1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <limits.h> 6 #include <stdarg.h> 7 #include <stdlib.h> 8 #include <cmath> 9 10 #if V8_TARGET_ARCH_MIPS64 11 12 #include "src/assembler.h" 13 #include "src/base/bits.h" 14 #include "src/codegen.h" 15 #include "src/disasm.h" 16 #include "src/mips64/constants-mips64.h" 17 #include "src/mips64/simulator-mips64.h" 18 #include "src/ostreams.h" 19 20 // Only build the simulator if not compiling for real MIPS hardware. 21 #if defined(USE_SIMULATOR) 22 23 namespace v8 { 24 namespace internal { 25 26 // Utils functions. 27 bool HaveSameSign(int64_t a, int64_t b) { 28 return ((a ^ b) >= 0); 29 } 30 31 32 uint32_t get_fcsr_condition_bit(uint32_t cc) { 33 if (cc == 0) { 34 return 23; 35 } else { 36 return 24 + cc; 37 } 38 } 39 40 41 static int64_t MultiplyHighSigned(int64_t u, int64_t v) { 42 uint64_t u0, v0, w0; 43 int64_t u1, v1, w1, w2, t; 44 45 u0 = u & 0xffffffffL; 46 u1 = u >> 32; 47 v0 = v & 0xffffffffL; 48 v1 = v >> 32; 49 50 w0 = u0 * v0; 51 t = u1 * v0 + (w0 >> 32); 52 w1 = t & 0xffffffffL; 53 w2 = t >> 32; 54 w1 = u0 * v1 + w1; 55 56 return u1 * v1 + w2 + (w1 >> 32); 57 } 58 59 60 // This macro provides a platform independent use of sscanf. The reason for 61 // SScanF not being implemented in a platform independent was through 62 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time 63 // Library does not provide vsscanf. 64 #define SScanF sscanf // NOLINT 65 66 // The MipsDebugger class is used by the simulator while debugging simulated 67 // code. 68 class MipsDebugger { 69 public: 70 explicit MipsDebugger(Simulator* sim) : sim_(sim) { } 71 ~MipsDebugger(); 72 73 void Stop(Instruction* instr); 74 void Debug(); 75 // Print all registers with a nice formatting. 76 void PrintAllRegs(); 77 void PrintAllRegsIncludingFPU(); 78 79 private: 80 // We set the breakpoint code to 0xfffff to easily recognize it. 81 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; 82 static const Instr kNopInstr = 0x0; 83 84 Simulator* sim_; 85 86 int64_t GetRegisterValue(int regnum); 87 int64_t GetFPURegisterValue(int regnum); 88 float GetFPURegisterValueFloat(int regnum); 89 double GetFPURegisterValueDouble(int regnum); 90 bool GetValue(const char* desc, int64_t* value); 91 92 // Set or delete a breakpoint. Returns true if successful. 93 bool SetBreakpoint(Instruction* breakpc); 94 bool DeleteBreakpoint(Instruction* breakpc); 95 96 // Undo and redo all breakpoints. This is needed to bracket disassembly and 97 // execution to skip past breakpoints when run from the debugger. 98 void UndoBreakpoints(); 99 void RedoBreakpoints(); 100 }; 101 102 103 MipsDebugger::~MipsDebugger() { 104 } 105 106 107 #ifdef GENERATED_CODE_COVERAGE 108 static FILE* coverage_log = NULL; 109 110 111 static void InitializeCoverage() { 112 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 113 if (file_name != NULL) { 114 coverage_log = fopen(file_name, "aw+"); 115 } 116 } 117 118 119 void MipsDebugger::Stop(Instruction* instr) { 120 // Get the stop code. 121 uint32_t code = instr->Bits(25, 6); 122 // Retrieve the encoded address, which comes just after this stop. 123 char** msg_address = 124 reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize); 125 char* msg = *msg_address; 126 DCHECK(msg != NULL); 127 128 // Update this stop description. 129 if (!watched_stops_[code].desc) { 130 watched_stops_[code].desc = msg; 131 } 132 133 if (strlen(msg) > 0) { 134 if (coverage_log != NULL) { 135 fprintf(coverage_log, "%s\n", str); 136 fflush(coverage_log); 137 } 138 // Overwrite the instruction and address with nops. 139 instr->SetInstructionBits(kNopInstr); 140 reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr); 141 } 142 // TODO(yuyin): 2 -> 3? 143 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstructionSize); 144 } 145 146 147 #else // GENERATED_CODE_COVERAGE 148 149 #define UNSUPPORTED() printf("Sim: Unsupported instruction.\n"); 150 151 static void InitializeCoverage() {} 152 153 154 void MipsDebugger::Stop(Instruction* instr) { 155 // Get the stop code. 156 uint32_t code = instr->Bits(25, 6); 157 // Retrieve the encoded address, which comes just after this stop. 158 char* msg = *reinterpret_cast<char**>(sim_->get_pc() + 159 Instruction::kInstrSize); 160 // Update this stop description. 161 if (!sim_->watched_stops_[code].desc) { 162 sim_->watched_stops_[code].desc = msg; 163 } 164 PrintF("Simulator hit %s (%u)\n", msg, code); 165 // TODO(yuyin): 2 -> 3? 166 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize); 167 Debug(); 168 } 169 #endif // GENERATED_CODE_COVERAGE 170 171 172 int64_t MipsDebugger::GetRegisterValue(int regnum) { 173 if (regnum == kNumSimuRegisters) { 174 return sim_->get_pc(); 175 } else { 176 return sim_->get_register(regnum); 177 } 178 } 179 180 181 int64_t MipsDebugger::GetFPURegisterValue(int regnum) { 182 if (regnum == kNumFPURegisters) { 183 return sim_->get_pc(); 184 } else { 185 return sim_->get_fpu_register(regnum); 186 } 187 } 188 189 190 float MipsDebugger::GetFPURegisterValueFloat(int regnum) { 191 if (regnum == kNumFPURegisters) { 192 return sim_->get_pc(); 193 } else { 194 return sim_->get_fpu_register_float(regnum); 195 } 196 } 197 198 199 double MipsDebugger::GetFPURegisterValueDouble(int regnum) { 200 if (regnum == kNumFPURegisters) { 201 return sim_->get_pc(); 202 } else { 203 return sim_->get_fpu_register_double(regnum); 204 } 205 } 206 207 208 bool MipsDebugger::GetValue(const char* desc, int64_t* value) { 209 int regnum = Registers::Number(desc); 210 int fpuregnum = FPURegisters::Number(desc); 211 212 if (regnum != kInvalidRegister) { 213 *value = GetRegisterValue(regnum); 214 return true; 215 } else if (fpuregnum != kInvalidFPURegister) { 216 *value = GetFPURegisterValue(fpuregnum); 217 return true; 218 } else if (strncmp(desc, "0x", 2) == 0) { 219 return SScanF(desc + 2, "%" SCNx64, 220 reinterpret_cast<uint64_t*>(value)) == 1; 221 } else { 222 return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1; 223 } 224 return false; 225 } 226 227 228 bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { 229 // Check if a breakpoint can be set. If not return without any side-effects. 230 if (sim_->break_pc_ != NULL) { 231 return false; 232 } 233 234 // Set the breakpoint. 235 sim_->break_pc_ = breakpc; 236 sim_->break_instr_ = breakpc->InstructionBits(); 237 // Not setting the breakpoint instruction in the code itself. It will be set 238 // when the debugger shell continues. 239 return true; 240 } 241 242 243 bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { 244 if (sim_->break_pc_ != NULL) { 245 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 246 } 247 248 sim_->break_pc_ = NULL; 249 sim_->break_instr_ = 0; 250 return true; 251 } 252 253 254 void MipsDebugger::UndoBreakpoints() { 255 if (sim_->break_pc_ != NULL) { 256 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 257 } 258 } 259 260 261 void MipsDebugger::RedoBreakpoints() { 262 if (sim_->break_pc_ != NULL) { 263 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 264 } 265 } 266 267 268 void MipsDebugger::PrintAllRegs() { 269 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) 270 271 PrintF("\n"); 272 // at, v0, a0. 273 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 274 REG_INFO(1), REG_INFO(2), REG_INFO(4)); 275 // v1, a1. 276 PrintF("%34s\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 277 "", REG_INFO(3), REG_INFO(5)); 278 // a2. 279 PrintF("%34s\t%34s\t%3s: 0x%016lx %14ld\n", "", "", REG_INFO(6)); 280 // a3. 281 PrintF("%34s\t%34s\t%3s: 0x%016lx %14ld\n", "", "", REG_INFO(7)); 282 PrintF("\n"); 283 // a4-t3, s0-s7 284 for (int i = 0; i < 8; i++) { 285 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 286 REG_INFO(8+i), REG_INFO(16+i)); 287 } 288 PrintF("\n"); 289 // t8, k0, LO. 290 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 291 REG_INFO(24), REG_INFO(26), REG_INFO(32)); 292 // t9, k1, HI. 293 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 294 REG_INFO(25), REG_INFO(27), REG_INFO(33)); 295 // sp, fp, gp. 296 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 297 REG_INFO(29), REG_INFO(30), REG_INFO(28)); 298 // pc. 299 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n", 300 REG_INFO(31), REG_INFO(34)); 301 302 #undef REG_INFO 303 #undef FPU_REG_INFO 304 } 305 306 307 void MipsDebugger::PrintAllRegsIncludingFPU() { 308 #define FPU_REG_INFO(n) FPURegisters::Name(n), \ 309 GetFPURegisterValue(n), \ 310 GetFPURegisterValueDouble(n) 311 312 PrintAllRegs(); 313 314 PrintF("\n\n"); 315 // f0, f1, f2, ... f31. 316 // TODO(plind): consider printing 2 columns for space efficiency. 317 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(0) ); 318 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(1) ); 319 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(2) ); 320 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(3) ); 321 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(4) ); 322 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(5) ); 323 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(6) ); 324 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(7) ); 325 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(8) ); 326 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(9) ); 327 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(10)); 328 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(11)); 329 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(12)); 330 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(13)); 331 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(14)); 332 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(15)); 333 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(16)); 334 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(17)); 335 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(18)); 336 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(19)); 337 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(20)); 338 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(21)); 339 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(22)); 340 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(23)); 341 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(24)); 342 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(25)); 343 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(26)); 344 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(27)); 345 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(28)); 346 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(29)); 347 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(30)); 348 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(31)); 349 350 #undef REG_INFO 351 #undef FPU_REG_INFO 352 } 353 354 355 void MipsDebugger::Debug() { 356 intptr_t last_pc = -1; 357 bool done = false; 358 359 #define COMMAND_SIZE 63 360 #define ARG_SIZE 255 361 362 #define STR(a) #a 363 #define XSTR(a) STR(a) 364 365 char cmd[COMMAND_SIZE + 1]; 366 char arg1[ARG_SIZE + 1]; 367 char arg2[ARG_SIZE + 1]; 368 char* argv[3] = { cmd, arg1, arg2 }; 369 370 // Make sure to have a proper terminating character if reaching the limit. 371 cmd[COMMAND_SIZE] = 0; 372 arg1[ARG_SIZE] = 0; 373 arg2[ARG_SIZE] = 0; 374 375 // Undo all set breakpoints while running in the debugger shell. This will 376 // make them invisible to all commands. 377 UndoBreakpoints(); 378 379 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { 380 if (last_pc != sim_->get_pc()) { 381 disasm::NameConverter converter; 382 disasm::Disassembler dasm(converter); 383 // Use a reasonably large buffer. 384 v8::internal::EmbeddedVector<char, 256> buffer; 385 dasm.InstructionDecode(buffer, 386 reinterpret_cast<byte*>(sim_->get_pc())); 387 PrintF(" 0x%016lx %s\n", sim_->get_pc(), buffer.start()); 388 last_pc = sim_->get_pc(); 389 } 390 char* line = ReadLine("sim> "); 391 if (line == NULL) { 392 break; 393 } else { 394 char* last_input = sim_->last_debugger_input(); 395 if (strcmp(line, "\n") == 0 && last_input != NULL) { 396 line = last_input; 397 } else { 398 // Ownership is transferred to sim_; 399 sim_->set_last_debugger_input(line); 400 } 401 // Use sscanf to parse the individual parts of the command line. At the 402 // moment no command expects more than two parameters. 403 int argc = SScanF(line, 404 "%" XSTR(COMMAND_SIZE) "s " 405 "%" XSTR(ARG_SIZE) "s " 406 "%" XSTR(ARG_SIZE) "s", 407 cmd, arg1, arg2); 408 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 409 Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); 410 if (!(instr->IsTrap()) || 411 instr->InstructionBits() == rtCallRedirInstr) { 412 sim_->InstructionDecode( 413 reinterpret_cast<Instruction*>(sim_->get_pc())); 414 } else { 415 // Allow si to jump over generated breakpoints. 416 PrintF("/!\\ Jumping over generated breakpoint.\n"); 417 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); 418 } 419 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 420 // Execute the one instruction we broke at with breakpoints disabled. 421 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 422 // Leave the debugger shell. 423 done = true; 424 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 425 if (argc == 2) { 426 int64_t value; 427 double dvalue; 428 if (strcmp(arg1, "all") == 0) { 429 PrintAllRegs(); 430 } else if (strcmp(arg1, "allf") == 0) { 431 PrintAllRegsIncludingFPU(); 432 } else { 433 int regnum = Registers::Number(arg1); 434 int fpuregnum = FPURegisters::Number(arg1); 435 436 if (regnum != kInvalidRegister) { 437 value = GetRegisterValue(regnum); 438 PrintF("%s: 0x%08lx %ld \n", arg1, value, value); 439 } else if (fpuregnum != kInvalidFPURegister) { 440 value = GetFPURegisterValue(fpuregnum); 441 dvalue = GetFPURegisterValueDouble(fpuregnum); 442 PrintF("%3s: 0x%016lx %16.4e\n", 443 FPURegisters::Name(fpuregnum), value, dvalue); 444 } else { 445 PrintF("%s unrecognized\n", arg1); 446 } 447 } 448 } else { 449 if (argc == 3) { 450 if (strcmp(arg2, "single") == 0) { 451 int64_t value; 452 float fvalue; 453 int fpuregnum = FPURegisters::Number(arg1); 454 455 if (fpuregnum != kInvalidFPURegister) { 456 value = GetFPURegisterValue(fpuregnum); 457 value &= 0xffffffffUL; 458 fvalue = GetFPURegisterValueFloat(fpuregnum); 459 PrintF("%s: 0x%08lx %11.4e\n", arg1, value, fvalue); 460 } else { 461 PrintF("%s unrecognized\n", arg1); 462 } 463 } else { 464 PrintF("print <fpu register> single\n"); 465 } 466 } else { 467 PrintF("print <register> or print <fpu register> single\n"); 468 } 469 } 470 } else if ((strcmp(cmd, "po") == 0) 471 || (strcmp(cmd, "printobject") == 0)) { 472 if (argc == 2) { 473 int64_t value; 474 OFStream os(stdout); 475 if (GetValue(arg1, &value)) { 476 Object* obj = reinterpret_cast<Object*>(value); 477 os << arg1 << ": \n"; 478 #ifdef DEBUG 479 obj->Print(os); 480 os << "\n"; 481 #else 482 os << Brief(obj) << "\n"; 483 #endif 484 } else { 485 os << arg1 << " unrecognized\n"; 486 } 487 } else { 488 PrintF("printobject <value>\n"); 489 } 490 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 491 int64_t* cur = NULL; 492 int64_t* end = NULL; 493 int next_arg = 1; 494 495 if (strcmp(cmd, "stack") == 0) { 496 cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp)); 497 } else { // Command "mem". 498 int64_t value; 499 if (!GetValue(arg1, &value)) { 500 PrintF("%s unrecognized\n", arg1); 501 continue; 502 } 503 cur = reinterpret_cast<int64_t*>(value); 504 next_arg++; 505 } 506 507 int64_t words; 508 if (argc == next_arg) { 509 words = 10; 510 } else { 511 if (!GetValue(argv[next_arg], &words)) { 512 words = 10; 513 } 514 } 515 end = cur + words; 516 517 while (cur < end) { 518 PrintF(" 0x%012lx: 0x%016lx %14ld", 519 reinterpret_cast<intptr_t>(cur), *cur, *cur); 520 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 521 int64_t value = *cur; 522 Heap* current_heap = sim_->isolate_->heap(); 523 if (((value & 1) == 0) || current_heap->Contains(obj)) { 524 PrintF(" ("); 525 if ((value & 1) == 0) { 526 PrintF("smi %d", static_cast<int>(value >> 32)); 527 } else { 528 obj->ShortPrint(); 529 } 530 PrintF(")"); 531 } 532 PrintF("\n"); 533 cur++; 534 } 535 536 } else if ((strcmp(cmd, "disasm") == 0) || 537 (strcmp(cmd, "dpc") == 0) || 538 (strcmp(cmd, "di") == 0)) { 539 disasm::NameConverter converter; 540 disasm::Disassembler dasm(converter); 541 // Use a reasonably large buffer. 542 v8::internal::EmbeddedVector<char, 256> buffer; 543 544 byte* cur = NULL; 545 byte* end = NULL; 546 547 if (argc == 1) { 548 cur = reinterpret_cast<byte*>(sim_->get_pc()); 549 end = cur + (10 * Instruction::kInstrSize); 550 } else if (argc == 2) { 551 int regnum = Registers::Number(arg1); 552 if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { 553 // The argument is an address or a register name. 554 int64_t value; 555 if (GetValue(arg1, &value)) { 556 cur = reinterpret_cast<byte*>(value); 557 // Disassemble 10 instructions at <arg1>. 558 end = cur + (10 * Instruction::kInstrSize); 559 } 560 } else { 561 // The argument is the number of instructions. 562 int64_t value; 563 if (GetValue(arg1, &value)) { 564 cur = reinterpret_cast<byte*>(sim_->get_pc()); 565 // Disassemble <arg1> instructions. 566 end = cur + (value * Instruction::kInstrSize); 567 } 568 } 569 } else { 570 int64_t value1; 571 int64_t value2; 572 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 573 cur = reinterpret_cast<byte*>(value1); 574 end = cur + (value2 * Instruction::kInstrSize); 575 } 576 } 577 578 while (cur < end) { 579 dasm.InstructionDecode(buffer, cur); 580 PrintF(" 0x%08lx %s\n", 581 reinterpret_cast<intptr_t>(cur), buffer.start()); 582 cur += Instruction::kInstrSize; 583 } 584 } else if (strcmp(cmd, "gdb") == 0) { 585 PrintF("relinquishing control to gdb\n"); 586 v8::base::OS::DebugBreak(); 587 PrintF("regaining control from gdb\n"); 588 } else if (strcmp(cmd, "break") == 0) { 589 if (argc == 2) { 590 int64_t value; 591 if (GetValue(arg1, &value)) { 592 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 593 PrintF("setting breakpoint failed\n"); 594 } 595 } else { 596 PrintF("%s unrecognized\n", arg1); 597 } 598 } else { 599 PrintF("break <address>\n"); 600 } 601 } else if (strcmp(cmd, "del") == 0) { 602 if (!DeleteBreakpoint(NULL)) { 603 PrintF("deleting breakpoint failed\n"); 604 } 605 } else if (strcmp(cmd, "flags") == 0) { 606 PrintF("No flags on MIPS !\n"); 607 } else if (strcmp(cmd, "stop") == 0) { 608 int64_t value; 609 intptr_t stop_pc = sim_->get_pc() - 610 2 * Instruction::kInstrSize; 611 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 612 Instruction* msg_address = 613 reinterpret_cast<Instruction*>(stop_pc + 614 Instruction::kInstrSize); 615 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 616 // Remove the current stop. 617 if (sim_->IsStopInstruction(stop_instr)) { 618 stop_instr->SetInstructionBits(kNopInstr); 619 msg_address->SetInstructionBits(kNopInstr); 620 } else { 621 PrintF("Not at debugger stop.\n"); 622 } 623 } else if (argc == 3) { 624 // Print information about all/the specified breakpoint(s). 