1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // Intel License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000, Intel Corporation, all rights reserved. 14 // Third party copyrights are property of their respective owners. 15 // 16 // Redistribution and use in source and binary forms, with or without modification, 17 // are permitted provided that the following conditions are met: 18 // 19 // * Redistribution's of source code must retain the above copyright notice, 20 // this list of conditions and the following disclaimer. 21 // 22 // * Redistribution's in binary form must reproduce the above copyright notice, 23 // this list of conditions and the following disclaimer in the documentation 24 // and/or other materials provided with the distribution. 25 // 26 // * The name of Intel Corporation may not be used to endorse or promote products 27 // derived from this software without specific prior written permission. 28 // 29 // This software is provided by the copyright holders and contributors "as is" and 30 // any express or implied warranties, including, but not limited to, the implied 31 // warranties of merchantability and fitness for a particular purpose are disclaimed. 32 // In no event shall the Intel Corporation or contributors be liable for any direct, 33 // indirect, incidental, special, exemplary, or consequential damages 34 // (including, but not limited to, procurement of substitute goods or services; 35 // loss of use, data, or profits; or business interruption) however caused 36 // and on any theory of liability, whether in contract, strict liability, 37 // or tort (including negligence or otherwise) arising in any way out of 38 // the use of this software, even if advised of the possibility of such damage. 39 // 40 //M*/ 41 42 #include "test_precomp.hpp" 43 44 #include <iostream> 45 #include <fstream> 46 47 using namespace cv; 48 using namespace std; 49 50 CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName ) 51 { 52 validationFN = "slvalidation.xml"; 53 } 54 55 int CV_SLMLTest::run_test_case( int testCaseIdx ) 56 { 57 int code = cvtest::TS::OK; 58 code = prepare_test_case( testCaseIdx ); 59 60 if( code == cvtest::TS::OK ) 61 { 62 data->setTrainTestSplit(data->getNTrainSamples(), true); 63 code = train( testCaseIdx ); 64 if( code == cvtest::TS::OK ) 65 { 66 get_test_error( testCaseIdx, &test_resps1 ); 67 fname1 = tempfile(".yml.gz"); 68 save( fname1.c_str() ); 69 load( fname1.c_str() ); 70 get_test_error( testCaseIdx, &test_resps2 ); 71 fname2 = tempfile(".yml.gz"); 72 save( fname2.c_str() ); 73 } 74 else 75 ts->printf( cvtest::TS::LOG, "model can not be trained" ); 76 } 77 return code; 78 } 79 80 int CV_SLMLTest::validate_test_results( int testCaseIdx ) 81 { 82 int code = cvtest::TS::OK; 83 84 // 1. compare files 85 FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb"); 86 size_t sz1 = 0, sz2 = 0; 87 if( !fs1 || !fs2 ) 88 code = cvtest::TS::FAIL_MISSING_TEST_DATA; 89 if( code >= 0 ) 90 { 91 fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END); 92 sz1 = ftell(fs1); 93 sz2 = ftell(fs2); 94 fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET); 95 } 96 97 if( sz1 != sz2 ) 98 code = cvtest::TS::FAIL_INVALID_OUTPUT; 99 100 if( code >= 0 ) 101 { 102 const int BUFSZ = 1024; 103 uchar buf1[BUFSZ], buf2[BUFSZ]; 104 for( size_t pos = 0; pos < sz1; ) 105 { 106 size_t r1 = fread(buf1, 1, BUFSZ, fs1); 107 size_t r2 = fread(buf2, 1, BUFSZ, fs2); 108 if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 ) 109 { 110 ts->printf( cvtest::TS::LOG, 111 "in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n", 112 testCaseIdx, fname1.c_str(), fname2.c_str(), 113 (int)pos ); 114 code = cvtest::TS::FAIL_INVALID_OUTPUT; 115 break; 116 } 117 pos += r1; 118 } 119 } 120 121 if(fs1) 122 fclose(fs1); 123 if(fs2) 124 fclose(fs2); 125 126 // delete temporary files 127 if( code >= 0 ) 128 { 129 remove( fname1.c_str() ); 130 remove( fname2.c_str() ); 131 } 132 133 if( code >= 0 ) 134 { 135 // 2. compare responses 136 CV_Assert( test_resps1.size() == test_resps2.size() ); 137 vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin(); 138 for( ; it1 != test_resps1.end(); ++it1, ++it2 ) 139 { 140 if( fabs(*it1 - *it2) > FLT_EPSILON ) 141 { 142 ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx ); 143 code = cvtest::TS::FAIL_INVALID_OUTPUT; 144 break; 145 } 146 } 147 } 148 return code; 149 } 150 151 TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); } 152 TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); } 153 TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); } 154 TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); } 155 TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); } 156 TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); } 157 TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); } 158 TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); } 159 160 class CV_LegacyTest : public cvtest::BaseTest 161 { 162 public: 163 CV_LegacyTest(const std::string &_modelName, const std::string &_suffixes = std::string()) 164 : cvtest::BaseTest(), modelName(_modelName), suffixes(_suffixes) 165 { 166 } 167 virtual ~CV_LegacyTest() {} 168 protected: 169 void run(int) 170 { 171 unsigned int idx = 0; 172 for (;;) 173 { 174 if (idx >= suffixes.size()) 175 break; 176 int found = (int)suffixes.find(';', idx); 177 string piece = suffixes.substr(idx, found - idx); 178 if (piece.empty()) 179 break; 180 oneTest(piece); 181 idx += (unsigned int)piece.size() + 1; 182 } 183 } 184 void oneTest(const string & suffix) 185 { 186 using namespace cv::ml; 187 188 int code = cvtest::TS::OK; 189 string filename = ts->get_data_path() + "legacy/" + modelName + suffix; 190 bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES; 191 Ptr<StatModel> model; 192 if (modelName == CV_BOOST) 193 model = Algorithm::load<Boost>(filename); 194 else if (modelName == CV_ANN) 195 model = Algorithm::load<ANN_MLP>(filename); 196 else if (modelName == CV_DTREE) 197 model = Algorithm::load<DTrees>(filename); 198 else if (modelName == CV_NBAYES) 199 model = Algorithm::load<NormalBayesClassifier>(filename); 200 else if (modelName == CV_SVM) 201 model = Algorithm::load<SVM>(filename); 202 else if (modelName == CV_RTREES) 203 model = Algorithm::load<RTrees>(filename); 204 if (!model) 205 { 206 code = cvtest::TS::FAIL_INVALID_TEST_DATA; 207 } 208 else 209 { 210 Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F); 211 ts->get_rng().fill(input, RNG::UNIFORM, 0, 40); 212 213 if (isTree) 214 randomFillCategories(filename, input); 215 216 Mat output; 217 model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0)); 218 // just check if no internal assertions or errors thrown 219 } 220 ts->set_failed_test_info(code); 221 } 222 void randomFillCategories(const string & filename, Mat & input) 223 { 224 Mat catMap; 225 Mat catCount; 226 std::vector<uchar> varTypes; 227 228 FileStorage fs(filename, FileStorage::READ); 229 FileNode root = fs.getFirstTopLevelNode(); 230 root["cat_map"] >> catMap; 231 root["cat_count"] >> catCount; 232 root["var_type"] >> varTypes; 233 234 int offset = 0; 235 int countOffset = 0; 236 uint var = 0, varCount = (uint)varTypes.size(); 237 for (; var < varCount; ++var) 238 { 239 if (varTypes[var] == ml::VAR_CATEGORICAL) 240 { 241 int size = catCount.at<int>(0, countOffset); 242 for (int row = 0; row < input.rows; ++row) 243 { 244 int randomChosenIndex = offset + ((uint)ts->get_rng()) % size; 245 int value = catMap.at<int>(0, randomChosenIndex); 246 input.at<float>(row, var) = (float)value; 247 } 248 offset += size; 249 ++countOffset; 250 } 251 } 252 } 253 string modelName; 254 string suffixes; 255 }; 256 257 TEST(ML_ANN, legacy_load) { CV_LegacyTest test(CV_ANN, "_waveform.xml"); test.safe_run(); } 258 TEST(ML_Boost, legacy_load) { CV_LegacyTest test(CV_BOOST, "_adult.xml;_1.xml;_2.xml;_3.xml"); test.safe_run(); } 259 TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushroom.xml"); test.safe_run(); } 260 TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); } 261 TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); } 262 TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); } 263 264 /*TEST(ML_SVM, throw_exception_when_save_untrained_model) 265 { 266 Ptr<cv::ml::SVM> svm; 267 string filename = tempfile("svm.xml"); 268 ASSERT_THROW(svm.save(filename.c_str()), Exception); 269 remove(filename.c_str()); 270 }*/ 271 272 TEST(DISABLED_ML_SVM, linear_save_load) 273 { 274 Ptr<cv::ml::SVM> svm1, svm2, svm3; 275 276 svm1 = Algorithm::load<SVM>("SVM45_X_38-1.xml"); 277 svm2 = Algorithm::load<SVM>("SVM45_X_38-2.xml"); 278 string tname = tempfile("a.xml"); 279 svm2->save(tname); 280 svm3 = Algorithm::load<SVM>(tname); 281 282 ASSERT_EQ(svm1->getVarCount(), svm2->getVarCount()); 283 ASSERT_EQ(svm1->getVarCount(), svm3->getVarCount()); 284 285 int m = 10000, n = svm1->getVarCount(); 286 Mat samples(m, n, CV_32F), r1, r2, r3; 287 randu(samples, 0., 1.); 288 289 svm1->predict(samples, r1); 290 svm2->predict(samples, r2); 291 svm3->predict(samples, r3); 292 293 double eps = 1e-4; 294 EXPECT_LE(norm(r1, r2, NORM_INF), eps); 295 EXPECT_LE(norm(r1, r3, NORM_INF), eps); 296 297 remove(tname.c_str()); 298 } 299 300 /* End of file. */ 301