    143 {
    144     //
    145     // Generate uniformly distributed integers between 0 and 0x7fffffff.
    146     //
    147 
    148     rand48Next (state);
    149 
    150     return ((long int) (state[2]) << 15) |
    151        ((long int) (state[1]) >>  1);
    152 }
    153 
    154 
    155 long int
    156 lrand48 ()
    157 {
    158     return Imath::nrand48 (staticState);
    159 }
    160 
    161 
    162 void
    163 srand48 (long int seed)
    164 {
    165     staticState[2] = (unsigned short)(seed >> 16);
    166     staticState[1] = (unsigned short)(seed);
    167     staticState[0] = 0x330e;
    168 }
    169 
    170 
    171 float
    172 Rand32::nextf ()
    173 {
    174     //
    175     // Generate single-precision floating-point values between 0.0 and 1.0:
    176     //
    177     // The exponent is set to 0x7f, which indicates a value greater than
    178     // or equal to 1.0, and less than 2.0.  The 23 bits of the significand
    179     // (mantissa) are filled with pseudo-random bits generated by
    180     // Rand32::next().  This results in in bit patterns between 0x3f800000
    181     // and 0x3fffffff, which correspond to uniformly distributed floating-
    182     // point values between 1.0 and 1.99999988.  Subtracting 1.0 from
    183     // those values produces numbers between 0.0 and 0.99999988, that is,
    184     // between 0.0 and 1.0-FLT_EPSILON.
    185     //
    186 
    187     next ();
    188 
    189     union {float f; unsigned int i;} u;
    190 
    191     u.i = 0x3f800000 | (_state & 0x7fffff);
    192     return u.f - 1;
    193 }
    194 
    195 } // namespace Imath
    196