625 if (strcmp(arg1, "info") == 0) { 626 if (strcmp(arg2, "all") == 0) { 627 PrintF("Stop information:\n"); 628 for (uint32_t i = kMaxWatchpointCode + 1; 629 i <= kMaxStopCode; 630 i++) { 631 sim_->PrintStopInfo(i); 632 } 633 } else if (GetValue(arg2, &value)) { 634 sim_->PrintStopInfo(value); 635 } else { 636 PrintF("Unrecognized argument.\n"); 637 } 638 } else if (strcmp(arg1, "enable") == 0) { 639 // Enable all/the specified breakpoint(s). 640 if (strcmp(arg2, "all") == 0) { 641 for (uint32_t i = kMaxWatchpointCode + 1; 642 i <= kMaxStopCode; 643 i++) { 644 sim_->EnableStop(i); 645 } 646 } else if (GetValue(arg2, &value)) { 647 sim_->EnableStop(value); 648 } else { 649 PrintF("Unrecognized argument.\n"); 650 } 651 } else if (strcmp(arg1, "disable") == 0) { 652 // Disable all/the specified breakpoint(s). 653 if (strcmp(arg2, "all") == 0) { 654 for (uint32_t i = kMaxWatchpointCode + 1; 655 i <= kMaxStopCode; 656 i++) { 657 sim_->DisableStop(i); 658 } 659 } else if (GetValue(arg2, &value)) { 660 sim_->DisableStop(value); 661 } else { 662 PrintF("Unrecognized argument.\n"); 663 } 664 } 665 } else { 666 PrintF("Wrong usage. Use help command for more information.\n"); 667 } 668 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { 669 // Print registers and disassemble. 670 PrintAllRegs(); 671 PrintF("\n"); 672 673 disasm::NameConverter converter; 674 disasm::Disassembler dasm(converter); 675 // Use a reasonably large buffer. 676 v8::internal::EmbeddedVector<char, 256> buffer; 677 678 byte* cur = NULL; 679 byte* end = NULL; 680 681 if (argc == 1) { 682 cur = reinterpret_cast<byte*>(sim_->get_pc()); 683 end = cur + (10 * Instruction::kInstrSize); 684 } else if (argc == 2) { 685 int64_t value; 686 if (GetValue(arg1, &value)) { 687 cur = reinterpret_cast<byte*>(value); 688 // no length parameter passed, assume 10 instructions 689 end = cur + (10 * Instruction::kInstrSize); 690 } 691 } else { 692 int64_t value1; 693 int64_t value2; 694 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 695 cur = reinterpret_cast<byte*>(value1); 696 end = cur + (value2 * Instruction::kInstrSize); 697 } 698 } 699 700 while (cur < end) { 701 dasm.InstructionDecode(buffer, cur); 702 PrintF(" 0x%08lx %s\n", 703 reinterpret_cast<intptr_t>(cur), buffer.start()); 704 cur += Instruction::kInstrSize; 705 } 706 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 707 PrintF("cont\n"); 708 PrintF(" continue execution (alias 'c')\n"); 709 PrintF("stepi\n"); 710 PrintF(" step one instruction (alias 'si')\n"); 711 PrintF("print <register>\n"); 712 PrintF(" print register content (alias 'p')\n"); 713 PrintF(" use register name 'all' to print all registers\n"); 714 PrintF("printobject <register>\n"); 715 PrintF(" print an object from a register (alias 'po')\n"); 716 PrintF("stack [<words>]\n"); 717 PrintF(" dump stack content, default dump 10 words)\n"); 718 PrintF("mem <address> [<words>]\n"); 719 PrintF(" dump memory content, default dump 10 words)\n"); 720 PrintF("flags\n"); 721 PrintF(" print flags\n"); 722 PrintF("disasm [<instructions>]\n"); 723 PrintF("disasm [<address/register>]\n"); 724 PrintF("disasm [[<address/register>] <instructions>]\n"); 725 PrintF(" disassemble code, default is 10 instructions\n"); 726 PrintF(" from pc (alias 'di')\n"); 727 PrintF("gdb\n"); 728 PrintF(" enter gdb\n"); 729 PrintF("break <address>\n"); 730 PrintF(" set a break point on the address\n"); 731 PrintF("del\n"); 732 PrintF(" delete the breakpoint\n"); 733 PrintF("stop feature:\n"); 734 PrintF(" Description:\n"); 735 PrintF(" Stops are debug instructions inserted by\n"); 736 PrintF(" the Assembler::stop() function.\n"); 737 PrintF(" When hitting a stop, the Simulator will\n"); 738 PrintF(" stop and and give control to the Debugger.\n"); 739 PrintF(" All stop codes are watched:\n"); 740 PrintF(" - They can be enabled / disabled: the Simulator\n"); 741 PrintF(" will / won't stop when hitting them.\n"); 742 PrintF(" - The Simulator keeps track of how many times they \n"); 743 PrintF(" are met. (See the info command.) Going over a\n"); 744 PrintF(" disabled stop still increases its counter. \n"); 745 PrintF(" Commands:\n"); 746 PrintF(" stop info all/<code> : print infos about number <code>\n"); 747 PrintF(" or all stop(s).\n"); 748 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 749 PrintF(" all or number <code> stop(s)\n"); 750 PrintF(" stop unstop\n"); 751 PrintF(" ignore the stop instruction at the current location\n"); 752 PrintF(" from now on\n"); 753 } else { 754 PrintF("Unknown command: %s\n", cmd); 755 } 756 } 757 } 758 759 // Add all the breakpoints back to stop execution and enter the debugger 760 // shell when hit. 761 RedoBreakpoints(); 762 763 #undef COMMAND_SIZE 764 #undef ARG_SIZE 765 766 #undef STR 767 #undef XSTR 768 } 769 770 771 static bool ICacheMatch(void* one, void* two) { 772 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 773 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 774 return one == two; 775 } 776 777 778 static uint32_t ICacheHash(void* key) { 779 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 780 } 781 782 783 static bool AllOnOnePage(uintptr_t start, size_t size) { 784 intptr_t start_page = (start & ~CachePage::kPageMask); 785 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 786 return start_page == end_page; 787 } 788 789 790 void Simulator::set_last_debugger_input(char* input) { 791 DeleteArray(last_debugger_input_); 792 last_debugger_input_ = input; 793 } 794 795 796 void Simulator::FlushICache(v8::internal::HashMap* i_cache, 797 void* start_addr, 798 size_t size) { 799 int64_t start = reinterpret_cast<int64_t>(start_addr); 800 int64_t intra_line = (start & CachePage::kLineMask); 801 start -= intra_line; 802 size += intra_line; 803 size = ((size - 1) | CachePage::kLineMask) + 1; 804 int offset = (start & CachePage::kPageMask); 805 while (!AllOnOnePage(start, size - 1)) { 806 int bytes_to_flush = CachePage::kPageSize - offset; 807 FlushOnePage(i_cache, start, bytes_to_flush); 808 start += bytes_to_flush; 809 size -= bytes_to_flush; 810 DCHECK_EQ((int64_t)0, start & CachePage::kPageMask); 811 offset = 0; 812 } 813 if (size != 0) { 814 FlushOnePage(i_cache, start, size); 815 } 816 } 817 818 819 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { 820 v8::internal::HashMap::Entry* entry = 821 i_cache->LookupOrInsert(page, ICacheHash(page)); 822 if (entry->value == NULL) { 823 CachePage* new_page = new CachePage(); 824 entry->value = new_page; 825 } 826 return reinterpret_cast<CachePage*>(entry->value); 827 } 828 829 830 // Flush from start up to and not including start + size. 831 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, 832 size_t size) { 833 DCHECK(size <= CachePage::kPageSize); 834 DCHECK(AllOnOnePage(start, size - 1)); 835 DCHECK((start & CachePage::kLineMask) == 0); 836 DCHECK((size & CachePage::kLineMask) == 0); 837 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 838 int offset = (start & CachePage::kPageMask); 839 CachePage* cache_page = GetCachePage(i_cache, page); 840 char* valid_bytemap = cache_page->ValidityByte(offset); 841 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 842 } 843 844 845 void Simulator::CheckICache(v8::internal::HashMap* i_cache, 846 Instruction* instr) { 847 int64_t address = reinterpret_cast<int64_t>(instr); 848 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 849 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 850 int offset = (address & CachePage::kPageMask); 851 CachePage* cache_page = GetCachePage(i_cache, page); 852 char* cache_valid_byte = cache_page->ValidityByte(offset); 853 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 854 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 855 if (cache_hit) { 856 // Check that the data in memory matches the contents of the I-cache. 857 CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), 858 cache_page->CachedData(offset), 859 Instruction::kInstrSize)); 860 } else { 861 // Cache miss. Load memory into the cache. 862 memcpy(cached_line, line, CachePage::kLineLength); 863 *cache_valid_byte = CachePage::LINE_VALID; 864 } 865 } 866 867 868 void Simulator::Initialize(Isolate* isolate) { 869 if (isolate->simulator_initialized()) return; 870 isolate->set_simulator_initialized(true); 871 ::v8::internal::ExternalReference::set_redirector(isolate, 872 &RedirectExternalReference); 873 } 874 875 876 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 877 i_cache_ = isolate_->simulator_i_cache(); 878 if (i_cache_ == NULL) { 879 i_cache_ = new v8::internal::HashMap(&ICacheMatch); 880 isolate_->set_simulator_i_cache(i_cache_); 881 } 882 Initialize(isolate); 883 // Set up simulator support first. Some of this information is needed to 884 // setup the architecture state. 885 stack_size_ = FLAG_sim_stack_size * KB; 886 stack_ = reinterpret_cast<char*>(malloc(stack_size_)); 887 pc_modified_ = false; 888 icount_ = 0; 889 break_count_ = 0; 890 break_pc_ = NULL; 891 break_instr_ = 0; 892 893 // Set up architecture state. 894 // All registers are initialized to zero to start with. 895 for (int i = 0; i < kNumSimuRegisters; i++) { 896 registers_[i] = 0; 897 } 898 for (int i = 0; i < kNumFPURegisters; i++) { 899 FPUregisters_[i] = 0; 900 } 901 902 if (kArchVariant == kMips64r6) { 903 FCSR_ = kFCSRNaN2008FlagMask; 904 } else { 905 FCSR_ = 0; 906 } 907 908 // The sp is initialized to point to the bottom (high address) of the 909 // allocated stack area. To be safe in potential stack underflows we leave 910 // some buffer below. 911 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64; 912 // The ra and pc are initialized to a known bad value that will cause an 913 // access violation if the simulator ever tries to execute it. 914 registers_[pc] = bad_ra; 915 registers_[ra] = bad_ra; 916 InitializeCoverage(); 917 918 last_debugger_input_ = NULL; 919 } 920 921 922 Simulator::~Simulator() { free(stack_); } 923 924 925 // When the generated code calls an external reference we need to catch that in 926 // the simulator. The external reference will be a function compiled for the 927 // host architecture. We need to call that function instead of trying to 928 // execute it with the simulator. We do that by redirecting the external 929 // reference to a swi (software-interrupt) instruction that is handled by 930 // the simulator. We write the original destination of the jump just at a known 931 // offset from the swi instruction so the simulator knows what to call. 932 class Redirection { 933 public: 934 Redirection(Isolate* isolate, void* external_function, 935 ExternalReference::Type type) 936 : external_function_(external_function), 937 swi_instruction_(rtCallRedirInstr), 938 type_(type), 939 next_(NULL) { 940 next_ = isolate->simulator_redirection(); 941 Simulator::current(isolate)-> 942 FlushICache(isolate->simulator_i_cache(), 943 reinterpret_cast<void*>(&swi_instruction_), 944 Instruction::kInstrSize); 945 isolate->set_simulator_redirection(this); 946 } 947 948 void* address_of_swi_instruction() { 949 return reinterpret_cast<void*>(&swi_instruction_); 950 } 951 952 void* external_function() { return external_function_; } 953 ExternalReference::Type type() { return type_; } 954 955 static Redirection* Get(Isolate* isolate, void* external_function, 956 ExternalReference::Type type) { 957 Redirection* current = isolate->simulator_redirection(); 958 for (; current != NULL; current = current->next_) { 959 if (current->external_function_ == external_function) return current; 960 } 961 return new Redirection(isolate, external_function, type); 962 } 963 964 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 965 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 966 char* addr_of_redirection = 967 addr_of_swi - offsetof(Redirection, swi_instruction_); 968 return reinterpret_cast<Redirection*>(addr_of_redirection); 969 } 970 971 static void* ReverseRedirection(int64_t reg) { 972 Redirection* redirection = FromSwiInstruction( 973 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 974 return redirection->external_function(); 975 } 976 977 static void DeleteChain(Redirection* redirection) { 978 while (redirection != nullptr) { 979 Redirection* next = redirection->next_; 980 delete redirection; 981 redirection = next; 982 } 983 } 984 985 private: 986 void* external_function_; 987 uint32_t swi_instruction_; 988 ExternalReference::Type type_; 989 Redirection* next_; 990 }; 991 992 993 // static 994 void Simulator::TearDown(HashMap* i_cache, Redirection* first) { 995 Redirection::DeleteChain(first); 996 if (i_cache != nullptr) { 997 for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr; 998 entry = i_cache->Next(entry)) { 999 delete static_cast<CachePage*>(entry->value); 1000 } 1001 delete i_cache; 1002 } 1003 } 1004 1005 1006 void* Simulator::RedirectExternalReference(Isolate* isolate, 1007 void* external_function, 1008 ExternalReference::Type type) { 1009 Redirection* redirection = Redirection::Get(isolate, external_function, type); 1010 return redirection->address_of_swi_instruction(); 1011 } 1012 1013 1014 // Get the active Simulator for the current thread. 1015 Simulator* Simulator::current(Isolate* isolate) { 1016 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 1017 isolate->FindOrAllocatePerThreadDataForThisThread(); 1018 DCHECK(isolate_data != NULL); 1019 DCHECK(isolate_data != NULL); 1020 1021 Simulator* sim = isolate_data->simulator(); 1022 if (sim == NULL) { 1023 // TODO(146): delete the simulator object when a thread/isolate goes away. 1024 sim = new Simulator(isolate); 1025 isolate_data->set_simulator(sim); 1026 } 1027 return sim; 1028 } 1029 1030 1031 // Sets the register in the architecture state. It will also deal with updating 1032 // Simulator internal state for special registers such as PC. 1033 void Simulator::set_register(int reg, int64_t value) { 1034 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 1035 if (reg == pc) { 1036 pc_modified_ = true; 1037 } 1038 1039 // Zero register always holds 0. 1040 registers_[reg] = (reg == 0) ? 0 : value; 1041 } 1042 1043 1044 void Simulator::set_dw_register(int reg, const int* dbl) { 1045 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 1046 registers_[reg] = dbl[1]; 1047 registers_[reg] = registers_[reg] << 32; 1048 registers_[reg] += dbl[0]; 1049 } 1050 1051 1052 void Simulator::set_fpu_register(int fpureg, int64_t value) { 1053 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1054 FPUregisters_[fpureg] = value; 1055 } 1056 1057 1058 void Simulator::set_fpu_register_word(int fpureg, int32_t value) { 1059 // Set ONLY lower 32-bits, leaving upper bits untouched. 1060 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1061 int32_t* pword; 1062 if (kArchEndian == kLittle) { 1063 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); 1064 } else { 1065 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1; 1066 } 1067 *pword = value; 1068 } 1069 1070 1071 void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { 1072 // Set ONLY upper 32-bits, leaving lower bits untouched. 1073 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1074 int32_t* phiword; 1075 if (kArchEndian == kLittle) { 1076 phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1; 1077 } else { 1078 phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); 1079 } 1080 *phiword = value; 1081 } 1082 1083 1084 void Simulator::set_fpu_register_float(int fpureg, float value) { 1085 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1086 *bit_cast<float*>(&FPUregisters_[fpureg]) = value; 1087 } 1088 1089 1090 void Simulator::set_fpu_register_double(int fpureg, double value) { 1091 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1092 *bit_cast<double*>(&FPUregisters_[fpureg]) = value; 1093 } 1094 1095 1096 // Get the register from the architecture state. This function does handle 1097 // the special case of accessing the PC register. 1098 int64_t Simulator::get_register(int reg) const { 1099 DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); 1100 if (reg == 0) 1101 return 0; 1102 else 1103 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 1104 } 1105 1106 1107 double Simulator::get_double_from_register_pair(int reg) { 1108 // TODO(plind): bad ABI stuff, refactor or remove. 1109 DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); 1110 1111 double dm_val = 0.0; 1112 // Read the bits from the unsigned integer register_[] array 1113 // into the double precision floating point value and return it. 1114 char buffer[sizeof(registers_[0])]; 1115 memcpy(buffer, ®isters_[reg], sizeof(registers_[0])); 1116 memcpy(&dm_val, buffer, sizeof(registers_[0])); 1117 return(dm_val); 1118 } 1119 1120 1121 int64_t Simulator::get_fpu_register(int fpureg) const { 1122 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1123 return FPUregisters_[fpureg]; 1124 } 1125 1126 1127 int32_t Simulator::get_fpu_register_word(int fpureg) const { 1128 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1129 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); 1130 } 1131 1132 1133 int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { 1134 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1135 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); 1136 } 1137 1138 1139 int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { 1140 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1141 return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff); 1142 } 1143 1144 1145 float Simulator::get_fpu_register_float(int fpureg) const { 1146 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1147 return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg])); 1148 } 1149 1150 1151 double Simulator::get_fpu_register_double(int fpureg) const { 1152 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); 1153 return *bit_cast<double*>(&FPUregisters_[fpureg]); 1154 } 1155 1156 1157 // Runtime FP routines take up to two double arguments and zero 1158 // or one integer arguments. All are constructed here, 1159 // from a0-a3 or f12 and f13 (n64), or f14 (O32). 1160 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1161 if (!IsMipsSoftFloatABI) { 1162 const int fparg2 = (kMipsAbi == kN64) ? 13 : 14; 1163 *x = get_fpu_register_double(12); 1164 *y = get_fpu_register_double(fparg2); 1165 *z = static_cast<int32_t>(get_register(a2)); 1166 } else { 1167 // TODO(plind): bad ABI stuff, refactor or remove. 1168 // We use a char buffer to get around the strict-aliasing rules which 1169 // otherwise allow the compiler to optimize away the copy. 1170 char buffer[sizeof(*x)]; 1171 int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); 1172 1173 // Registers a0 and a1 -> x. 1174 reg_buffer[0] = get_register(a0); 1175 reg_buffer[1] = get_register(a1); 1176 memcpy(x, buffer, sizeof(buffer)); 1177 // Registers a2 and a3 -> y. 1178 reg_buffer[0] = get_register(a2); 1179 reg_buffer[1] = get_register(a3); 1180 memcpy(y, buffer, sizeof(buffer)); 1181 // Register 2 -> z. 1182 reg_buffer[0] = get_register(a2); 1183 memcpy(z, buffer, sizeof(*z)); 1184 } 1185 } 1186 1187 1188 // The return value is either in v0/v1 or f0. 1189 void Simulator::SetFpResult(const double& result) { 1190 if (!IsMipsSoftFloatABI) { 1191 set_fpu_register_double(0, result); 1192 } else { 1193 char buffer[2 * sizeof(registers_[0])]; 1194 int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer); 1195 memcpy(buffer, &result, sizeof(buffer)); 1196 // Copy result to v0 and v1. 1197 set_register(v0, reg_buffer[0]); 1198 set_register(v1, reg_buffer[1]); 1199 } 1200 } 1201 1202 1203 // Helper functions for setting and testing the FCSR register's bits. 1204 void Simulator::set_fcsr_bit(uint32_t cc, bool value) { 1205 if (value) { 1206 FCSR_ |= (1 << cc); 1207 } else { 1208 FCSR_ &= ~(1 << cc); 1209 } 1210 } 1211 1212 1213 bool Simulator::test_fcsr_bit(uint32_t cc) { 1214 return FCSR_ & (1 << cc); 1215 } 1216 1217 1218 void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { 1219 FCSR_ |= mode & kFPURoundingModeMask; 1220 } 1221 1222 1223 unsigned int Simulator::get_fcsr_rounding_mode() { 1224 return FCSR_ & kFPURoundingModeMask; 1225 } 1226 1227 1228 // Sets the rounding error codes in FCSR based on the result of the rounding. 1229 // Returns true if the operation was invalid. 1230 bool Simulator::set_fcsr_round_error(double original, double rounded) { 1231 bool ret = false; 1232 double max_int32 = std::numeric_limits<int32_t>::max(); 1233 double min_int32 = std::numeric_limits<int32_t>::min(); 1234 1235 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1236 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1237 ret = true; 1238 } 1239 1240 if (original != rounded) { 1241 set_fcsr_bit(kFCSRInexactFlagBit, true); 1242 } 1243 1244 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { 1245 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1246 ret = true; 1247 } 1248 1249 if (rounded > max_int32 || rounded < min_int32) { 1250 set_fcsr_bit(kFCSROverflowFlagBit, true); 1251 // The reference is not really clear but it seems this is required: 1252 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1253 ret = true; 1254 } 1255 1256 return ret; 1257 } 1258 1259 1260 // Sets the rounding error codes in FCSR based on the result of the rounding. 1261 // Returns true if the operation was invalid. 1262 bool Simulator::set_fcsr_round64_error(double original, double rounded) { 1263 bool ret = false; 1264 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1265 // loading the most accurate representation into max_int64, which is 2^63. 1266 double max_int64 = std::numeric_limits<int64_t>::max(); 1267 double min_int64 = std::numeric_limits<int64_t>::min(); 1268 1269 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1270 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1271 ret = true; 1272 } 1273 1274 if (original != rounded) { 1275 set_fcsr_bit(kFCSRInexactFlagBit, true); 1276 } 1277 1278 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { 1279 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1280 ret = true; 1281 } 1282 1283 if (rounded >= max_int64 || rounded < min_int64) { 1284 set_fcsr_bit(kFCSROverflowFlagBit, true); 1285 // The reference is not really clear but it seems this is required: 1286 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1287 ret = true; 1288 } 1289 1290 return ret; 1291 } 1292 1293 1294 // Sets the rounding error codes in FCSR based on the result of the rounding. 1295 // Returns true if the operation was invalid. 1296 bool Simulator::set_fcsr_round_error(float original, float rounded) { 1297 bool ret = false; 1298 double max_int32 = std::numeric_limits<int32_t>::max(); 1299 double min_int32 = std::numeric_limits<int32_t>::min(); 1300 1301 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1302 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1303 ret = true; 1304 } 1305 1306 if (original != rounded) { 1307 set_fcsr_bit(kFCSRInexactFlagBit, true); 1308 } 1309 1310 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { 1311 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1312 ret = true; 1313 } 1314 1315 if (rounded > max_int32 || rounded < min_int32) { 1316 set_fcsr_bit(kFCSROverflowFlagBit, true); 1317 // The reference is not really clear but it seems this is required: 1318 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1319 ret = true; 1320 } 1321 1322 return ret; 1323 } 1324 1325 void Simulator::set_fpu_register_word_invalid_result(float original, 1326 float rounded) { 1327 if (FCSR_ & kFCSRNaN2008FlagMask) { 1328 double max_int32 = std::numeric_limits<int32_t>::max(); 1329 double min_int32 = std::numeric_limits<int32_t>::min(); 1330 if (std::isnan(original)) { 1331 set_fpu_register_word(fd_reg(), 0); 1332 } else if (rounded > max_int32) { 1333 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1334 } else if (rounded < min_int32) { 1335 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); 1336 } else { 1337 UNREACHABLE(); 1338 } 1339 } else { 1340 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1341 } 1342 } 1343 1344 1345 void Simulator::set_fpu_register_invalid_result(float original, float rounded) { 1346 if (FCSR_ & kFCSRNaN2008FlagMask) { 1347 double max_int32 = std::numeric_limits<int32_t>::max(); 1348 double min_int32 = std::numeric_limits<int32_t>::min(); 1349 if (std::isnan(original)) { 1350 set_fpu_register(fd_reg(), 0); 1351 } else if (rounded > max_int32) { 1352 set_fpu_register(fd_reg(), kFPUInvalidResult); 1353 } else if (rounded < min_int32) { 1354 set_fpu_register(fd_reg(), kFPUInvalidResultNegative); 1355 } else { 1356 UNREACHABLE(); 1357 } 1358 } else { 1359 set_fpu_register(fd_reg(), kFPUInvalidResult); 1360 } 1361 } 1362 1363 1364 void Simulator::set_fpu_register_invalid_result64(float original, 1365 float rounded) { 1366 if (FCSR_ & kFCSRNaN2008FlagMask) { 1367 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1368 // loading the most accurate representation into max_int64, which is 2^63. 1369 double max_int64 = std::numeric_limits<int64_t>::max(); 1370 double min_int64 = std::numeric_limits<int64_t>::min(); 1371 if (std::isnan(original)) { 1372 set_fpu_register(fd_reg(), 0); 1373 } else if (rounded >= max_int64) { 1374 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1375 } else if (rounded < min_int64) { 1376 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); 1377 } else { 1378 UNREACHABLE(); 1379 } 1380 } else { 1381 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1382 } 1383 } 1384 1385 1386 void Simulator::set_fpu_register_word_invalid_result(double original, 1387 double rounded) { 1388 if (FCSR_ & kFCSRNaN2008FlagMask) { 1389 double max_int32 = std::numeric_limits<int32_t>::max(); 1390 double min_int32 = std::numeric_limits<int32_t>::min(); 1391 if (std::isnan(original)) { 1392 set_fpu_register_word(fd_reg(), 0); 1393 } else if (rounded > max_int32) { 1394 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1395 } else if (rounded < min_int32) { 1396 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); 1397 } else { 1398 UNREACHABLE(); 1399 } 1400 } else { 1401 set_fpu_register_word(fd_reg(), kFPUInvalidResult); 1402 } 1403 } 1404 1405 1406 void Simulator::set_fpu_register_invalid_result(double original, 1407 double rounded) { 1408 if (FCSR_ & kFCSRNaN2008FlagMask) { 1409 double max_int32 = std::numeric_limits<int32_t>::max(); 1410 double min_int32 = std::numeric_limits<int32_t>::min(); 1411 if (std::isnan(original)) { 1412 set_fpu_register(fd_reg(), 0); 1413 } else if (rounded > max_int32) { 1414 set_fpu_register(fd_reg(), kFPUInvalidResult); 1415 } else if (rounded < min_int32) { 1416 set_fpu_register(fd_reg(), kFPUInvalidResultNegative); 1417 } else { 1418 UNREACHABLE(); 1419 } 1420 } else { 1421 set_fpu_register(fd_reg(), kFPUInvalidResult); 1422 } 1423 } 1424 1425 1426 void Simulator::set_fpu_register_invalid_result64(double original, 1427 double rounded) { 1428 if (FCSR_ & kFCSRNaN2008FlagMask) { 1429 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1430 // loading the most accurate representation into max_int64, which is 2^63. 1431 double max_int64 = std::numeric_limits<int64_t>::max(); 1432 double min_int64 = std::numeric_limits<int64_t>::min(); 1433 if (std::isnan(original)) { 1434 set_fpu_register(fd_reg(), 0); 1435 } else if (rounded >= max_int64) { 1436 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1437 } else if (rounded < min_int64) { 1438 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); 1439 } else { 1440 UNREACHABLE(); 1441 } 1442 } else { 1443 set_fpu_register(fd_reg(), kFPU64InvalidResult); 1444 } 1445 } 1446 1447 1448 // Sets the rounding error codes in FCSR based on the result of the rounding. 1449 // Returns true if the operation was invalid. 1450 bool Simulator::set_fcsr_round64_error(float original, float rounded) { 1451 bool ret = false; 1452 // The value of INT64_MAX (2^63-1) can't be represented as double exactly, 1453 // loading the most accurate representation into max_int64, which is 2^63. 1454 double max_int64 = std::numeric_limits<int64_t>::max(); 1455 double min_int64 = std::numeric_limits<int64_t>::min(); 1456 1457 if (!std::isfinite(original) || !std::isfinite(rounded)) { 1458 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1459 ret = true; 1460 } 1461 1462 if (original != rounded) { 1463 set_fcsr_bit(kFCSRInexactFlagBit, true); 1464 } 1465 1466 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { 1467 set_fcsr_bit(kFCSRUnderflowFlagBit, true); 1468 ret = true; 1469 } 1470 1471 if (rounded >= max_int64 || rounded < min_int64) { 1472 set_fcsr_bit(kFCSROverflowFlagBit, true); 1473 // The reference is not really clear but it seems this is required: 1474 set_fcsr_bit(kFCSRInvalidOpFlagBit, true); 1475 ret = true; 1476 } 1477 1478 return ret; 1479 } 1480 1481 1482 // For cvt instructions only 1483 void Simulator::round_according_to_fcsr(double toRound, double& rounded, 1484 int32_t& rounded_int, double fs) { 1485 // 0 RN (round to nearest): Round a result to the nearest 1486 // representable value; if the result is exactly halfway between 1487 // two representable values, round to zero. Behave like round_w_d. 1488 1489 // 1 RZ (round toward zero): Round a result to the closest 1490 // representable value whose absolute value is less than or 1491 // equal to the infinitely accurate result. Behave like trunc_w_d. 1492 1493 // 2 RP (round up, or toward +infinity): Round a result to the 1494 // next representable value up. Behave like ceil_w_d. 1495 1496 // 3 RN (round down, or toward infinity): Round a result to 1497 // the next representable value down. Behave like floor_w_d. 1498 switch (FCSR_ & 3) { 1499 case kRoundToNearest: 1500 rounded = std::floor(fs + 0.5); 1501 rounded_int = static_cast<int32_t>(rounded); 1502 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1503 // If the number is halfway between two integers, 1504 // round to the even one. 1505 rounded_int--; 1506 } 1507 break; 1508 case kRoundToZero: 1509 rounded = trunc(fs); 1510 rounded_int = static_cast<int32_t>(rounded); 1511 break; 1512 case kRoundToPlusInf: 1513 rounded = std::ceil(fs); 1514 rounded_int = static_cast<int32_t>(rounded); 1515 break; 1516 case kRoundToMinusInf: 1517 rounded = std::floor(fs); 1518 rounded_int = static_cast<int32_t>(rounded); 1519 break; 1520 } 1521 } 1522 1523 1524 void Simulator::round64_according_to_fcsr(double toRound, double& rounded, 1525 int64_t& rounded_int, double fs) { 1526 // 0 RN (round to nearest): Round a result to the nearest 1527 // representable value; if the result is exactly halfway between 1528 // two representable values, round to zero. Behave like round_w_d. 1529 1530 // 1 RZ (round toward zero): Round a result to the closest 1531 // representable value whose absolute value is less than or. 1532 // equal to the infinitely accurate result. Behave like trunc_w_d. 1533 1534 // 2 RP (round up, or toward +infinity): Round a result to the 1535 // next representable value up. Behave like ceil_w_d. 1536 1537 // 3 RN (round down, or toward infinity): Round a result to 1538 // the next representable value down. Behave like floor_w_d. 1539 switch (FCSR_ & 3) { 1540 case kRoundToNearest: 1541 rounded = std::floor(fs + 0.5); 1542 rounded_int = static_cast<int64_t>(rounded); 1543 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1544 // If the number is halfway between two integers, 1545 // round to the even one. 1546 rounded_int--; 1547 } 1548 break; 1549 case kRoundToZero: 1550 rounded = trunc(fs); 1551 rounded_int = static_cast<int64_t>(rounded); 1552 break; 1553 case kRoundToPlusInf: 1554 rounded = std::ceil(fs); 1555 rounded_int = static_cast<int64_t>(rounded); 1556 break; 1557 case kRoundToMinusInf: 1558 rounded = std::floor(fs); 1559 rounded_int = static_cast<int64_t>(rounded); 1560 break; 1561 } 1562 } 1563 1564 1565 // for cvt instructions only 1566 void Simulator::round_according_to_fcsr(float toRound, float& rounded, 1567 int32_t& rounded_int, float fs) { 1568 // 0 RN (round to nearest): Round a result to the nearest 1569 // representable value; if the result is exactly halfway between 1570 // two representable values, round to zero. Behave like round_w_d. 1571 1572 // 1 RZ (round toward zero): Round a result to the closest 1573 // representable value whose absolute value is less than or 1574 // equal to the infinitely accurate result. Behave like trunc_w_d. 1575 1576 // 2 RP (round up, or toward +infinity): Round a result to the 1577 // next representable value up. Behave like ceil_w_d. 1578 1579 // 3 RN (round down, or toward infinity): Round a result to 1580 // the next representable value down. Behave like floor_w_d. 1581 switch (FCSR_ & 3) { 1582 case kRoundToNearest: 1583 rounded = std::floor(fs + 0.5); 1584 rounded_int = static_cast<int32_t>(rounded); 1585 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1586 // If the number is halfway between two integers, 1587 // round to the even one. 1588 rounded_int--; 1589 } 1590 break; 1591 case kRoundToZero: 1592 rounded = trunc(fs); 1593 rounded_int = static_cast<int32_t>(rounded); 1594 break; 1595 case kRoundToPlusInf: 1596 rounded = std::ceil(fs); 1597 rounded_int = static_cast<int32_t>(rounded); 1598 break; 1599 case kRoundToMinusInf: 1600 rounded = std::floor(fs); 1601 rounded_int = static_cast<int32_t>(rounded); 1602 break; 1603 } 1604 } 1605 1606 1607 void Simulator::round64_according_to_fcsr(float toRound, float& rounded, 1608 int64_t& rounded_int, float fs) { 1609 // 0 RN (round to nearest): Round a result to the nearest 1610 // representable value; if the result is exactly halfway between 1611 // two representable values, round to zero. Behave like round_w_d. 1612 1613 // 1 RZ (round toward zero): Round a result to the closest 1614 // representable value whose absolute value is less than or. 1615 // equal to the infinitely accurate result. Behave like trunc_w_d. 1616 1617 // 2 RP (round up, or toward +infinity): Round a result to the 1618 // next representable value up. Behave like ceil_w_d. 1619 1620 // 3 RN (round down, or toward infinity): Round a result to 1621 // the next representable value down. Behave like floor_w_d. 1622 switch (FCSR_ & 3) { 1623 case kRoundToNearest: 1624 rounded = std::floor(fs + 0.5); 1625 rounded_int = static_cast<int64_t>(rounded); 1626 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { 1627 // If the number is halfway between two integers, 1628 // round to the even one. 1629 rounded_int--; 1630 } 1631 break; 1632 case kRoundToZero: 1633 rounded = trunc(fs); 1634 rounded_int = static_cast<int64_t>(rounded); 1635 break; 1636 case kRoundToPlusInf: 1637 rounded = std::ceil(fs); 1638 rounded_int = static_cast<int64_t>(rounded); 1639 break; 1640 case kRoundToMinusInf: 1641 rounded = std::floor(fs); 1642 rounded_int = static_cast<int64_t>(rounded); 1643 break; 1644 } 1645 } 1646 1647 1648 // Raw access to the PC register. 1649 void Simulator::set_pc(int64_t value) { 1650 pc_modified_ = true; 1651 registers_[pc] = value; 1652 } 1653 1654 1655 bool Simulator::has_bad_pc() const { 1656 return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); 1657 } 1658 1659 1660 // Raw access to the PC register without the special adjustment when reading. 1661 int64_t Simulator::get_pc() const { 1662 return registers_[pc]; 1663 } 1664 1665 1666 // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an 1667 // interrupt is caused. On others it does a funky rotation thing. For now we 1668 // simply disallow unaligned reads, but at some point we may want to move to 1669 // emulating the rotate behaviour. Note that simulator runs have the runtime 1670 // system running directly on the host system and only generated code is 1671 // executed in the simulator. Since the host is typically IA32 we will not 1672 // get the correct MIPS-like behaviour on unaligned accesses. 1673 1674 // TODO(plind): refactor this messy debug code when we do unaligned access. 1675 void Simulator::DieOrDebug() { 1676 if (1) { // Flag for this was removed. 1677 MipsDebugger dbg(this); 1678 dbg.Debug(); 1679 } else { 1680 base::OS::Abort(); 1681 } 1682 } 1683 1684 1685 void Simulator::TraceRegWr(int64_t value) { 1686 if (::v8::internal::FLAG_trace_sim) { 1687 SNPrintF(trace_buf_, "%016lx", value); 1688 } 1689 } 1690 1691 1692 // TODO(plind): consider making icount_ printing a flag option. 1693 void Simulator::TraceMemRd(int64_t addr, int64_t value) { 1694 if (::v8::internal::FLAG_trace_sim) { 1695 SNPrintF(trace_buf_, "%016lx <-- [%016lx] (%ld)", 1696 value, addr, icount_); 1697 } 1698 } 1699 1700 1701 void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) { 1702 if (::v8::internal::FLAG_trace_sim) { 1703 switch (t) { 1704 case BYTE: 1705 SNPrintF(trace_buf_, " %02x --> [%016lx]", 1706 static_cast<int8_t>(value), addr); 1707 break; 1708 case HALF: 1709 SNPrintF(trace_buf_, " %04x --> [%016lx]", 1710 static_cast<int16_t>(value), addr); 1711 break; 1712 case WORD: 1713 SNPrintF(trace_buf_, " %08x --> [%016lx]", 1714 static_cast<int32_t>(value), addr); 1715 break; 1716 case DWORD: 1717 SNPrintF(trace_buf_, "%016lx --> [%016lx] (%ld)", 1718 value, addr, icount_); 1719 break; 1720 } 1721 } 1722 } 1723 1724 1725 // TODO(plind): sign-extend and zero-extend not implmented properly 1726 // on all the ReadXX functions, I don't think re-interpret cast does it. 1727 int32_t Simulator::ReadW(int64_t addr, Instruction* instr) { 1728 if (addr >=0 && addr < 0x400) { 1729 // This has to be a NULL-dereference, drop into debugger. 1730 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n", 1731 addr, reinterpret_cast<intptr_t>(instr)); 1732 DieOrDebug(); 1733 } 1734 if ((addr & 0x3) == 0) { 1735 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1736 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1737 return *ptr; 1738 } 1739 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1740 addr, 1741 reinterpret_cast<intptr_t>(instr)); 1742 DieOrDebug(); 1743 return 0; 1744 } 1745 1746 1747 uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) { 1748 if (addr >=0 && addr < 0x400) { 1749 // This has to be a NULL-dereference, drop into debugger. 1750 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n", 1751 addr, reinterpret_cast<intptr_t>(instr)); 1752 DieOrDebug(); 1753 } 1754 if ((addr & 0x3) == 0) { 1755 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 1756 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1757 return *ptr; 1758 } 1759 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1760 addr, 1761 reinterpret_cast<intptr_t>(instr)); 1762 DieOrDebug(); 1763 return 0; 1764 } 1765 1766 1767 void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) { 1768 if (addr >= 0 && addr < 0x400) { 1769 // This has to be a NULL-dereference, drop into debugger. 1770 PrintF("Memory write to bad address: 0x%08lx, pc=0x%08lx\n", 1771 addr, reinterpret_cast<intptr_t>(instr)); 1772 DieOrDebug(); 1773 } 1774 if ((addr & 0x3) == 0) { 1775 TraceMemWr(addr, value, WORD); 1776 int* ptr = reinterpret_cast<int*>(addr); 1777 *ptr = value; 1778 return; 1779 } 1780 PrintF("Unaligned write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1781 addr, 1782 reinterpret_cast<intptr_t>(instr)); 1783 DieOrDebug(); 1784 } 1785 1786 1787 int64_t Simulator::Read2W(int64_t addr, Instruction* instr) { 1788 if (addr >=0 && addr < 0x400) { 1789 // This has to be a NULL-dereference, drop into debugger. 1790 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n", 1791 addr, reinterpret_cast<intptr_t>(instr)); 1792 DieOrDebug(); 1793 } 1794 if ((addr & kPointerAlignmentMask) == 0) { 1795 int64_t* ptr = reinterpret_cast<int64_t*>(addr); 1796 TraceMemRd(addr, *ptr); 1797 return *ptr; 1798 } 1799 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1800 addr, 1801 reinterpret_cast<intptr_t>(instr)); 1802 DieOrDebug(); 1803 return 0; 1804 } 1805 1806 1807 void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) { 1808 if (addr >= 0 && addr < 0x400) { 1809 // This has to be a NULL-dereference, drop into debugger. 1810 PrintF("Memory write to bad address: 0x%08lx, pc=0x%08lx\n", 1811 addr, reinterpret_cast<intptr_t>(instr)); 1812 DieOrDebug(); 1813 } 1814 if ((addr & kPointerAlignmentMask) == 0) { 1815 TraceMemWr(addr, value, DWORD); 1816 int64_t* ptr = reinterpret_cast<int64_t*>(addr); 1817 *ptr = value; 1818 return; 1819 } 1820 PrintF("Unaligned write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1821 addr, 1822 reinterpret_cast<intptr_t>(instr)); 1823 DieOrDebug(); 1824 } 1825 1826 1827 double Simulator::ReadD(int64_t addr, Instruction* instr) { 1828 if ((addr & kDoubleAlignmentMask) == 0) { 1829 double* ptr = reinterpret_cast<double*>(addr); 1830 return *ptr; 1831 } 1832 PrintF("Unaligned (double) read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1833 addr, 1834 reinterpret_cast<intptr_t>(instr)); 1835 base::OS::Abort(); 1836 return 0; 1837 } 1838 1839 1840 void Simulator::WriteD(int64_t addr, double value, Instruction* instr) { 1841 if ((addr & kDoubleAlignmentMask) == 0) { 1842 double* ptr = reinterpret_cast<double*>(addr); 1843 *ptr = value; 1844 return; 1845 } 1846 PrintF("Unaligned (double) write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1847 addr, 1848 reinterpret_cast<intptr_t>(instr)); 1849 DieOrDebug(); 1850 } 1851 1852 1853 uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) { 1854 if ((addr & 1) == 0) { 1855 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1856 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1857 return *ptr; 1858 } 1859 PrintF("Unaligned unsigned halfword read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1860 addr, 1861 reinterpret_cast<intptr_t>(instr)); 1862 DieOrDebug(); 1863 return 0; 1864 } 1865 1866 1867 int16_t Simulator::ReadH(int64_t addr, Instruction* instr) { 1868 if ((addr & 1) == 0) { 1869 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1870 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1871 return *ptr; 1872 } 1873 PrintF("Unaligned signed halfword read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1874 addr, 1875 reinterpret_cast<intptr_t>(instr)); 1876 DieOrDebug(); 1877 return 0; 1878 } 1879 1880 1881 void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) { 1882 if ((addr & 1) == 0) { 1883 TraceMemWr(addr, value, HALF); 1884 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1885 *ptr = value; 1886 return; 1887 } 1888 PrintF( 1889 "Unaligned unsigned halfword write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1890 addr, 1891 reinterpret_cast<intptr_t>(instr)); 1892 DieOrDebug(); 1893 } 1894 1895 1896 void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) { 1897 if ((addr & 1) == 0) { 1898 TraceMemWr(addr, value, HALF); 1899 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1900 *ptr = value; 1901 return; 1902 } 1903 PrintF("Unaligned halfword write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n", 1904 addr, 1905 reinterpret_cast<intptr_t>(instr)); 1906 DieOrDebug(); 1907 } 1908 1909 1910 uint32_t Simulator::ReadBU(int64_t addr) { 1911 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1912 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1913 return *ptr & 0xff; 1914 } 1915 1916 1917 int32_t Simulator::ReadB(int64_t addr) { 1918 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1919 TraceMemRd(addr, static_cast<int64_t>(*ptr)); 1920 return *ptr; 1921 } 1922 1923 1924 void Simulator::WriteB(int64_t addr, uint8_t value) { 1925 TraceMemWr(addr, value, BYTE); 1926 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1927 *ptr = value; 1928 } 1929 1930 1931 void Simulator::WriteB(int64_t addr, int8_t value) { 1932 TraceMemWr(addr, value, BYTE); 1933 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1934 *ptr = value; 1935 } 1936 1937 1938 // Returns the limit of the stack area to enable checking for stack overflows. 1939 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { 1940 // The simulator uses a separate JS stack. If we have exhausted the C stack, 1941 // we also drop down the JS limit to reflect the exhaustion on the JS stack. 1942 if (GetCurrentStackPosition() < c_limit) { 1943 return reinterpret_cast<uintptr_t>(get_sp()); 1944 } 1945 1946 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes 1947 // to prevent overrunning the stack when pushing values. 1948 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1949 } 1950 1951 1952 // Unsupported instructions use Format to print an error and stop execution. 1953 void Simulator::Format(Instruction* instr, const char* format) { 1954 PrintF("Simulator found unsupported instruction:\n 0x%08lx: %s\n", 1955 reinterpret_cast<intptr_t>(instr), format); 1956 UNIMPLEMENTED_MIPS(); 1957 } 1958 1959 1960 // Calls into the V8 runtime are based on this very simple interface. 1961 // Note: To be able to return two values from some calls the code in runtime.cc 1962 // uses the ObjectPair which is essentially two 32-bit values stuffed into a 1963 // 64-bit value. With the code below we assume that all runtime calls return 1964 // 64 bits of result. If they don't, the v1 result register contains a bogus 1965 // value, which is fine because it is caller-saved. 1966 1967 struct ObjectPair { 1968 Object* x; 1969 Object* y; 1970 }; 1971 1972 typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, 1973 int64_t arg1, 1974 int64_t arg2, 1975 int64_t arg3, 1976 int64_t arg4, 1977 int64_t arg5); 1978 1979 1980 // These prototypes handle the four types of FP calls. 1981 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1982 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1983 typedef double (*SimulatorRuntimeFPCall)(double darg0); 1984 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1985 1986 // This signature supports direct call in to API function native callback 1987 // (refer to InvocationCallback in v8.h). 1988 typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); 1989 typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); 1990 1991 // This signature supports direct call to accessor getter callback. 1992 typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); 1993 typedef void (*SimulatorRuntimeProfilingGetterCall)( 1994 int64_t arg0, int64_t arg1, void* arg2); 1995 1996 // Software interrupt instructions are used by the simulator to call into the 1997 // C-based V8 runtime. They are also used for debugging with simulator. 1998 void Simulator::SoftwareInterrupt(Instruction* instr) { 1999 // There are several instructions that could get us here, 2000 // the break_ instruction, or several variants of traps. All 2001 // Are "SPECIAL" class opcode, and are distinuished by function. 2002 int32_t func = instr->FunctionFieldRaw(); 2003 uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1; 2004 // We first check if we met a call_rt_redirected. 2005 if (instr->InstructionBits() == rtCallRedirInstr) { 2006 Redirection* redirection = Redirection::FromSwiInstruction(instr); 2007 int64_t arg0 = get_register(a0); 2008 int64_t arg1 = get_register(a1); 2009 int64_t arg2 = get_register(a2); 2010 int64_t arg3 = get_register(a3); 2011 int64_t arg4, arg5; 2012 2013 if (kMipsAbi == kN64) { 2014 arg4 = get_register(a4); // Abi n64 register a4. 2015 arg5 = get_register(a5); // Abi n64 register a5. 2016 } else { // Abi O32. 2017 int64_t* stack_pointer = reinterpret_cast<int64_t*>(get_register(sp)); 2018 // Args 4 and 5 are on the stack after the reserved space for args 0..3. 2019 arg4 = stack_pointer[4]; 2020 arg5 = stack_pointer[5]; 2021 } 2022 bool fp_call = 2023 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 2024 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 2025 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 2026 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 2027 2028 if (!IsMipsSoftFloatABI) { 2029 // With the hard floating point calling convention, double 2030 // arguments are passed in FPU registers. Fetch the arguments 2031 // from there and call the builtin using soft floating point 2032 // convention. 2033 switch (redirection->type()) { 2034 case ExternalReference::BUILTIN_FP_FP_CALL: 2035 case ExternalReference::BUILTIN_COMPARE_CALL: 2036 arg0 = get_fpu_register(f12); 2037 arg1 = get_fpu_register(f13); 2038 arg2 = get_fpu_register(f14); 2039 arg3 = get_fpu_register(f15); 2040 break; 2041 case ExternalReference::BUILTIN_FP_CALL: 2042 arg0 = get_fpu_register(f12); 2043 arg1 = get_fpu_register(f13); 2044 break; 2045 case ExternalReference::BUILTIN_FP_INT_CALL: 2046 arg0 = get_fpu_register(f12); 2047 arg1 = get_fpu_register(f13); 2048 arg2 = get_register(a2); 2049 break; 2050 default: 2051 break; 2052 } 2053 } 2054 2055 // This is dodgy but it works because the C entry stubs are never moved. 2056 // See comment in codegen-arm.cc and bug 1242173. 2057 int64_t saved_ra = get_register(ra); 2058 2059 intptr_t external = 2060 reinterpret_cast<intptr_t>(redirection->external_function()); 2061 2062 // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware 2063 // FPU, or gcc soft-float routines. Hardware FPU is simulated in this 2064 // simulator. Soft-float has additional abstraction of ExternalReference, 2065 // to support serialization. 2066 if (fp_call) { 2067 double dval0, dval1; // one or two double parameters 2068 int32_t ival; // zero or one integer parameters 2069 int64_t iresult = 0; // integer return value 2070 double dresult = 0; // double return value 2071 GetFpArgs(&dval0, &dval1, &ival); 2072 SimulatorRuntimeCall generic_target = 2073 reinterpret_cast<SimulatorRuntimeCall>(external); 2074 if (::v8::internal::FLAG_trace_sim) { 2075 switch (redirection->type()) { 2076 case ExternalReference::BUILTIN_FP_FP_CALL: 2077 case ExternalReference::BUILTIN_COMPARE_CALL: 2078 PrintF("Call to host function at %p with args %f, %f", 2079 FUNCTION_ADDR(generic_target), dval0, dval1); 2080 break; 2081 case ExternalReference::BUILTIN_FP_CALL: 2082 PrintF("Call to host function at %p with arg %f", 2083 FUNCTION_ADDR(generic_target), dval0); 2084 break; 2085 case ExternalReference::BUILTIN_FP_INT_CALL: 2086 PrintF("Call to host function at %p with args %f, %d", 2087 FUNCTION_ADDR(generic_target), dval0, ival); 2088 break; 2089 default: 2090 UNREACHABLE(); 2091 break; 2092 } 2093 } 2094 switch (redirection->type()) { 2095 case ExternalReference::BUILTIN_COMPARE_CALL: { 2096 SimulatorRuntimeCompareCall target = 2097 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 2098 iresult = target(dval0, dval1); 2099 set_register(v0, static_cast<int64_t>(iresult)); 2100 // set_register(v1, static_cast<int64_t>(iresult >> 32)); 2101 break; 2102 } 2103 case ExternalReference::BUILTIN_FP_FP_CALL: { 2104 SimulatorRuntimeFPFPCall target = 2105 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 2106 dresult = target(dval0, dval1); 2107 SetFpResult(dresult); 2108 break; 2109 } 2110 case ExternalReference::BUILTIN_FP_CALL: { 2111 SimulatorRuntimeFPCall target = 2112 reinterpret_cast<SimulatorRuntimeFPCall>(external); 2113 dresult = target(dval0); 2114 SetFpResult(dresult); 2115 break; 2116 } 2117 case ExternalReference::BUILTIN_FP_INT_CALL: { 2118 SimulatorRuntimeFPIntCall target = 2119 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 2120 dresult = target(dval0, ival); 2121 SetFpResult(dresult); 2122 break; 2123 } 2124 default: 2125 UNREACHABLE(); 2126 break; 2127 } 2128 if (::v8::internal::FLAG_trace_sim) { 2129 switch (redirection->type()) { 2130 case ExternalReference::BUILTIN_COMPARE_CALL: 2131 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 2132 break; 2133 case ExternalReference::BUILTIN_FP_FP_CALL: 2134 case ExternalReference::BUILTIN_FP_CALL: 2135 case ExternalReference::BUILTIN_FP_INT_CALL: 2136 PrintF("Returned %f\n", dresult); 2137 break; 2138 default: 2139 UNREACHABLE(); 2140 break; 2141 } 2142 } 2143 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 2144 if (::v8::internal::FLAG_trace_sim) { 2145 PrintF("Call to host function at %p args %08lx\n", 2146 reinterpret_cast<void*>(external), arg0); 2147 } 2148 SimulatorRuntimeDirectApiCall target = 2149 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 2150 target(arg0); 2151 } else if ( 2152 redirection->type() == ExternalReference::PROFILING_API_CALL) { 2153 if (::v8::internal::FLAG_trace_sim) { 2154 PrintF("Call to host function at %p args %08lx %08lx\n", 2155 reinterpret_cast<void*>(external), arg0, arg1); 2156 } 2157 SimulatorRuntimeProfilingApiCall target = 2158 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 2159 target(arg0, Redirection::ReverseRedirection(arg1)); 2160 } else if ( 2161 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 2162 if (::v8::internal::FLAG_trace_sim) { 2163 PrintF("Call to host function at %p args %08lx %08lx\n", 2164 reinterpret_cast<void*>(external), arg0, arg1); 2165 } 2166 SimulatorRuntimeDirectGetterCall target = 2167 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 2168 target(arg0, arg1); 2169 } else if ( 2170 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 2171 if (::v8::internal::FLAG_trace_sim) { 2172 PrintF("Call to host function at %p args %08lx %08lx %08lx\n", 2173 reinterpret_cast<void*>(external), arg0, arg1, arg2); 2174 } 2175 SimulatorRuntimeProfilingGetterCall target = 2176 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); 2177 target(arg0, arg1, Redirection::ReverseRedirection(arg2)); 2178 } else { 2179 SimulatorRuntimeCall target = 2180 reinterpret_cast<SimulatorRuntimeCall>(external); 2181 if (::v8::internal::FLAG_trace_sim) { 2182 PrintF( 2183 "Call to host function at %p " 2184 "args %08lx, %08lx, %08lx, %08lx, %08lx, %08lx\n", 2185 FUNCTION_ADDR(target), 2186 arg0, 2187 arg1, 2188 arg2, 2189 arg3, 2190 arg4, 2191 arg5); 2192 } 2193 // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 2194 // set_register(v0, static_cast<int32_t>(result)); 2195 // set_register(v1, static_cast<int32_t>(result >> 32)); 2196 ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5); 2197 set_register(v0, (int64_t)(result.x)); 2198 set_register(v1, (int64_t)(result.y)); 2199 } 2200 if (::v8::internal::FLAG_trace_sim) { 2201 PrintF("Returned %08lx : %08lx\n", get_register(v1), get_register(v0)); 2202 } 2203 set_register(ra, saved_ra); 2204 set_pc(get_register(ra)); 2205 2206 } else if (func == BREAK && code <= kMaxStopCode) { 2207 if (IsWatchpoint(code)) { 2208 PrintWatchpoint(code); 2209 } else { 2210 IncreaseStopCounter(code); 2211 HandleStop(code, instr); 2212 } 2213 } else { 2214 // All remaining break_ codes, and all traps are handled here. 2215 MipsDebugger dbg(this); 2216 dbg.Debug(); 2217 } 2218 } 2219 2220 2221 // Stop helper functions. 2222 bool Simulator::IsWatchpoint(uint64_t code) { 2223 return (code <= kMaxWatchpointCode); 2224 } 2225 2226 2227 void Simulator::PrintWatchpoint(uint64_t code) { 2228 MipsDebugger dbg(this); 2229 ++break_count_; 2230 PrintF("\n---- break %ld marker: %3d (instr count: %8ld) ----------" 2231 "----------------------------------", 2232 code, break_count_, icount_); 2233 dbg.PrintAllRegs(); // Print registers and continue running. 2234 } 2235 2236 2237 void Simulator::HandleStop(uint64_t code, Instruction* instr) { 2238 // Stop if it is enabled, otherwise go on jumping over the stop 2239 // and the message address. 2240 if (IsEnabledStop(code)) { 2241 MipsDebugger dbg(this); 2242 dbg.Stop(instr); 2243 } else { 2244 set_pc(get_pc() + 2 * Instruction::kInstrSize); 2245 } 2246 } 2247 2248 2249 bool Simulator::IsStopInstruction(Instruction* instr) { 2250 int32_t func = instr->FunctionFieldRaw(); 2251 uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); 2252 return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; 2253 } 2254 2255 2256 bool Simulator::IsEnabledStop(uint64_t code) { 2257 DCHECK(code <= kMaxStopCode); 2258 DCHECK(code > kMaxWatchpointCode); 2259 return !(watched_stops_[code].count & kStopDisabledBit); 2260 } 2261 2262 2263 void Simulator::EnableStop(uint64_t code) { 2264 if (!IsEnabledStop(code)) { 2265 watched_stops_[code].count &= ~kStopDisabledBit; 2266 } 2267 } 2268 2269 2270 void Simulator::DisableStop(uint64_t code) { 2271 if (IsEnabledStop(code)) { 2272 watched_stops_[code].count |= kStopDisabledBit; 2273 } 2274 } 2275 2276 2277 void Simulator::IncreaseStopCounter(uint64_t code) { 2278 DCHECK(code <= kMaxStopCode); 2279 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 2280 PrintF("Stop counter for code %ld has overflowed.\n" 2281 "Enabling this code and reseting the counter to 0.\n", code); 2282 watched_stops_[code].count = 0; 2283 EnableStop(code); 2284 } else { 2285 watched_stops_[code].count++; 2286 } 2287 } 2288 2289 2290 // Print a stop status. 2291 void Simulator::PrintStopInfo(uint64_t code) { 2292 if (code <= kMaxWatchpointCode) { 2293 PrintF("That is a watchpoint, not a stop.\n"); 2294 return; 2295 } else if (code > kMaxStopCode) { 2296 PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); 2297 return; 2298 } 2299 const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; 2300 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 2301 // Don't print the state of unused breakpoints. 2302 if (count != 0) { 2303 if (watched_stops_[code].desc) { 2304 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i, \t%s\n", 2305 code, code, state, count, watched_stops_[code].desc); 2306 } else { 2307 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i\n", 2308 code, code, state, count); 2309 } 2310 } 2311 } 2312 2313 2314 void Simulator::SignalException(Exception e) { 2315 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", 2316 static_cast<int>(e)); 2317 } 2318 2319 2320 // Handle execution based on instruction types. 2321 2322 void Simulator::DecodeTypeRegisterSRsType() { 2323 float fs, ft, fd; 2324 fs = get_fpu_register_float(fs_reg()); 2325 ft = get_fpu_register_float(ft_reg()); 2326 fd = get_fpu_register_float(fd_reg()); 2327 int32_t ft_int = bit_cast<int32_t>(ft); 2328 int32_t fd_int = bit_cast<int32_t>(fd); 2329 uint32_t cc, fcsr_cc; 2330 cc = get_instr()->FCccValue(); 2331 fcsr_cc = get_fcsr_condition_bit(cc); 2332 switch (get_instr()->FunctionFieldRaw()) { 2333 case RINT: { 2334 DCHECK(kArchVariant == kMips64r6); 2335 float result, temp_result; 2336 double temp; 2337 float upper = std::ceil(fs); 2338 float lower = std::floor(fs); 2339 switch (get_fcsr_rounding_mode()) { 2340 case kRoundToNearest: 2341 if (upper - fs < fs - lower) { 2342 result = upper; 2343 } else if (upper - fs > fs - lower) { 2344 result = lower; 2345 } else { 2346 temp_result = upper / 2; 2347 float reminder = modf(temp_result, &temp); 2348 if (reminder == 0) { 2349 result = upper; 2350 } else { 2351 result = lower; 2352 } 2353 } 2354 break; 2355 case kRoundToZero: 2356 result = (fs > 0 ? lower : upper); 2357 break; 2358 case kRoundToPlusInf: 2359 result = upper; 2360 break; 2361 case kRoundToMinusInf: 2362 result = lower; 2363 break; 2364 } 2365 set_fpu_register_float(fd_reg(), result); 2366 if (result != fs) { 2367 set_fcsr_bit(kFCSRInexactFlagBit, true); 2368 } 2369 break; 2370 } 2371 case ADD_S: 2372 set_fpu_register_float(fd_reg(), fs + ft); 2373 break; 2374 case SUB_S: 2375 set_fpu_register_float(fd_reg(), fs - ft); 2376 break; 2377 case MUL_S: 2378 set_fpu_register_float(fd_reg(), fs * ft); 2379 break; 2380 case DIV_S: 2381 set_fpu_register_float(fd_reg(), fs / ft); 2382 break; 2383 case ABS_S: 2384 set_fpu_register_float(fd_reg(), fabs(fs)); 2385 break; 2386 case MOV_S: 2387 set_fpu_register_float(fd_reg(), fs); 2388 break; 2389 case NEG_S: 2390 set_fpu_register_float(fd_reg(), -fs); 2391 break; 2392 case SQRT_S: 2393 lazily_initialize_fast_sqrt(isolate_); 2394 set_fpu_register_float(fd_reg(), fast_sqrt(fs, isolate_)); 2395 break; 2396 case RSQRT_S: { 2397 lazily_initialize_fast_sqrt(isolate_); 2398 float result = 1.0 / fast_sqrt(fs, isolate_); 2399 set_fpu_register_float(fd_reg(), result); 2400 break; 2401 } 2402 case RECIP_S: { 2403 float result = 1.0 / fs; 2404 set_fpu_register_float(fd_reg(), result); 2405 break; 2406 } 2407 case C_F_D: 2408 set_fcsr_bit(fcsr_cc, false); 2409 break; 2410 case C_UN_D: 2411 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2412 break; 2413 case C_EQ_D: 2414 set_fcsr_bit(fcsr_cc, (fs == ft)); 2415 break; 2416 case C_UEQ_D: 2417 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2418 break; 2419 case C_OLT_D: 2420 set_fcsr_bit(fcsr_cc, (fs < ft)); 2421 break; 2422 case C_ULT_D: 2423 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2424 break; 2425 case C_OLE_D: 2426 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2427 break; 2428 case C_ULE_D: 2429 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2430 break; 2431 case CVT_D_S: 2432 set_fpu_register_double(fd_reg(), static_cast<double>(fs)); 2433 break; 2434 case CLASS_S: { // Mips64r6 instruction 2435 // Convert float input to uint32_t for easier bit manipulation 2436 uint32_t classed = bit_cast<uint32_t>(fs); 2437 2438 // Extracting sign, exponent and mantissa from the input float 2439 uint32_t sign = (classed >> 31) & 1; 2440 uint32_t exponent = (classed >> 23) & 0x000000ff; 2441 uint32_t mantissa = classed & 0x007fffff; 2442 uint32_t result; 2443 float fResult; 2444 2445 // Setting flags if input float is negative infinity, 2446 // positive infinity, negative zero or positive zero 2447 bool negInf = (classed == 0xFF800000); 2448 bool posInf = (classed == 0x7F800000); 2449 bool negZero = (classed == 0x80000000); 2450 bool posZero = (classed == 0x00000000); 2451 2452 bool signalingNan; 2453 bool quietNan; 2454 bool negSubnorm; 2455 bool posSubnorm; 2456 bool negNorm; 2457 bool posNorm; 2458 2459 // Setting flags if float is NaN 2460 signalingNan = false; 2461 quietNan = false; 2462 if (!negInf && !posInf && (exponent == 0xff)) { 2463 quietNan = ((mantissa & 0x00200000) == 0) && 2464 ((mantissa & (0x00200000 - 1)) == 0); 2465 signalingNan = !quietNan; 2466 } 2467 2468 // Setting flags if float is subnormal number 2469 posSubnorm = false; 2470 negSubnorm = false; 2471 if ((exponent == 0) && (mantissa != 0)) { 2472 DCHECK(sign == 0 || sign == 1); 2473 posSubnorm = (sign == 0); 2474 negSubnorm = (sign == 1); 2475 } 2476 2477 // Setting flags if float is normal number 2478 posNorm = false; 2479 negNorm = false; 2480 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && 2481 !quietNan && !negZero && !posZero) { 2482 DCHECK(sign == 0 || sign == 1); 2483 posNorm = (sign == 0); 2484 negNorm = (sign == 1); 2485 } 2486 2487 // Calculating result according to description of CLASS.S instruction 2488 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 2489 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 2490 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 2491 2492 DCHECK(result != 0); 2493 2494 fResult = bit_cast<float>(result); 2495 set_fpu_register_float(fd_reg(), fResult); 2496 2497 break; 2498 } 2499 case CVT_L_S: { 2500 float rounded; 2501 int64_t result; 2502 round64_according_to_fcsr(fs, rounded, result, fs); 2503 set_fpu_register(fd_reg(), result); 2504 if (set_fcsr_round64_error(fs, rounded)) { 2505 set_fpu_register_invalid_result64(fs, rounded); 2506 } 2507 break; 2508 } 2509 case CVT_W_S: { 2510 float rounded; 2511 int32_t result; 2512 round_according_to_fcsr(fs, rounded, result, fs); 2513 set_fpu_register_word(fd_reg(), result); 2514 if (set_fcsr_round_error(fs, rounded)) { 2515 set_fpu_register_word_invalid_result(fs, rounded); 2516 } 2517 break; 2518 } 2519 case TRUNC_W_S: { // Truncate single to word (round towards 0). 2520 float rounded = trunc(fs); 2521 int32_t result = static_cast<int32_t>(rounded); 2522 set_fpu_register_word(fd_reg(), result); 2523 if (set_fcsr_round_error(fs, rounded)) { 2524 set_fpu_register_word_invalid_result(fs, rounded); 2525 } 2526 } break; 2527 case TRUNC_L_S: { // Mips64r2 instruction. 2528 float rounded = trunc(fs); 2529 int64_t result = static_cast<int64_t>(rounded); 2530 set_fpu_register(fd_reg(), result); 2531 if (set_fcsr_round64_error(fs, rounded)) { 2532 set_fpu_register_invalid_result64(fs, rounded); 2533 } 2534 break; 2535 } 2536 case ROUND_W_S: { 2537 float rounded = std::floor(fs + 0.5); 2538 int32_t result = static_cast<int32_t>(rounded); 2539 if ((result & 1) != 0 && result - fs == 0.5) { 2540 // If the number is halfway between two integers, 2541 // round to the even one. 2542 result--; 2543 } 2544 set_fpu_register_word(fd_reg(), result); 2545 if (set_fcsr_round_error(fs, rounded)) { 2546 set_fpu_register_word_invalid_result(fs, rounded); 2547 } 2548 break; 2549 } 2550 case ROUND_L_S: { // Mips64r2 instruction. 2551 float rounded = std::floor(fs + 0.5); 2552 int64_t result = static_cast<int64_t>(rounded); 2553 if ((result & 1) != 0 && result - fs == 0.5) { 2554 // If the number is halfway between two integers, 2555 // round to the even one. 2556 result--; 2557 } 2558 int64_t i64 = static_cast<int64_t>(result); 2559 set_fpu_register(fd_reg(), i64); 2560 if (set_fcsr_round64_error(fs, rounded)) { 2561 set_fpu_register_invalid_result64(fs, rounded); 2562 } 2563 break; 2564 } 2565 case FLOOR_L_S: { // Mips64r2 instruction. 2566 float rounded = floor(fs); 2567 int64_t result = static_cast<int64_t>(rounded); 2568 set_fpu_register(fd_reg(), result); 2569 if (set_fcsr_round64_error(fs, rounded)) { 2570 set_fpu_register_invalid_result64(fs, rounded); 2571 } 2572 break; 2573 } 2574 case FLOOR_W_S: // Round double to word towards negative infinity. 2575 { 2576 float rounded = std::floor(fs); 2577 int32_t result = static_cast<int32_t>(rounded); 2578 set_fpu_register_word(fd_reg(), result); 2579 if (set_fcsr_round_error(fs, rounded)) { 2580 set_fpu_register_word_invalid_result(fs, rounded); 2581 } 2582 } break; 2583 case CEIL_W_S: // Round double to word towards positive infinity. 2584 { 2585 float rounded = std::ceil(fs); 2586 int32_t result = static_cast<int32_t>(rounded); 2587 set_fpu_register_word(fd_reg(), result); 2588 if (set_fcsr_round_error(fs, rounded)) { 2589 set_fpu_register_invalid_result(fs, rounded); 2590 } 2591 } break; 2592 case CEIL_L_S: { // Mips64r2 instruction. 2593 float rounded = ceil(fs); 2594 int64_t result = static_cast<int64_t>(rounded); 2595 set_fpu_register(fd_reg(), result); 2596 if (set_fcsr_round64_error(fs, rounded)) { 2597 set_fpu_register_invalid_result64(fs, rounded); 2598 } 2599 break; 2600 } 2601 case MINA: 2602 DCHECK(kArchVariant == kMips64r6); 2603 fs = get_fpu_register_float(fs_reg()); 2604 if (std::isnan(fs) && std::isnan(ft)) { 2605 set_fpu_register_float(fd_reg(), fs); 2606 } else if (std::isnan(fs) && !std::isnan(ft)) { 2607 set_fpu_register_float(fd_reg(), ft); 2608 } else if (!std::isnan(fs) && std::isnan(ft)) { 2609 set_fpu_register_float(fd_reg(), fs); 2610 } else { 2611 float result; 2612 if (fabs(fs) > fabs(ft)) { 2613 result = ft; 2614 } else if (fabs(fs) < fabs(ft)) { 2615 result = fs; 2616 } else { 2617 result = (fs < ft ? fs : ft); 2618 } 2619 set_fpu_register_float(fd_reg(), result); 2620 } 2621 break; 2622 case MAXA: 2623 DCHECK(kArchVariant == kMips64r6); 2624 fs = get_fpu_register_float(fs_reg()); 2625 if (std::isnan(fs) && std::isnan(ft)) { 2626 set_fpu_register_float(fd_reg(), fs); 2627 } else if (std::isnan(fs) && !std::isnan(ft)) { 2628 set_fpu_register_float(fd_reg(), ft); 2629 } else if (!std::isnan(fs) && std::isnan(ft)) { 2630 set_fpu_register_float(fd_reg(), fs); 2631 } else { 2632 float result; 2633 if (fabs(fs) < fabs(ft)) { 2634 result = ft; 2635 } else if (fabs(fs) > fabs(ft)) { 2636 result = fs; 2637 } else { 2638 result = (fs > ft ? fs : ft); 2639 } 2640 set_fpu_register_float(fd_reg(), result); 2641 } 2642 break; 2643 case MIN: 2644 DCHECK(kArchVariant == kMips64r6); 2645 fs = get_fpu_register_float(fs_reg()); 2646 if (std::isnan(fs) && std::isnan(ft)) { 2647 set_fpu_register_float(fd_reg(), fs); 2648 } else if (std::isnan(fs) && !std::isnan(ft)) { 2649 set_fpu_register_float(fd_reg(), ft); 2650 } else if (!std::isnan(fs) && std::isnan(ft)) { 2651 set_fpu_register_float(fd_reg(), fs); 2652 } else { 2653 set_fpu_register_float(fd_reg(), (fs >= ft) ? ft : fs); 2654 } 2655 break; 2656 case MAX: 2657 DCHECK(kArchVariant == kMips64r6); 2658 fs = get_fpu_register_float(fs_reg()); 2659 if (std::isnan(fs) && std::isnan(ft)) { 2660 set_fpu_register_float(fd_reg(), fs); 2661 } else if (std::isnan(fs) && !std::isnan(ft)) { 2662 set_fpu_register_float(fd_reg(), ft); 2663 } else if (!std::isnan(fs) && std::isnan(ft)) { 2664 set_fpu_register_float(fd_reg(), fs); 2665 } else { 2666 set_fpu_register_float(fd_reg(), (fs <= ft) ? ft : fs); 2667 } 2668 break; 2669 case SEL: 2670 DCHECK(kArchVariant == kMips64r6); 2671 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); 2672 break; 2673 case SELEQZ_C: 2674 DCHECK(kArchVariant == kMips64r6); 2675 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0 2676 ? get_fpu_register_float(fs_reg()) 2677 : 0.0); 2678 break; 2679 case SELNEZ_C: 2680 DCHECK(kArchVariant == kMips64r6); 2681 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0 2682 ? get_fpu_register_float(fs_reg()) 2683 : 0.0); 2684 break; 2685 case MOVZ_C: { 2686 DCHECK(kArchVariant == kMips64r2); 2687 if (rt() == 0) { 2688 set_fpu_register_float(fd_reg(), fs); 2689 } 2690 break; 2691 } 2692 case MOVN_C: { 2693 DCHECK(kArchVariant == kMips64r2); 2694 if (rt() != 0) { 2695 set_fpu_register_float(fd_reg(), fs); 2696 } 2697 break; 2698 } 2699 case MOVF: { 2700 // Same function field for MOVT.D and MOVF.D 2701 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; 2702 ft_cc = get_fcsr_condition_bit(ft_cc); 2703 2704 if (get_instr()->Bit(16)) { // Read Tf bit. 2705 // MOVT.D 2706 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); 2707 } else { 2708 // MOVF.D 2709 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs); 2710 } 2711 break; 2712 } 2713 default: 2714 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S 2715 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. 2716 UNREACHABLE(); 2717 } 2718 } 2719 2720 2721 void Simulator::DecodeTypeRegisterDRsType() { 2722 double ft, fs, fd; 2723 uint32_t cc, fcsr_cc; 2724 fs = get_fpu_register_double(fs_reg()); 2725 ft = (get_instr()->FunctionFieldRaw() != MOVF) 2726 ? get_fpu_register_double(ft_reg()) 2727 : 0.0; 2728 fd = get_fpu_register_double(fd_reg()); 2729 cc = get_instr()->FCccValue(); 2730 fcsr_cc = get_fcsr_condition_bit(cc); 2731 int64_t ft_int = bit_cast<int64_t>(ft); 2732 int64_t fd_int = bit_cast<int64_t>(fd); 2733 switch (get_instr()->FunctionFieldRaw()) { 2734 case RINT: { 2735 DCHECK(kArchVariant == kMips64r6); 2736 double result, temp, temp_result; 2737 double upper = std::ceil(fs); 2738 double lower = std::floor(fs); 2739 switch (get_fcsr_rounding_mode()) { 2740 case kRoundToNearest: 2741 if (upper - fs < fs - lower) { 2742 result = upper; 2743 } else if (upper - fs > fs - lower) { 2744 result = lower; 2745 } else { 2746 temp_result = upper / 2; 2747 double reminder = modf(temp_result, &temp); 2748 if (reminder == 0) { 2749 result = upper; 2750 } else { 2751 result = lower; 2752 } 2753 } 2754 break; 2755 case kRoundToZero: 2756 result = (fs > 0 ? lower : upper); 2757 break; 2758 case kRoundToPlusInf: 2759 result = upper; 2760 break; 2761 case kRoundToMinusInf: 2762 result = lower; 2763 break; 2764 } 2765 set_fpu_register_double(fd_reg(), result); 2766 if (result != fs) { 2767 set_fcsr_bit(kFCSRInexactFlagBit, true); 2768 } 2769 break; 2770 } 2771 case SEL: 2772 DCHECK(kArchVariant == kMips64r6); 2773 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); 2774 break; 2775 case SELEQZ_C: 2776 DCHECK(kArchVariant == kMips64r6); 2777 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); 2778 break; 2779 case SELNEZ_C: 2780 DCHECK(kArchVariant == kMips64r6); 2781 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); 2782 break; 2783 case MOVZ_C: { 2784 DCHECK(kArchVariant == kMips64r2); 2785 if (rt() == 0) { 2786 set_fpu_register_double(fd_reg(), fs); 2787 } 2788 break; 2789 } 2790 case MOVN_C: { 2791 DCHECK(kArchVariant == kMips64r2); 2792 if (rt() != 0) { 2793 set_fpu_register_double(fd_reg(), fs); 2794 } 2795 break; 2796 } 2797 case MOVF: { 2798 // Same function field for MOVT.D and MOVF.D 2799 uint32_t ft_cc = (ft_reg() >> 2) & 0x7; 2800 ft_cc = get_fcsr_condition_bit(ft_cc); 2801 if (get_instr()->Bit(16)) { // Read Tf bit. 2802 // MOVT.D 2803 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); 2804 } else { 2805 // MOVF.D 2806 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs); 2807 } 2808 break; 2809 } 2810 case MINA: 2811 DCHECK(kArchVariant == kMips64r6); 2812 fs = get_fpu_register_double(fs_reg()); 2813 if (std::isnan(fs) && std::isnan(ft)) { 2814 set_fpu_register_double(fd_reg(), fs); 2815 } else if (std::isnan(fs) && !std::isnan(ft)) { 2816 set_fpu_register_double(fd_reg(), ft); 2817 } else if (!std::isnan(fs) && std::isnan(ft)) { 2818 set_fpu_register_double(fd_reg(), fs); 2819 } else { 2820 double result; 2821 if (fabs(fs) > fabs(ft)) { 2822 result = ft; 2823 } else if (fabs(fs) < fabs(ft)) { 2824 result = fs; 2825 } else { 2826 result = (fs < ft ? fs : ft); 2827 } 2828 set_fpu_register_double(fd_reg(), result); 2829 } 2830 break; 2831 case MAXA: 2832 DCHECK(kArchVariant == kMips64r6); 2833 fs = get_fpu_register_double(fs_reg()); 2834 if (std::isnan(fs) && std::isnan(ft)) { 2835 set_fpu_register_double(fd_reg(), fs); 2836 } else if (std::isnan(fs) && !std::isnan(ft)) { 2837 set_fpu_register_double(fd_reg(), ft); 2838 } else if (!std::isnan(fs) && std::isnan(ft)) { 2839 set_fpu_register_double(fd_reg(), fs); 2840 } else { 2841 double result; 2842 if (fabs(fs) < fabs(ft)) { 2843 result = ft; 2844 } else if (fabs(fs) > fabs(ft)) { 2845 result = fs; 2846 } else { 2847 result = (fs > ft ? fs : ft); 2848 } 2849 set_fpu_register_double(fd_reg(), result); 2850 } 2851 break; 2852 case MIN: 2853 DCHECK(kArchVariant == kMips64r6); 2854 fs = get_fpu_register_double(fs_reg()); 2855 if (std::isnan(fs) && std::isnan(ft)) { 2856 set_fpu_register_double(fd_reg(), fs); 2857 } else if (std::isnan(fs) && !std::isnan(ft)) { 2858 set_fpu_register_double(fd_reg(), ft); 2859 } else if (!std::isnan(fs) && std::isnan(ft)) { 2860 set_fpu_register_double(fd_reg(), fs); 2861 } else { 2862 set_fpu_register_double(fd_reg(), (fs >= ft) ? ft : fs); 2863 } 2864 break; 2865 case MAX: 2866 DCHECK(kArchVariant == kMips64r6); 2867 fs = get_fpu_register_double(fs_reg()); 2868 if (std::isnan(fs) && std::isnan(ft)) { 2869 set_fpu_register_double(fd_reg(), fs); 2870 } else if (std::isnan(fs) && !std::isnan(ft)) { 2871 set_fpu_register_double(fd_reg(), ft); 2872 } else if (!std::isnan(fs) && std::isnan(ft)) { 2873 set_fpu_register_double(fd_reg(), fs); 2874 } else { 2875 set_fpu_register_double(fd_reg(), (fs <= ft) ? ft : fs); 2876 } 2877 break; 2878 case ADD_D: 2879 set_fpu_register_double(fd_reg(), fs + ft); 2880 break; 2881 case SUB_D: 2882 set_fpu_register_double(fd_reg(), fs - ft); 2883 break; 2884 case MUL_D: 2885 set_fpu_register_double(fd_reg(), fs * ft); 2886 break; 2887 case DIV_D: 2888 set_fpu_register_double(fd_reg(), fs / ft); 2889 break; 2890 case ABS_D: 2891 set_fpu_register_double(fd_reg(), fabs(fs)); 2892 break; 2893 case MOV_D: 2894 set_fpu_register_double(fd_reg(), fs); 2895 break; 2896 case NEG_D: 2897 set_fpu_register_double(fd_reg(), -fs); 2898 break; 2899 case SQRT_D: 2900 lazily_initialize_fast_sqrt(isolate_); 2901 set_fpu_register_double(fd_reg(), fast_sqrt(fs, isolate_)); 2902 break; 2903 case RSQRT_D: { 2904 lazily_initialize_fast_sqrt(isolate_); 2905 double result = 1.0 / fast_sqrt(fs, isolate_); 2906 set_fpu_register_double(fd_reg(), result); 2907 break; 2908 } 2909 case RECIP_D: { 2910 double result = 1.0 / fs; 2911 set_fpu_register_double(fd_reg(), result); 2912 break; 2913 } 2914 case C_UN_D: 2915 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2916 break; 2917 case C_EQ_D: 2918 set_fcsr_bit(fcsr_cc, (fs == ft)); 2919 break; 2920 case C_UEQ_D: 2921 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2922 break; 2923 case C_OLT_D: 2924 set_fcsr_bit(fcsr_cc, (fs < ft)); 2925 break; 2926 case C_ULT_D: 2927 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2928 break; 2929 case C_OLE_D: 2930 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2931 break; 2932 case C_ULE_D: 2933 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2934 break; 2935 case CVT_W_D: { // Convert double to word. 2936 double rounded; 2937 int32_t result; 2938 round_according_to_fcsr(fs, rounded, result, fs); 2939 set_fpu_register_word(fd_reg(), result); 2940 if (set_fcsr_round_error(fs, rounded)) { 2941 set_fpu_register_word_invalid_result(fs, rounded); 2942 } 2943 break; 2944 } 2945 case ROUND_W_D: // Round double to word (round half to even). 2946 { 2947 double rounded = std::floor(fs + 0.5); 2948 int32_t result = static_cast<int32_t>(rounded); 2949 if ((result & 1) != 0 && result - fs == 0.5) { 2950 // If the number is halfway between two integers, 2951 // round to the even one. 2952 result--; 2953 } 2954 set_fpu_register_word(fd_reg(), result); 2955 if (set_fcsr_round_error(fs, rounded)) { 2956 set_fpu_register_invalid_result(fs, rounded); 2957 } 2958 } break; 2959 case TRUNC_W_D: // Truncate double to word (round towards 0). 2960 { 2961 double rounded = trunc(fs); 2962 int32_t result = static_cast<int32_t>(rounded); 2963 set_fpu_register_word(fd_reg(), result); 2964 if (set_fcsr_round_error(fs, rounded)) { 2965 set_fpu_register_invalid_result(fs, rounded); 2966 } 2967 } break; 2968 case FLOOR_W_D: // Round double to word towards negative infinity. 2969 { 2970 double rounded = std::floor(fs); 2971 int32_t result = static_cast<int32_t>(rounded); 2972 set_fpu_register_word(fd_reg(), result); 2973 if (set_fcsr_round_error(fs, rounded)) { 2974 set_fpu_register_invalid_result(fs, rounded); 2975 } 2976 } break; 2977 case CEIL_W_D: // Round double to word towards positive infinity. 2978 { 2979 double rounded = std::ceil(fs); 2980 int32_t result = static_cast<int32_t>(rounded); 2981 set_fpu_register_word(fd_reg(), result); 2982 if (set_fcsr_round_error(fs, rounded)) { 2983 set_fpu_register_invalid_result(fs, rounded); 2984 } 2985 } break; 2986 case CVT_S_D: // Convert double to float (single). 2987 set_fpu_register_float(fd_reg(), static_cast<float>(fs)); 2988 break; 2989 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. 2990 double rounded; 2991 int64_t result; 2992 round64_according_to_fcsr(fs, rounded, result, fs); 2993 set_fpu_register(fd_reg(), result); 2994 if (set_fcsr_round64_error(fs, rounded)) { 2995 set_fpu_register_invalid_result64(fs, rounded); 2996 } 2997 break; 2998 } 2999 case ROUND_L_D: { // Mips64r2 instruction. 3000 double rounded = std::floor(fs + 0.5); 3001 int64_t result = static_cast<int64_t>(rounded); 3002 if ((result & 1) != 0 && result - fs == 0.5) { 3003 // If the number is halfway between two integers, 3004 // round to the even one. 3005 result--; 3006 } 3007 int64_t i64 = static_cast<int64_t>(result); 3008 set_fpu_register(fd_reg(), i64); 3009 if (set_fcsr_round64_error(fs, rounded)) { 3010 set_fpu_register_invalid_result64(fs, rounded); 3011 } 3012 break; 3013 } 3014 case TRUNC_L_D: { // Mips64r2 instruction. 3015 double rounded = trunc(fs); 3016 int64_t result = static_cast<int64_t>(rounded); 3017 set_fpu_register(fd_reg(), result); 3018 if (set_fcsr_round64_error(fs, rounded)) { 3019 set_fpu_register_invalid_result64(fs, rounded); 3020 } 3021 break; 3022 } 3023 case FLOOR_L_D: { // Mips64r2 instruction. 3024 double rounded = floor(fs); 3025 int64_t result = static_cast<int64_t>(rounded); 3026 set_fpu_register(fd_reg(), result); 3027 if (set_fcsr_round64_error(fs, rounded)) { 3028 set_fpu_register_invalid_result64(fs, rounded); 3029 } 3030 break; 3031 } 3032 case CEIL_L_D: { // Mips64r2 instruction. 3033 double rounded = ceil(fs); 3034 int64_t result = static_cast<int64_t>(rounded); 3035 set_fpu_register(fd_reg(), result); 3036 if (set_fcsr_round64_error(fs, rounded)) { 3037 set_fpu_register_invalid_result64(fs, rounded); 3038 } 3039 break; 3040 } 3041 case CLASS_D: { // Mips64r6 instruction 3042 // Convert double input to uint64_t for easier bit manipulation 3043 uint64_t classed = bit_cast<uint64_t>(fs); 3044 3045 // Extracting sign, exponent and mantissa from the input double 3046 uint32_t sign = (classed >> 63) & 1; 3047 uint32_t exponent = (classed >> 52) & 0x00000000000007ff; 3048 uint64_t mantissa = classed & 0x000fffffffffffff; 3049 uint64_t result; 3050 double dResult; 3051 3052 // Setting flags if input double is negative infinity, 3053 // positive infinity, negative zero or positive zero 3054 bool negInf = (classed == 0xFFF0000000000000); 3055 bool posInf = (classed == 0x7FF0000000000000); 3056 bool negZero = (classed == 0x8000000000000000); 3057 bool posZero = (classed == 0x0000000000000000); 3058 3059 bool signalingNan; 3060 bool quietNan; 3061 bool negSubnorm; 3062 bool posSubnorm; 3063 bool negNorm; 3064 bool posNorm; 3065 3066 // Setting flags if double is NaN 3067 signalingNan = false; 3068 quietNan = false; 3069 if (!negInf && !posInf && exponent == 0x7ff) { 3070 quietNan = ((mantissa & 0x0008000000000000) != 0) && 3071 ((mantissa & (0x0008000000000000 - 1)) == 0); 3072 signalingNan = !quietNan; 3073 } 3074 3075 // Setting flags if double is subnormal number 3076 posSubnorm = false; 3077 negSubnorm = false; 3078 if ((exponent == 0) && (mantissa != 0)) { 3079 DCHECK(sign == 0 || sign == 1); 3080 posSubnorm = (sign == 0); 3081 negSubnorm = (sign == 1); 3082 } 3083 3084 // Setting flags if double is normal number 3085 posNorm = false; 3086 negNorm = false; 3087 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && 3088 !quietNan && !negZero && !posZero) { 3089 DCHECK(sign == 0 || sign == 1); 3090 posNorm = (sign == 0); 3091 negNorm = (sign == 1); 3092 } 3093 3094 // Calculating result according to description of CLASS.D instruction 3095 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 3096 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 3097 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 3098 3099 DCHECK(result != 0); 3100 3101 dResult = bit_cast<double>(result); 3102 set_fpu_register_double(fd_reg(), dResult); 3103 3104 break; 3105 } 3106 case C_F_D: { 3107 set_fcsr_bit(fcsr_cc, false); 3108 break; 3109 } 3110 default: 3111 UNREACHABLE(); 3112 } 3113 } 3114 3115 3116 void Simulator::DecodeTypeRegisterWRsType() { 3117 float fs = get_fpu_register_float(fs_reg()); 3118 float ft = get_fpu_register_float(ft_reg()); 3119 int64_t alu_out = 0x12345678; 3120 switch (get_instr()->FunctionFieldRaw()) { 3121 case CVT_S_W: // Convert word to float (single). 3122 alu_out = get_fpu_register_signed_word(fs_reg()); 3123 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out)); 3124 break; 3125 case CVT_D_W: // Convert word to double. 3126 alu_out = get_fpu_register_signed_word(fs_reg()); 3127 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out)); 3128 break; 3129 case CMP_AF: 3130 set_fpu_register_word(fd_reg(), 0); 3131 break; 3132 case CMP_UN: 3133 if (std::isnan(fs) || std::isnan(ft)) { 3134 set_fpu_register_word(fd_reg(), -1); 3135 } else { 3136 set_fpu_register_word(fd_reg(), 0); 3137 } 3138 break; 3139 case CMP_EQ: 3140 if (fs == ft) { 3141 set_fpu_register_word(fd_reg(), -1); 3142 } else { 3143 set_fpu_register_word(fd_reg(), 0); 3144 } 3145 break; 3146 case CMP_UEQ: 3147 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 3148 set_fpu_register_word(fd_reg(), -1); 3149 } else { 3150 set_fpu_register_word(fd_reg(), 0); 3151 } 3152 break; 3153 case CMP_LT: 3154 if (fs < ft) { 3155 set_fpu_register_word(fd_reg(), -1); 3156 } else { 3157 set_fpu_register_word(fd_reg(), 0); 3158 } 3159 break; 3160 case CMP_ULT: 3161 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 3162 set_fpu_register_word(fd_reg(), -1); 3163 } else { 3164 set_fpu_register_word(fd_reg(), 0); 3165 } 3166 break; 3167 case CMP_LE: 3168 if (fs <= ft) { 3169 set_fpu_register_word(fd_reg(), -1); 3170 } else { 3171 set_fpu_register_word(fd_reg(), 0); 3172 } 3173 break; 3174 case CMP_ULE: 3175 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 3176 set_fpu_register_word(fd_reg(), -1); 3177 } else { 3178 set_fpu_register_word(fd_reg(), 0); 3179 } 3180 break; 3181 case CMP_OR: 3182 if (!std::isnan(fs) && !std::isnan(ft)) { 3183 set_fpu_register_word(fd_reg(), -1); 3184 } else { 3185 set_fpu_register_word(fd_reg(), 0); 3186 } 3187 break; 3188 case CMP_UNE: 3189 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 3190 set_fpu_register_word(fd_reg(), -1); 3191 } else { 3192 set_fpu_register_word(fd_reg(), 0); 3193 } 3194 break; 3195 case CMP_NE: 3196 if (fs != ft) { 3197 set_fpu_register_word(fd_reg(), -1); 3198 } else { 3199 set_fpu_register_word(fd_reg(), 0); 3200 } 3201 break; 3202 default: 3203 UNREACHABLE(); 3204 } 3205 } 3206 3207 3208 void Simulator::DecodeTypeRegisterLRsType() { 3209 double fs = get_fpu_register_double(fs_reg()); 3210 double ft = get_fpu_register_double(ft_reg()); 3211 int64_t i64; 3212 switch (get_instr()->FunctionFieldRaw()) { 3213 case CVT_D_L: // Mips32r2 instruction. 3214 i64 = get_fpu_register(fs_reg()); 3215 set_fpu_register_double(fd_reg(), static_cast<double>(i64)); 3216 break; 3217 case CVT_S_L: 3218 i64 = get_fpu_register(fs_reg()); 3219 set_fpu_register_float(fd_reg(), static_cast<float>(i64)); 3220 break; 3221 case CMP_AF: 3222 set_fpu_register(fd_reg(), 0); 3223 break; 3224 case CMP_UN: 3225 if (std::isnan(fs) || std::isnan(ft)) { 3226 set_fpu_register(fd_reg(), -1); 3227 } else { 3228 set_fpu_register(fd_reg(), 0); 3229 } 3230 break; 3231 case CMP_EQ: 3232 if (fs == ft) { 3233 set_fpu_register(fd_reg(), -1); 3234 } else { 3235 set_fpu_register(fd_reg(), 0); 3236 } 3237 break; 3238 case CMP_UEQ: 3239 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 3240 set_fpu_register(fd_reg(), -1); 3241 } else { 3242 set_fpu_register(fd_reg(), 0); 3243 } 3244 break; 3245 case CMP_LT: 3246 if (fs < ft) { 3247 set_fpu_register(fd_reg(), -1); 3248 } else { 3249 set_fpu_register(fd_reg(), 0); 3250 } 3251 break; 3252 case CMP_ULT: 3253 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 3254 set_fpu_register(fd_reg(), -1); 3255 } else { 3256 set_fpu_register(fd_reg(), 0); 3257 } 3258 break; 3259 case CMP_LE: 3260 if (fs <= ft) { 3261 set_fpu_register(fd_reg(), -1); 3262 } else { 3263 set_fpu_register(fd_reg(), 0); 3264 } 3265 break; 3266 case CMP_ULE: 3267 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 3268 set_fpu_register(fd_reg(), -1); 3269 } else { 3270 set_fpu_register(fd_reg(), 0); 3271 } 3272 break; 3273 case CMP_OR: 3274 if (!std::isnan(fs) && !std::isnan(ft)) { 3275 set_fpu_register(fd_reg(), -1); 3276 } else { 3277 set_fpu_register(fd_reg(), 0); 3278 } 3279 break; 3280 case CMP_UNE: 3281 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 3282 set_fpu_register(fd_reg(), -1); 3283 } else { 3284 set_fpu_register(fd_reg(), 0); 3285 } 3286 break; 3287 case CMP_NE: 3288 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { 3289 set_fpu_register(fd_reg(), -1); 3290 } else { 3291 set_fpu_register(fd_reg(), 0); 3292 } 3293 break; 3294 default: 3295 UNREACHABLE(); 3296 } 3297 } 3298 3299 3300 void Simulator::DecodeTypeRegisterCOP1() { 3301 switch (get_instr()->RsFieldRaw()) { 3302 case BC1: // Branch on coprocessor condition. 3303 case BC1EQZ: 3304 case BC1NEZ: 3305 UNREACHABLE(); 3306 break; 3307 case CFC1: 3308 // At the moment only FCSR is supported. 3309 DCHECK(fs_reg() == kFCSRRegister); 3310 set_register(rt_reg(), FCSR_); 3311 break; 3312 case MFC1: 3313 set_register(rt_reg(), 3314 static_cast<int64_t>(get_fpu_register_word(fs_reg()))); 3315 break; 3316 case DMFC1: 3317 set_register(rt_reg(), get_fpu_register(fs_reg())); 3318 break; 3319 case MFHC1: 3320 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg())); 3321 break; 3322 case CTC1: { 3323 // At the moment only FCSR is supported. 3324 DCHECK(fs_reg() == kFCSRRegister); 3325 uint32_t reg = static_cast<uint32_t>(rt()); 3326 if (kArchVariant == kMips64r6) { 3327 FCSR_ = reg | kFCSRNaN2008FlagMask; 3328 } else { 3329 DCHECK(kArchVariant == kMips64r2); 3330 FCSR_ = reg & ~kFCSRNaN2008FlagMask; 3331 } 3332 break; 3333 } 3334 case MTC1: 3335 // Hardware writes upper 32-bits to zero on mtc1. 3336 set_fpu_register_hi_word(fs_reg(), 0); 3337 set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt())); 3338 break; 3339 case DMTC1: 3340 set_fpu_register(fs_reg(), rt()); 3341 break; 3342 case MTHC1: 3343 set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt())); 3344 break; 3345 case S: 3346 DecodeTypeRegisterSRsType(); 3347 break; 3348 case D: 3349 DecodeTypeRegisterDRsType(); 3350 break; 3351 case W: 3352 DecodeTypeRegisterWRsType(); 3353 break; 3354 case L: 3355 DecodeTypeRegisterLRsType(); 3356 break; 3357 default: 3358 UNREACHABLE(); 3359 } 3360 } 3361 3362 3363 void Simulator::DecodeTypeRegisterCOP1X() { 3364 switch (get_instr()->FunctionFieldRaw()) { 3365 case MADD_D: 3366 double fr, ft, fs; 3367 fr = get_fpu_register_double(fr_reg()); 3368 fs = get_fpu_register_double(fs_reg()); 3369 ft = get_fpu_register_double(ft_reg()); 3370 set_fpu_register_double(fd_reg(), fs * ft + fr); 3371 break; 3372 default: 3373 UNREACHABLE(); 3374 } 3375 } 3376 3377 3378 void Simulator::DecodeTypeRegisterSPECIAL() { 3379 int64_t i64hilo; 3380 uint64_t u64hilo; 3381 int64_t alu_out; 3382 bool do_interrupt = false; 3383 3384 switch (get_instr()->FunctionFieldRaw()) { 3385 case SELEQZ_S: 3386 DCHECK(kArchVariant == kMips64r6); 3387 set_register(rd_reg(), rt() == 0 ? rs() : 0); 3388 break; 3389 case SELNEZ_S: 3390 DCHECK(kArchVariant == kMips64r6); 3391 set_register(rd_reg(), rt() != 0 ? rs() : 0); 3392 break; 3393 case JR: { 3394 int64_t next_pc = rs(); 3395 int64_t current_pc = get_pc(); 3396 Instruction* branch_delay_instr = 3397 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 3398 BranchDelayInstructionDecode(branch_delay_instr); 3399 set_pc(next_pc); 3400 pc_modified_ = true; 3401 break; 3402 } 3403 case JALR: { 3404 int64_t next_pc = rs(); 3405 int64_t current_pc = get_pc(); 3406 int32_t return_addr_reg = rd_reg(); 3407 Instruction* branch_delay_instr = 3408 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 3409 BranchDelayInstructionDecode(branch_delay_instr); 3410 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); 3411 set_pc(next_pc); 3412 pc_modified_ = true; 3413 break; 3414 } 3415 case SLL: 3416 SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa()); 3417 break; 3418 case DSLL: 3419 SetResult(rd_reg(), rt() << sa()); 3420 break; 3421 case DSLL32: 3422 SetResult(rd_reg(), rt() << sa() << 32); 3423 break; 3424 case SRL: 3425 if (rs_reg() == 0) { 3426 // Regular logical right shift of a word by a fixed number of 3427 // bits instruction. RS field is always equal to 0. 3428 // Sign-extend the 32-bit result. 3429 alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa()); 3430 } else { 3431 // Logical right-rotate of a word by a fixed number of bits. This 3432 // is special case of SRL instruction, added in MIPS32 Release 2. 3433 // RS field is equal to 00001. 3434 alu_out = static_cast<int32_t>( 3435 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), 3436 static_cast<const uint32_t>(sa()))); 3437 } 3438 SetResult(rd_reg(), alu_out); 3439 break; 3440 case DSRL: 3441 SetResult(rd_reg(), rt_u() >> sa()); 3442 break; 3443 case DSRL32: 3444 SetResult(rd_reg(), rt_u() >> sa() >> 32); 3445 break; 3446 case SRA: 3447 SetResult(rd_reg(), (int32_t)rt() >> sa()); 3448 break; 3449 case DSRA: 3450 SetResult(rd_reg(), rt() >> sa()); 3451 break; 3452 case DSRA32: 3453 SetResult(rd_reg(), rt() >> sa() >> 32); 3454 break; 3455 case SLLV: 3456 SetResult(rd_reg(), (int32_t)rt() << rs()); 3457 break; 3458 case DSLLV: 3459 SetResult(rd_reg(), rt() << rs()); 3460 break; 3461 case SRLV: 3462 if (sa() == 0) { 3463 // Regular logical right-shift of a word by a variable number of 3464 // bits instruction. SA field is always equal to 0. 3465 alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs()); 3466 } else { 3467 // Logical right-rotate of a word by a variable number of bits. 3468 // This is special case od SRLV instruction, added in MIPS32 3469 // Release 2. SA field is equal to 00001. 3470 alu_out = static_cast<int32_t>( 3471 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), 3472 static_cast<const uint32_t>(rs_u()))); 3473 } 3474 SetResult(rd_reg(), alu_out); 3475 break; 3476 case DSRLV: 3477 if (sa() == 0) { 3478 // Regular logical right-shift of a word by a variable number of 3479 // bits instruction. SA field is always equal to 0. 3480 alu_out = rt_u() >> rs(); 3481 } else { 3482 // Logical right-rotate of a word by a variable number of bits. 3483 // This is special case od SRLV instruction, added in MIPS32 3484 // Release 2. SA field is equal to 00001. 3485 alu_out = 3486 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), 3487 static_cast<const uint32_t>(rs_u())); 3488 } 3489 SetResult(rd_reg(), alu_out); 3490 break; 3491 case SRAV: 3492 SetResult(rd_reg(), (int32_t)rt() >> rs()); 3493 break; 3494 case DSRAV: 3495 SetResult(rd_reg(), rt() >> rs()); 3496 break; 3497 case LSA: { 3498 DCHECK(kArchVariant == kMips64r6); 3499 int8_t sa = lsa_sa() + 1; 3500 int32_t _rt = static_cast<int32_t>(rt()); 3501 int32_t _rs = static_cast<int32_t>(rs()); 3502 int32_t res = _rs << sa; 3503 res += _rt; 3504 SetResult(rd_reg(), static_cast<int64_t>(res)); 3505 break; 3506 } 3507 case DLSA: 3508 DCHECK(kArchVariant == kMips64r6); 3509 SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); 3510 break; 3511 case MFHI: // MFHI == CLZ on R6. 3512 if (kArchVariant != kMips64r6) { 3513 DCHECK(sa() == 0); 3514 alu_out = get_register(HI); 3515 } else { 3516 // MIPS spec: If no bits were set in GPR rs(), the result written to 3517 // GPR rd() is 32. 3518 DCHECK(sa() == 1); 3519 alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u())); 3520 } 3521 SetResult(rd_reg(), alu_out); 3522 break; 3523 case MFLO: // MFLO == DCLZ on R6. 3524 if (kArchVariant != kMips64r6) { 3525 DCHECK(sa() == 0); 3526 alu_out = get_register(LO); 3527 } else { 3528 // MIPS spec: If no bits were set in GPR rs(), the result written to 3529 // GPR rd() is 64. 3530 DCHECK(sa() == 1); 3531 alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u())); 3532 } 3533 SetResult(rd_reg(), alu_out); 3534 break; 3535 // Instructions using HI and LO registers. 3536 case MULT: { // MULT == D_MUL_MUH. 3537 int32_t rs_lo = static_cast<int32_t>(rs()); 3538 int32_t rt_lo = static_cast<int32_t>(rt()); 3539 i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo); 3540 if (kArchVariant != kMips64r6) { 3541 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); 3542 set_register(HI, static_cast<int32_t>(i64hilo >> 32)); 3543 } else { 3544 switch (sa()) { 3545 case MUL_OP: 3546 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff)); 3547 break; 3548 case MUH_OP: 3549 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); 3550 break; 3551 default: 3552 UNIMPLEMENTED_MIPS(); 3553 break; 3554 } 3555 } 3556 break; 3557 } 3558 case MULTU: 3559 u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) * 3560 static_cast<uint64_t>(rt_u() & 0xffffffff); 3561 if (kArchVariant != kMips64r6) { 3562 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); 3563 set_register(HI, static_cast<int32_t>(u64hilo >> 32)); 3564 } else { 3565 switch (sa()) { 3566 case MUL_OP: 3567 set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff)); 3568 break; 3569 case MUH_OP: 3570 set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32)); 3571 break; 3572 default: 3573 UNIMPLEMENTED_MIPS(); 3574 break; 3575 } 3576 } 3577 break; 3578 case DMULT: // DMULT == D_MUL_MUH. 3579 if (kArchVariant != kMips64r6) { 3580 set_register(LO, rs() * rt()); 3581 set_register(HI, MultiplyHighSigned(rs(), rt())); 3582 } else { 3583 switch (sa()) { 3584 case MUL_OP: 3585 set_register(rd_reg(), rs() * rt()); 3586 break; 3587 case MUH_OP: 3588 set_register(rd_reg(), MultiplyHighSigned(rs(), rt())); 3589 break; 3590 default: 3591 UNIMPLEMENTED_MIPS(); 3592 break; 3593 } 3594 } 3595 break; 3596 case DMULTU: 3597 UNIMPLEMENTED_MIPS(); 3598 break; 3599 case DIV: 3600 case DDIV: { 3601 const int64_t int_min_value = 3602 get_instr()->FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; 3603 switch (kArchVariant) { 3604 case kMips64r2: 3605 // Divide by zero and overflow was not checked in the 3606 // configuration step - div and divu do not raise exceptions. On 3607 // division by 0 the result will be UNPREDICTABLE. On overflow 3608 // (INT_MIN/-1), return INT_MIN which is what the hardware does. 3609 if (rs() == int_min_value && rt() == -1) { 3610 set_register(LO, int_min_value); 3611 set_register(HI, 0); 3612 } else if (rt() != 0) { 3613 set_register(LO, rs() / rt()); 3614 set_register(HI, rs() % rt()); 3615 } 3616 break; 3617 case kMips64r6: 3618 switch (sa()) { 3619 case DIV_OP: 3620 if (rs() == int_min_value && rt() == -1) { 3621 set_register(rd_reg(), int_min_value); 3622 } else if (rt() != 0) { 3623 set_register(rd_reg(), rs() / rt()); 3624 } 3625 break; 3626 case MOD_OP: 3627 if (rs() == int_min_value && rt() == -1) { 3628 set_register(rd_reg(), 0); 3629 } else if (rt() != 0) { 3630 set_register(rd_reg(), rs() % rt()); 3631 } 3632 break; 3633 default: 3634 UNIMPLEMENTED_MIPS(); 3635 break; 3636 } 3637 break; 3638 default: 3639 break; 3640 } 3641 break; 3642 } 3643 case DIVU: 3644 switch (kArchVariant) { 3645 case kMips64r6: { 3646 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); 3647 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); 3648 switch (get_instr()->SaValue()) { 3649 case DIV_OP: 3650 if (rt_u_32 != 0) { 3651 set_register(rd_reg(), rs_u_32 / rt_u_32); 3652 } 3653 break; 3654 case MOD_OP: 3655 if (rt_u() != 0) { 3656 set_register(rd_reg(), rs_u_32 % rt_u_32); 3657 } 3658 break; 3659 default: 3660 UNIMPLEMENTED_MIPS(); 3661 break; 3662 } 3663 } break; 3664 default: { 3665 if (rt_u() != 0) { 3666 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); 3667 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); 3668 set_register(LO, rs_u_32 / rt_u_32); 3669 set_register(HI, rs_u_32 % rt_u_32); 3670 } 3671 } 3672 } 3673 break; 3674 case DDIVU: 3675 switch (kArchVariant) { 3676 case kMips64r6: { 3677 switch (get_instr()->SaValue()) { 3678 case DIV_OP: 3679 if (rt_u() != 0) { 3680 set_register(rd_reg(), rs_u() / rt_u()); 3681 } 3682 break; 3683 case MOD_OP: 3684 if (rt_u() != 0) { 3685 set_register(rd_reg(), rs_u() % rt_u()); 3686 } 3687 break; 3688 default: 3689 UNIMPLEMENTED_MIPS(); 3690 break; 3691 } 3692 } break; 3693 default: { 3694 if (rt_u() != 0) { 3695 set_register(LO, rs_u() / rt_u()); 3696 set_register(HI, rs_u() % rt_u()); 3697 } 3698 } 3699 } 3700 break; 3701 case ADD: 3702 case DADD: 3703 if (HaveSameSign(rs(), rt())) { 3704 if (rs() > 0) { 3705 if (rs() > (Registers::kMaxValue - rt())) { 3706 SignalException(kIntegerOverflow); 3707 } 3708 } else if (rs() < 0) { 3709 if (rs() < (Registers::kMinValue - rt())) { 3710 SignalException(kIntegerUnderflow); 3711 } 3712 } 3713 } 3714 SetResult(rd_reg(), rs() + rt()); 3715 break; 3716 case ADDU: { 3717 int32_t alu32_out = static_cast<int32_t>(rs() + rt()); 3718 // Sign-extend result of 32bit operation into 64bit register. 3719 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); 3720 break; 3721 } 3722 case DADDU: 3723 SetResult(rd_reg(), rs() + rt()); 3724 break; 3725 case SUB: 3726 case DSUB: 3727 if (!HaveSameSign(rs(), rt())) { 3728 if (rs() > 0) { 3729 if (rs() > (Registers::kMaxValue + rt())) { 3730 SignalException(kIntegerOverflow); 3731 } 3732 } else if (rs() < 0) { 3733 if (rs() < (Registers::kMinValue + rt())) { 3734 SignalException(kIntegerUnderflow); 3735 } 3736 } 3737 } 3738 SetResult(rd_reg(), rs() - rt()); 3739 break; 3740 case SUBU: { 3741 int32_t alu32_out = static_cast<int32_t>(rs() - rt()); 3742 // Sign-extend result of 32bit operation into 64bit register. 3743 SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); 3744 break; 3745 } 3746 case DSUBU: 3747 SetResult(rd_reg(), rs() - rt()); 3748 break; 3749 case AND: 3750 SetResult(rd_reg(), rs() & rt()); 3751 break; 3752 case OR: 3753 SetResult(rd_reg(), rs() | rt()); 3754 break; 3755 case XOR: 3756 SetResult(rd_reg(), rs() ^ rt()); 3757 break; 3758 case NOR: 3759 SetResult(rd_reg(), ~(rs() | rt())); 3760 break; 3761 case SLT: 3762 SetResult(rd_reg(), rs() < rt() ? 1 : 0); 3763 break; 3764 case SLTU: 3765 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); 3766 break; 3767 // Break and trap instructions. 3768 case BREAK: 3769 do_interrupt = true; 3770 break; 3771 case TGE: 3772 do_interrupt = rs() >= rt(); 3773 break; 3774 case TGEU: 3775 do_interrupt = rs_u() >= rt_u(); 3776 break; 3777 case TLT: 3778 do_interrupt = rs() < rt(); 3779 break; 3780 case TLTU: 3781 do_interrupt = rs_u() < rt_u(); 3782 break; 3783 case TEQ: 3784 do_interrupt = rs() == rt(); 3785 break; 3786 case TNE: 3787 do_interrupt = rs() != rt(); 3788 break; 3789 // Conditional moves. 3790 case MOVN: 3791 if (rt()) { 3792 SetResult(rd_reg(), rs()); 3793 } 3794 break; 3795 case MOVCI: { 3796 uint32_t cc = get_instr()->FBccValue(); 3797 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); 3798 if (get_instr()->Bit(16)) { // Read Tf bit. 3799 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); 3800 } else { 3801 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs()); 3802 } 3803 break; 3804 } 3805 case MOVZ: 3806 if (!rt()) { 3807 SetResult(rd_reg(), rs()); 3808 } 3809 break; 3810 default: 3811 UNREACHABLE(); 3812 } 3813 if (do_interrupt) { 3814 SoftwareInterrupt(get_instr()); 3815 } 3816 } 3817 3818 3819 void Simulator::DecodeTypeRegisterSPECIAL2() { 3820 int64_t alu_out; 3821 switch (get_instr()->FunctionFieldRaw()) { 3822 case MUL: 3823 alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u()); 3824 SetResult(rd_reg(), alu_out); 3825 // HI and LO are UNPREDICTABLE after the operation. 3826 set_register(LO, Unpredictable); 3827 set_register(HI, Unpredictable); 3828 break; 3829 case CLZ: 3830 // MIPS32 spec: If no bits were set in GPR rs(), the result written to 3831 // GPR rd is 32. 3832 alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u())); 3833 SetResult(rd_reg(), alu_out); 3834 break; 3835 case DCLZ: 3836 // MIPS64 spec: If no bits were set in GPR rs(), the result written to 3837 // GPR rd is 64. 3838 alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u())); 3839 SetResult(rd_reg(), alu_out); 3840 break; 3841 default: 3842 alu_out = 0x12345678; 3843 UNREACHABLE(); 3844 } 3845 } 3846 3847 3848 void Simulator::DecodeTypeRegisterSPECIAL3() { 3849 int64_t alu_out; 3850 switch (get_instr()->FunctionFieldRaw()) { 3851 case INS: { // Mips64r2 instruction. 3852 // Interpret rd field as 5-bit msb of insert. 3853 uint16_t msb = rd_reg(); 3854 // Interpret sa field as 5-bit lsb of insert. 3855 uint16_t lsb = sa(); 3856 uint16_t size = msb - lsb + 1; 3857 uint64_t mask = (1ULL << size) - 1; 3858 alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) | 3859 ((rs_u() & mask) << lsb)); 3860 SetResult(rt_reg(), alu_out); 3861 break; 3862 } 3863 case DINS: { // Mips64r2 instruction. 3864 // Interpret rd field as 5-bit msb of insert. 3865 uint16_t msb = rd_reg(); 3866 // Interpret sa field as 5-bit lsb of insert. 3867 uint16_t lsb = sa(); 3868 uint16_t size = msb - lsb + 1; 3869 uint64_t mask = (1ULL << size) - 1; 3870 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); 3871 SetResult(rt_reg(), alu_out); 3872 break; 3873 } 3874 case EXT: { // Mips64r2 instruction. 3875 // Interpret rd field as 5-bit msb of extract. 3876 uint16_t msb = rd_reg(); 3877 // Interpret sa field as 5-bit lsb of extract. 3878 uint16_t lsb = sa(); 3879 uint16_t size = msb + 1; 3880 uint64_t mask = (1ULL << size) - 1; 3881 alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb); 3882 SetResult(rt_reg(), alu_out); 3883 break; 3884 } 3885 case DEXT: { // Mips64r2 instruction. 3886 // Interpret rd field as 5-bit msb of extract. 3887 uint16_t msb = rd_reg(); 3888 // Interpret sa field as 5-bit lsb of extract. 3889 uint16_t lsb = sa(); 3890 uint16_t size = msb + 1; 3891 uint64_t mask = (1ULL << size) - 1; 3892 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 3893 SetResult(rt_reg(), alu_out); 3894 break; 3895 } 3896 case DEXTM: { 3897 // Interpret rd field as 5-bit msb of extract. 3898 uint16_t msb = rd_reg(); 3899 // Interpret sa field as 5-bit lsb of extract. 3900 uint16_t lsb = sa(); 3901 uint16_t size = msb + 33; 3902 uint64_t mask = (1ULL << size) - 1; 3903 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 3904 SetResult(rt_reg(), alu_out); 3905 break; 3906 } 3907 case DEXTU: { 3908 // Interpret rd field as 5-bit msb of extract. 3909 uint16_t msb = rd_reg(); 3910 // Interpret sa field as 5-bit lsb of extract. 3911 uint16_t lsb = sa() + 32; 3912 uint16_t size = msb + 1; 3913 uint64_t mask = (1ULL << size) - 1; 3914 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); 3915 SetResult(rt_reg(), alu_out); 3916 break; 3917 } 3918 case BSHFL: { 3919 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift; 3920 switch (sa) { 3921 case BITSWAP: { 3922 uint32_t input = static_cast<uint32_t>(rt()); 3923 uint32_t output = 0; 3924 uint8_t i_byte, o_byte; 3925 3926 // Reverse the bit in byte for each individual byte 3927 for (int i = 0; i < 4; i++) { 3928 output = output >> 8; 3929 i_byte = input & 0xff; 3930 3931 // Fast way to reverse bits in byte 3932 // Devised by Sean Anderson, July 13, 2001 3933 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | 3934 (i_byte * 0x8020LU & 0x88440LU)) * 3935 0x10101LU >> 3936 16); 3937 3938 output = output | (static_cast<uint32_t>(o_byte << 24)); 3939 input = input >> 8; 3940 } 3941 3942 alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); 3943 break; 3944 } 3945 case SEB: 3946 case SEH: 3947 case WSBH: 3948 alu_out = 0x12345678; 3949 UNREACHABLE(); 3950 break; 3951 default: { 3952 const uint8_t bp2 = get_instr()->Bp2Value(); 3953 sa >>= kBp2Bits; 3954 switch (sa) { 3955 case ALIGN: { 3956 if (bp2 == 0) { 3957 alu_out = static_cast<int32_t>(rt()); 3958 } else { 3959 uint64_t rt_hi = rt() << (8 * bp2); 3960 uint64_t rs_lo = rs() >> (8 * (4 - bp2)); 3961 alu_out = static_cast<int32_t>(rt_hi | rs_lo); 3962 } 3963 break; 3964 } 3965 default: 3966 alu_out = 0x12345678; 3967 UNREACHABLE(); 3968 break; 3969 } 3970 break; 3971 } 3972 } 3973 SetResult(rd_reg(), alu_out); 3974 break; 3975 } 3976 case DBSHFL: { 3977 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift; 3978 switch (sa) { 3979 case DBITSWAP: { 3980 switch (sa) { 3981 case DBITSWAP_SA: { // Mips64r6 3982 uint64_t input = static_cast<uint64_t>(rt()); 3983 uint64_t output = 0; 3984 uint8_t i_byte, o_byte; 3985 3986 // Reverse the bit in byte for each individual byte 3987 for (int i = 0; i < 8; i++) { 3988 output = output >> 8; 3989 i_byte = input & 0xff; 3990 3991 // Fast way to reverse bits in byte 3992 // Devised by Sean Anderson, July 13, 2001 3993 o_byte = 3994 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | 3995 (i_byte * 0x8020LU & 0x88440LU)) * 3996 0x10101LU >> 3997 16); 3998 3999 output = output | ((static_cast<uint64_t>(o_byte) << 56)); 4000 input = input >> 8; 4001 } 4002 4003 alu_out = static_cast<int64_t>(output); 4004 break; 4005 } 4006 } 4007 break; 4008 } 4009 case DSBH: 4010 case DSHD: 4011 alu_out = 0x12345678; 4012 UNREACHABLE(); 4013 break; 4014 default: { 4015 const uint8_t bp3 = get_instr()->Bp3Value(); 4016 sa >>= kBp3Bits; 4017 switch (sa) { 4018 case DALIGN: { 4019 if (bp3 == 0) { 4020 alu_out = static_cast<int64_t>(rt()); 4021 } else { 4022 uint64_t rt_hi = rt() << (8 * bp3); 4023 uint64_t rs_lo = rs() >> (8 * (8 - bp3)); 4024 alu_out = static_cast<int64_t>(rt_hi | rs_lo); 4025 } 4026 break; 4027 } 4028 default: 4029 alu_out = 0x12345678; 4030 UNREACHABLE(); 4031 break; 4032 } 4033 break; 4034 } 4035 } 4036 SetResult(rd_reg(), alu_out); 4037 break; 4038 } 4039 default: 4040 UNREACHABLE(); 4041 } 4042 } 4043 4044 4045 void Simulator::DecodeTypeRegister(Instruction* instr) { 4046 set_instr(instr); 4047 4048 // ---------- Execution. 4049 switch (instr->OpcodeFieldRaw()) { 4050 case COP1: 4051 DecodeTypeRegisterCOP1(); 4052 break; 4053 case COP1X: 4054 DecodeTypeRegisterCOP1X(); 4055 break; 4056 case SPECIAL: 4057 DecodeTypeRegisterSPECIAL(); 4058 break; 4059 case SPECIAL2: 4060 DecodeTypeRegisterSPECIAL2(); 4061 break; 4062 case SPECIAL3: 4063 switch (instr->FunctionFieldRaw()) { 4064 case BSHFL: { 4065 int32_t saVal = sa(); 4066 saVal >>= kBp2Bits; 4067 switch (saVal) { 4068 case ALIGN: { 4069 DecodeTypeRegisterSPECIAL3(); 4070 break; 4071 } 4072 } 4073 } 4074 case DBSHFL: { 4075 int32_t saVal = sa(); 4076 saVal >>= kBp2Bits; 4077 switch (saVal) { 4078 case DALIGN: { 4079 DecodeTypeRegisterSPECIAL3(); 4080 break; 4081 } 4082 } 4083 } 4084 default: 4085 DecodeTypeRegisterSPECIAL3(); 4086 break; 4087 } 4088 break; 4089 // Unimplemented opcodes raised an error in the configuration step before, 4090 // so we can use the default here to set the destination register in common 4091 // cases. 4092 default: 4093 UNREACHABLE(); 4094 } 4095 } 4096 4097 4098 // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). 4099 void Simulator::DecodeTypeImmediate(Instruction* instr) { 4100 // Instruction fields. 4101 Opcode op = instr->OpcodeFieldRaw(); 4102 int32_t rs_reg = instr->RsValue(); 4103 int64_t rs = get_register(instr->RsValue()); 4104 uint64_t rs_u = static_cast<uint64_t>(rs); 4105 int32_t rt_reg = instr->RtValue(); // Destination register. 4106 int64_t rt = get_register(rt_reg); 4107 int16_t imm16 = instr->Imm16Value(); 4108 int32_t imm18 = instr->Imm18Value(); 4109 4110 int32_t ft_reg = instr->FtValue(); // Destination register. 4111 4112 // Zero extended immediate. 4113 uint64_t oe_imm16 = 0xffff & imm16; 4114 // Sign extended immediate. 4115 int64_t se_imm16 = imm16; 4116 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0); 4117 4118 // Next pc. 4119 int64_t next_pc = bad_ra; 4120 4121 // Used for conditional branch instructions. 4122 bool execute_branch_delay_instruction = false; 4123 4124 // Used for arithmetic instructions. 4125 int64_t alu_out = 0; 4126 4127 // Used for memory instructions. 4128 int64_t addr = 0x0; 4129 // Alignment for 32-bit integers used in LWL, LWR, etc. 4130 const int kInt32AlignmentMask = sizeof(uint32_t) - 1; 4131 4132 // Branch instructions common part. 4133 auto BranchAndLinkHelper = [this, instr, &next_pc, 4134 &execute_branch_delay_instruction]( 4135 bool do_branch) { 4136 execute_branch_delay_instruction = true; 4137 int64_t current_pc = get_pc(); 4138 if (do_branch) { 4139 int16_t imm16 = instr->Imm16Value(); 4140 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 4141 set_register(31, current_pc + 2 * Instruction::kInstrSize); 4142 } else { 4143 next_pc = current_pc + 2 * Instruction::kInstrSize; 4144 } 4145 }; 4146 4147 auto BranchHelper = [this, instr, &next_pc, 4148 &execute_branch_delay_instruction](bool do_branch) { 4149 execute_branch_delay_instruction = true; 4150 int64_t current_pc = get_pc(); 4151 if (do_branch) { 4152 int16_t imm16 = instr->Imm16Value(); 4153 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 4154 } else { 4155 next_pc = current_pc + 2 * Instruction::kInstrSize; 4156 } 4157 }; 4158 4159 auto BranchAndLinkCompactHelper = [this, instr, &next_pc](bool do_branch, 4160 int bits) { 4161 int64_t current_pc = get_pc(); 4162 CheckForbiddenSlot(current_pc); 4163 if (do_branch) { 4164 int32_t imm = instr->ImmValue(bits); 4165 imm <<= 32 - bits; 4166 imm >>= 32 - bits; 4167 next_pc = current_pc + (imm << 2) + Instruction::kInstrSize; 4168 set_register(31, current_pc + Instruction::kInstrSize); 4169 } 4170 }; 4171 4172 auto BranchCompactHelper = [&next_pc, this, instr](bool do_branch, int bits) { 4173 int64_t current_pc = get_pc(); 4174 CheckForbiddenSlot(current_pc); 4175 if (do_branch) { 4176 int32_t imm = instr->ImmValue(bits); 4177 imm <<= 32 - bits; 4178 imm >>= 32 - bits; 4179 next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize; 4180 } 4181 }; 4182 4183 switch (op) { 4184 // ------------- COP1. Coprocessor instructions. 4185 case COP1: 4186 switch (instr->RsFieldRaw()) { 4187 case BC1: { // Branch on coprocessor condition. 4188 uint32_t cc = instr->FBccValue(); 4189 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); 4190 uint32_t cc_value = test_fcsr_bit(fcsr_cc); 4191 bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; 4192 BranchHelper(do_branch); 4193 break; 4194 } 4195 case BC1EQZ: 4196 BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); 4197 break; 4198 case BC1NEZ: 4199 BranchHelper(get_fpu_register(ft_reg) & 0x1); 4200 break; 4201 default: 4202 UNREACHABLE(); 4203 } 4204 break; 4205 // ------------- REGIMM class. 4206 case REGIMM: 4207 switch (instr->RtFieldRaw()) { 4208 case BLTZ: 4209 BranchHelper(rs < 0); 4210 break; 4211 case BGEZ: 4212 BranchHelper(rs >= 0); 4213 break; 4214 case BLTZAL: 4215 BranchAndLinkHelper(rs < 0); 4216 break; 4217 case BGEZAL: 4218 BranchAndLinkHelper(rs >= 0); 4219 break; 4220 case DAHI: 4221 SetResult(rs_reg, rs + (se_imm16 << 32)); 4222 break; 4223 case DATI: 4224 SetResult(rs_reg, rs + (se_imm16 << 48)); 4225 break; 4226 default: 4227 UNREACHABLE(); 4228 } 4229 break; // case REGIMM. 4230 // ------------- Branch instructions. 4231 // When comparing to zero, the encoding of rt field is always 0, so we don't 4232 // need to replace rt with zero. 4233 case BEQ: 4234 BranchHelper(rs == rt); 4235 break; 4236 case BNE: 4237 BranchHelper(rs != rt); 4238 break; 4239 case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) 4240 if (kArchVariant == kMips64r6) { 4241 if (rt_reg != 0) { 4242 if (rs_reg == 0) { // BLEZALC 4243 BranchAndLinkCompactHelper(rt <= 0, 16); 4244 } else { 4245 if (rs_reg == rt_reg) { // BGEZALC 4246 BranchAndLinkCompactHelper(rt >= 0, 16); 4247 } else { // BGEUC 4248 BranchCompactHelper( 4249 static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16); 4250 } 4251 } 4252 } else { // BLEZ 4253 BranchHelper(rs <= 0); 4254 } 4255 } else { // BLEZ 4256 BranchHelper(rs <= 0); 4257 } 4258 break; 4259 case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) 4260 if (kArchVariant == kMips64r6) { 4261 if (rt_reg != 0) { 4262 if (rs_reg == 0) { // BGTZALC 4263 BranchAndLinkCompactHelper(rt > 0, 16); 4264 } else { 4265 if (rt_reg == rs_reg) { // BLTZALC 4266 BranchAndLinkCompactHelper(rt < 0, 16); 4267 } else { // BLTUC 4268 BranchCompactHelper( 4269 static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16); 4270 } 4271 } 4272 } else { // BGTZ 4273 BranchHelper(rs > 0); 4274 } 4275 } else { // BGTZ 4276 BranchHelper(rs > 0); 4277 } 4278 break; 4279 case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) 4280 if (kArchVariant == kMips64r6) { 4281 if (rt_reg != 0) { 4282 if (rs_reg == 0) { // BLEZC 4283 BranchCompactHelper(rt <= 0, 16); 4284 } else { 4285 if (rs_reg == rt_reg) { // BGEZC 4286 BranchCompactHelper(rt >= 0, 16); 4287 } else { // BGEC/BLEC 4288 BranchCompactHelper(rs >= rt, 16); 4289 } 4290 } 4291 } 4292 } else { // BLEZL 4293 BranchAndLinkHelper(rs <= 0); 4294 } 4295 break; 4296 case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) 4297 if (kArchVariant == kMips64r6) { 4298 if (rt_reg != 0) { 4299 if (rs_reg == 0) { // BGTZC 4300 BranchCompactHelper(rt > 0, 16); 4301 } else { 4302 if (rs_reg == rt_reg) { // BLTZC 4303 BranchCompactHelper(rt < 0, 16); 4304 } else { // BLTC/BGTC 4305 BranchCompactHelper(rs < rt, 16); 4306 } 4307 } 4308 } 4309 } else { // BGTZL 4310 BranchAndLinkHelper(rs > 0); 4311 } 4312 break; 4313 case POP66: // BEQZC, JIC 4314 if (rs_reg != 0) { // BEQZC 4315 BranchCompactHelper(rs == 0, 21); 4316 } else { // JIC 4317 next_pc = rt + imm16; 4318 } 4319 break; 4320 case POP76: // BNEZC, JIALC 4321 if (rs_reg != 0) { // BNEZC 4322 BranchCompactHelper(rs != 0, 21); 4323 } else { // JIALC 4324 int64_t current_pc = get_pc(); 4325 set_register(31, current_pc + Instruction::kInstrSize); 4326 next_pc = rt + imm16; 4327 } 4328 break; 4329 case BC: 4330 BranchCompactHelper(true, 26); 4331 break; 4332 case BALC: 4333 BranchAndLinkCompactHelper(true, 26); 4334 break; 4335 case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6) 4336 if (kArchVariant == kMips64r6) { 4337 if (rs_reg >= rt_reg) { // BOVC 4338 if (HaveSameSign(rs, rt)) { 4339 if (rs > 0) { 4340 BranchCompactHelper(rs > Registers::kMaxValue - rt, 16); 4341 } else if (rs < 0) { 4342 BranchCompactHelper(rs < Registers::kMinValue - rt, 16); 4343 } 4344 } 4345 } else { 4346 if (rs_reg == 0) { // BEQZALC 4347 BranchAndLinkCompactHelper(rt == 0, 16); 4348 } else { // BEQC 4349 BranchCompactHelper(rt == rs, 16); 4350 } 4351 } 4352 } else { // ADDI 4353 if (HaveSameSign(rs, se_imm16)) { 4354 if (rs > 0) { 4355 if (rs <= Registers::kMaxValue - se_imm16) { 4356 SignalException(kIntegerOverflow); 4357 } 4358 } else if (rs < 0) { 4359 if (rs >= Registers::kMinValue - se_imm16) { 4360 SignalException(kIntegerUnderflow); 4361 } 4362 } 4363 } 4364 SetResult(rt_reg, rs + se_imm16); 4365 } 4366 break; 4367 case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6) 4368 if (kArchVariant == kMips64r6) { 4369 if (rs_reg >= rt_reg) { // BNVC 4370 if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) { 4371 BranchCompactHelper(true, 16); 4372 } else { 4373 if (rs > 0) { 4374 BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16); 4375 } else if (rs < 0) { 4376 BranchCompactHelper(rs >= Registers::kMinValue - rt, 16); 4377 } 4378 } 4379 } else { 4380 if (rs_reg == 0) { // BNEZALC 4381 BranchAndLinkCompactHelper(rt != 0, 16); 4382 } else { // BNEC 4383 BranchCompactHelper(rt != rs, 16); 4384 } 4385 } 4386 } 4387 break; 4388 // ------------- Arithmetic instructions. 4389 case ADDIU: { 4390 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16); 4391 // Sign-extend result of 32bit operation into 64bit register. 4392 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4393 break; 4394 } 4395 case DADDIU: 4396 SetResult(rt_reg, rs + se_imm16); 4397 break; 4398 case SLTI: 4399 SetResult(rt_reg, rs < se_imm16 ? 1 : 0); 4400 break; 4401 case SLTIU: 4402 SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0); 4403 break; 4404 case ANDI: 4405 SetResult(rt_reg, rs & oe_imm16); 4406 break; 4407 case ORI: 4408 SetResult(rt_reg, rs | oe_imm16); 4409 break; 4410 case XORI: 4411 SetResult(rt_reg, rs ^ oe_imm16); 4412 break; 4413 case LUI: 4414 if (rs_reg != 0) { 4415 // AUI instruction. 4416 DCHECK(kArchVariant == kMips64r6); 4417 int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16)); 4418 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4419 } else { 4420 // LUI instruction. 4421 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16); 4422 // Sign-extend result of 32bit operation into 64bit register. 4423 SetResult(rt_reg, static_cast<int64_t>(alu32_out)); 4424 } 4425 break; 4426 case DAUI: 4427 DCHECK(kArchVariant == kMips64r6); 4428 DCHECK(rs_reg != 0); 4429 SetResult(rt_reg, rs + (se_imm16 << 16)); 4430 break; 4431 // ------------- Memory instructions. 4432 case LB: 4433 set_register(rt_reg, ReadB(rs + se_imm16)); 4434 break; 4435 case LH: 4436 set_register(rt_reg, ReadH(rs + se_imm16, instr)); 4437 break; 4438 case LWL: { 4439 // al_offset is offset of the effective address within an aligned word. 4440 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4441 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4442 uint32_t mask = (1 << byte_shift * 8) - 1; 4443 addr = rs + se_imm16 - al_offset; 4444 alu_out = ReadW(addr, instr); 4445 alu_out <<= byte_shift * 8; 4446 alu_out |= rt & mask; 4447 set_register(rt_reg, alu_out); 4448 break; 4449 } 4450 case LW: 4451 set_register(rt_reg, ReadW(rs + se_imm16, instr)); 4452 break; 4453 case LWU: 4454 set_register(rt_reg, ReadWU(rs + se_imm16, instr)); 4455 break; 4456 case LD: 4457 set_register(rt_reg, Read2W(rs + se_imm16, instr)); 4458 break; 4459 case LBU: 4460 set_register(rt_reg, ReadBU(rs + se_imm16)); 4461 break; 4462 case LHU: 4463 set_register(rt_reg, ReadHU(rs + se_imm16, instr)); 4464 break; 4465 case LWR: { 4466 // al_offset is offset of the effective address within an aligned word. 4467 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4468 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4469 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; 4470 addr = rs + se_imm16 - al_offset; 4471 alu_out = ReadW(addr, instr); 4472 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; 4473 alu_out |= rt & mask; 4474 set_register(rt_reg, alu_out); 4475 break; 4476 } 4477 case SB: 4478 WriteB(rs + se_imm16, static_cast<int8_t>(rt)); 4479 break; 4480 case SH: 4481 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr); 4482 break; 4483 case SWL: { 4484 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4485 uint8_t byte_shift = kInt32AlignmentMask - al_offset; 4486 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; 4487 addr = rs + se_imm16 - al_offset; 4488 uint64_t mem_value = ReadW(addr, instr) & mask; 4489 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; 4490 WriteW(addr, static_cast<int32_t>(mem_value), instr); 4491 break; 4492 } 4493 case SW: 4494 WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr); 4495 break; 4496 case SD: 4497 Write2W(rs + se_imm16, rt, instr); 4498 break; 4499 case SWR: { 4500 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; 4501 uint32_t mask = (1 << al_offset * 8) - 1; 4502 addr = rs + se_imm16 - al_offset; 4503 uint64_t mem_value = ReadW(addr, instr); 4504 mem_value = (rt << al_offset * 8) | (mem_value & mask); 4505 WriteW(addr, static_cast<int32_t>(mem_value), instr); 4506 break; 4507 } 4508 case LWC1: 4509 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. 4510 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr)); 4511 break; 4512 case LDC1: 4513 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr)); 4514 break; 4515 case SWC1: { 4516 int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg)); 4517 WriteW(rs + se_imm16, alu_out_32, instr); 4518 break; 4519 } 4520 case SDC1: 4521 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr); 4522 break; 4523 // ------------- PC-Relative instructions. 4524 case PCREL: { 4525 // rt field: checking 5-bits. 4526 int32_t imm21 = instr->Imm21Value(); 4527 int64_t current_pc = get_pc(); 4528 uint8_t rt = (imm21 >> kImm16Bits); 4529 switch (rt) { 4530 case ALUIPC: 4531 addr = current_pc + (se_imm16 << 16); 4532 alu_out = static_cast<int64_t>(~0x0FFFF) & addr; 4533 break; 4534 case AUIPC: 4535 alu_out = current_pc + (se_imm16 << 16); 4536 break; 4537 default: { 4538 int32_t imm19 = instr->Imm19Value(); 4539 // rt field: checking the most significant 3-bits. 4540 rt = (imm21 >> kImm18Bits); 4541 switch (rt) { 4542 case LDPC: 4543 addr = 4544 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3); 4545 alu_out = Read2W(addr, instr); 4546 break; 4547 default: { 4548 // rt field: checking the most significant 2-bits. 4549 rt = (imm21 >> kImm19Bits); 4550 switch (rt) { 4551 case LWUPC: { 4552 // Set sign. 4553 imm19 <<= (kOpcodeBits + kRsBits + 2); 4554 imm19 >>= (kOpcodeBits + kRsBits + 2); 4555 addr = current_pc + (imm19 << 2); 4556 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 4557 alu_out = *ptr; 4558 break; 4559 } 4560 case LWPC: { 4561 // Set sign. 4562 imm19 <<= (kOpcodeBits + kRsBits + 2); 4563 imm19 >>= (kOpcodeBits + kRsBits + 2); 4564 addr = current_pc + (imm19 << 2); 4565 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 4566 alu_out = *ptr; 4567 break; 4568 } 4569 case ADDIUPC: { 4570 int64_t se_imm19 = 4571 imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0); 4572 alu_out = current_pc + (se_imm19 << 2); 4573 break; 4574 } 4575 default: 4576 UNREACHABLE(); 4577 break; 4578 } 4579 break; 4580 } 4581 } 4582 break; 4583 } 4584 } 4585 set_register(rs_reg, alu_out); 4586 break; 4587 } 4588 default: 4589 UNREACHABLE(); 4590 } 4591 4592 if (execute_branch_delay_instruction) { 4593 // Execute branch delay slot 4594 // We don't check for end_sim_pc. First it should not be met as the current 4595 // pc is valid. Secondly a jump should always execute its branch delay slot. 4596 Instruction* branch_delay_instr = 4597 reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize); 4598 BranchDelayInstructionDecode(branch_delay_instr); 4599 } 4600 4601 // If needed update pc after the branch delay execution. 4602 if (next_pc != bad_ra) { 4603 set_pc(next_pc); 4604 } 4605 } 4606 4607 4608 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). 4609 void Simulator::DecodeTypeJump(Instruction* instr) { 4610 // Get current pc. 4611 int64_t current_pc = get_pc(); 4612 // Get unchanged bits of pc. 4613 int64_t pc_high_bits = current_pc & 0xfffffffff0000000; 4614 // Next pc. 4615 int64_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); 4616 4617 // Execute branch delay slot. 4618 // We don't check for end_sim_pc. First it should not be met as the current pc 4619 // is valid. Secondly a jump should always execute its branch delay slot. 4620 Instruction* branch_delay_instr = 4621 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); 4622 BranchDelayInstructionDecode(branch_delay_instr); 4623 4624 // Update pc and ra if necessary. 4625 // Do this after the branch delay execution. 4626 if (instr->IsLinkingInstruction()) { 4627 set_register(31, current_pc + 2 * Instruction::kInstrSize); 4628 } 4629 set_pc(next_pc); 4630 pc_modified_ = true; 4631 } 4632 4633 4634 // Executes the current instruction. 4635 void Simulator::InstructionDecode(Instruction* instr) { 4636 if (v8::internal::FLAG_check_icache) { 4637 CheckICache(isolate_->simulator_i_cache(), instr); 4638 } 4639 pc_modified_ = false; 4640 4641 v8::internal::EmbeddedVector<char, 256> buffer; 4642 4643 if (::v8::internal::FLAG_trace_sim) { 4644 SNPrintF(trace_buf_, " "); 4645 disasm::NameConverter converter; 4646 disasm::Disassembler dasm(converter); 4647 // Use a reasonably large buffer. 4648 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); 4649 } 4650 4651 switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) { 4652 case Instruction::kRegisterType: 4653 DecodeTypeRegister(instr); 4654 break; 4655 case Instruction::kImmediateType: 4656 DecodeTypeImmediate(instr); 4657 break; 4658 case Instruction::kJumpType: 4659 DecodeTypeJump(instr); 4660 break; 4661 default: 4662 UNSUPPORTED(); 4663 } 4664 4665 if (::v8::internal::FLAG_trace_sim) { 4666 PrintF(" 0x%08lx %-44s %s\n", reinterpret_cast<intptr_t>(instr), 4667 buffer.start(), trace_buf_.start()); 4668 } 4669 4670 if (!pc_modified_) { 4671 set_register(pc, reinterpret_cast<int64_t>(instr) + 4672 Instruction::kInstrSize); 4673 } 4674 } 4675 4676 4677 4678 void Simulator::Execute() { 4679 // Get the PC to simulate. Cannot use the accessor here as we need the 4680 // raw PC value and not the one used as input to arithmetic instructions. 4681 int64_t program_counter = get_pc(); 4682 if (::v8::internal::FLAG_stop_sim_at == 0) { 4683 // Fast version of the dispatch loop without checking whether the simulator 4684 // should be stopping at a particular executed instruction. 4685 while (program_counter != end_sim_pc) { 4686 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4687 icount_++; 4688 InstructionDecode(instr); 4689 program_counter = get_pc(); 4690 } 4691 } else { 4692 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 4693 // we reach the particular instuction count. 4694 while (program_counter != end_sim_pc) { 4695 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4696 icount_++; 4697 if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) { 4698 MipsDebugger dbg(this); 4699 dbg.Debug(); 4700 } else { 4701 InstructionDecode(instr); 4702 } 4703 program_counter = get_pc(); 4704 } 4705 } 4706 } 4707 4708 4709 void Simulator::CallInternal(byte* entry) { 4710 // Adjust JS-based stack limit to C-based stack limit. 4711 isolate_->stack_guard()->AdjustStackLimitForSimulator(); 4712 4713 // Prepare to execute the code at entry. 4714 set_register(pc, reinterpret_cast<int64_t>(entry)); 4715 // Put down marker for end of simulation. The simulator will stop simulation 4716 // when the PC reaches this value. By saving the "end simulation" value into 4717 // the LR the simulation stops when returning to this call point. 4718 set_register(ra, end_sim_pc); 4719 4720 // Remember the values of callee-saved registers. 4721 // The code below assumes that r9 is not used as sb (static base) in 4722 // simulator code and therefore is regarded as a callee-saved register. 4723 int64_t s0_val = get_register(s0); 4724 int64_t s1_val = get_register(s1); 4725 int64_t s2_val = get_register(s2); 4726 int64_t s3_val = get_register(s3); 4727 int64_t s4_val = get_register(s4); 4728 int64_t s5_val = get_register(s5); 4729 int64_t s6_val = get_register(s6); 4730 int64_t s7_val = get_register(s7); 4731 int64_t gp_val = get_register(gp); 4732 int64_t sp_val = get_register(sp); 4733 int64_t fp_val = get_register(fp); 4734 4735 // Set up the callee-saved registers with a known value. To be able to check 4736 // that they are preserved properly across JS execution. 4737 int64_t callee_saved_value = icount_; 4738 set_register(s0, callee_saved_value); 4739 set_register(s1, callee_saved_value); 4740 set_register(s2, callee_saved_value); 4741 set_register(s3, callee_saved_value); 4742 set_register(s4, callee_saved_value); 4743 set_register(s5, callee_saved_value); 4744 set_register(s6, callee_saved_value); 4745 set_register(s7, callee_saved_value); 4746 set_register(gp, callee_saved_value); 4747 set_register(fp, callee_saved_value); 4748 4749 // Start the simulation. 4750 Execute(); 4751 4752 // Check that the callee-saved registers have been preserved. 4753 CHECK_EQ(callee_saved_value, get_register(s0)); 4754 CHECK_EQ(callee_saved_value, get_register(s1)); 4755 CHECK_EQ(callee_saved_value, get_register(s2)); 4756 CHECK_EQ(callee_saved_value, get_register(s3)); 4757 CHECK_EQ(callee_saved_value, get_register(s4)); 4758 CHECK_EQ(callee_saved_value, get_register(s5)); 4759 CHECK_EQ(callee_saved_value, get_register(s6)); 4760 CHECK_EQ(callee_saved_value, get_register(s7)); 4761 CHECK_EQ(callee_saved_value, get_register(gp)); 4762 CHECK_EQ(callee_saved_value, get_register(fp)); 4763 4764 // Restore callee-saved registers with the original value. 4765 set_register(s0, s0_val); 4766 set_register(s1, s1_val); 4767 set_register(s2, s2_val); 4768 set_register(s3, s3_val); 4769 set_register(s4, s4_val); 4770 set_register(s5, s5_val); 4771 set_register(s6, s6_val); 4772 set_register(s7, s7_val); 4773 set_register(gp, gp_val); 4774 set_register(sp, sp_val); 4775 set_register(fp, fp_val); 4776 } 4777 4778 4779 int64_t Simulator::Call(byte* entry, int argument_count, ...) { 4780 const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4; 4781 va_list parameters; 4782 va_start(parameters, argument_count); 4783 // Set up arguments. 4784 4785 // First four arguments passed in registers in both ABI's. 4786 DCHECK(argument_count >= 4); 4787 set_register(a0, va_arg(parameters, int64_t)); 4788 set_register(a1, va_arg(parameters, int64_t)); 4789 set_register(a2, va_arg(parameters, int64_t)); 4790 set_register(a3, va_arg(parameters, int64_t)); 4791 4792 if (kMipsAbi == kN64) { 4793 // Up to eight arguments passed in registers in N64 ABI. 4794 // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this. 4795 if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t)); 4796 if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t)); 4797 if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t)); 4798 if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t)); 4799 } 4800 4801 // Remaining arguments passed on stack. 4802 int64_t original_stack = get_register(sp); 4803 // Compute position of stack on entry to generated code. 4804 int stack_args_count = (argument_count > kRegisterPassedArguments) ? 4805 (argument_count - kRegisterPassedArguments) : 0; 4806 int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize; 4807 int64_t entry_stack = original_stack - stack_args_size; 4808 4809 if (base::OS::ActivationFrameAlignment() != 0) { 4810 entry_stack &= -base::OS::ActivationFrameAlignment(); 4811 } 4812 // Store remaining arguments on stack, from low to high memory. 4813 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 4814 for (int i = kRegisterPassedArguments; i < argument_count; i++) { 4815 int stack_index = i - kRegisterPassedArguments + kCArgSlotCount; 4816 stack_argument[stack_index] = va_arg(parameters, int64_t); 4817 } 4818 va_end(parameters); 4819 set_register(sp, entry_stack); 4820 4821 CallInternal(entry); 4822 4823 // Pop stack passed arguments. 4824 CHECK_EQ(entry_stack, get_register(sp)); 4825 set_register(sp, original_stack); 4826 4827 int64_t result = get_register(v0); 4828 return result; 4829 } 4830 4831 4832 double Simulator::CallFP(byte* entry, double d0, double d1) { 4833 if (!IsMipsSoftFloatABI) { 4834 const FPURegister fparg2 = (kMipsAbi == kN64) ? f13 : f14; 4835 set_fpu_register_double(f12, d0); 4836 set_fpu_register_double(fparg2, d1); 4837 } else { 4838 int buffer[2]; 4839 DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); 4840 memcpy(buffer, &d0, sizeof(d0)); 4841 set_dw_register(a0, buffer); 4842 memcpy(buffer, &d1, sizeof(d1)); 4843 set_dw_register(a2, buffer); 4844 } 4845 CallInternal(entry); 4846 if (!IsMipsSoftFloatABI) { 4847 return get_fpu_register_double(f0); 4848 } else { 4849 return get_double_from_register_pair(v0); 4850 } 4851 } 4852 4853 4854 uintptr_t Simulator::PushAddress(uintptr_t address) { 4855 int64_t new_sp = get_register(sp) - sizeof(uintptr_t); 4856 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 4857 *stack_slot = address; 4858 set_register(sp, new_sp); 4859 return new_sp; 4860 } 4861 4862 4863 uintptr_t Simulator::PopAddress() { 4864 int64_t current_sp = get_register(sp); 4865 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 4866 uintptr_t address = *stack_slot; 4867 set_register(sp, current_sp + sizeof(uintptr_t)); 4868 return address; 4869 } 4870 4871 4872 #undef UNSUPPORTED 4873 } // namespace internal 4874 } // namespace v8 4875 4876 #endif // USE_SIMULATOR 4877 4878 #endif // V8_TARGET_ARCH_MIPS64 4879