1 /* 2 ** 3 ** Copyright 2012, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 19 #define LOG_TAG "AudioFlinger" 20 //#define LOG_NDEBUG 0 21 #define ATRACE_TAG ATRACE_TAG_AUDIO 22 23 #include "Configuration.h" 24 #include <math.h> 25 #include <fcntl.h> 26 #include <linux/futex.h> 27 #include <sys/stat.h> 28 #include <sys/syscall.h> 29 #include <cutils/properties.h> 30 #include <media/AudioParameter.h> 31 #include <media/AudioResamplerPublic.h> 32 #include <utils/Log.h> 33 #include <utils/Trace.h> 34 35 #include <private/media/AudioTrackShared.h> 36 #include <hardware/audio.h> 37 #include <audio_effects/effect_ns.h> 38 #include <audio_effects/effect_aec.h> 39 #include <audio_utils/conversion.h> 40 #include <audio_utils/primitives.h> 41 #include <audio_utils/format.h> 42 #include <audio_utils/minifloat.h> 43 44 // NBAIO implementations 45 #include <media/nbaio/AudioStreamInSource.h> 46 #include <media/nbaio/AudioStreamOutSink.h> 47 #include <media/nbaio/MonoPipe.h> 48 #include <media/nbaio/MonoPipeReader.h> 49 #include <media/nbaio/Pipe.h> 50 #include <media/nbaio/PipeReader.h> 51 #include <media/nbaio/SourceAudioBufferProvider.h> 52 #include <mediautils/BatteryNotifier.h> 53 54 #include <powermanager/PowerManager.h> 55 56 #include "AudioFlinger.h" 57 #include "AudioMixer.h" 58 #include "BufferProviders.h" 59 #include "FastMixer.h" 60 #include "FastCapture.h" 61 #include "ServiceUtilities.h" 62 #include "mediautils/SchedulingPolicyService.h" 63 64 #ifdef ADD_BATTERY_DATA 65 #include <media/IMediaPlayerService.h> 66 #include <media/IMediaDeathNotifier.h> 67 #endif 68 69 #ifdef DEBUG_CPU_USAGE 70 #include <cpustats/CentralTendencyStatistics.h> 71 #include <cpustats/ThreadCpuUsage.h> 72 #endif 73 74 #include "AutoPark.h" 75 76 // ---------------------------------------------------------------------------- 77 78 // Note: the following macro is used for extremely verbose logging message. In 79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to 80 // 0; but one side effect of this is to turn all LOGV's as well. Some messages 81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT 82 // turned on. Do not uncomment the #def below unless you really know what you 83 // are doing and want to see all of the extremely verbose messages. 84 //#define VERY_VERY_VERBOSE_LOGGING 85 #ifdef VERY_VERY_VERBOSE_LOGGING 86 #define ALOGVV ALOGV 87 #else 88 #define ALOGVV(a...) do { } while(0) 89 #endif 90 91 // TODO: Move these macro/inlines to a header file. 92 #define max(a, b) ((a) > (b) ? (a) : (b)) 93 template <typename T> 94 static inline T min(const T& a, const T& b) 95 { 96 return a < b ? a : b; 97 } 98 99 #ifndef ARRAY_SIZE 100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) 101 #endif 102 103 namespace android { 104 105 // retry counts for buffer fill timeout 106 // 50 * ~20msecs = 1 second 107 static const int8_t kMaxTrackRetries = 50; 108 static const int8_t kMaxTrackStartupRetries = 50; 109 // allow less retry attempts on direct output thread. 110 // direct outputs can be a scarce resource in audio hardware and should 111 // be released as quickly as possible. 112 static const int8_t kMaxTrackRetriesDirect = 2; 113 114 115 116 // don't warn about blocked writes or record buffer overflows more often than this 117 static const nsecs_t kWarningThrottleNs = seconds(5); 118 119 // RecordThread loop sleep time upon application overrun or audio HAL read error 120 static const int kRecordThreadSleepUs = 5000; 121 122 // maximum time to wait in sendConfigEvent_l() for a status to be received 123 static const nsecs_t kConfigEventTimeoutNs = seconds(2); 124 125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun 126 static const uint32_t kMinThreadSleepTimeUs = 5000; 127 // maximum divider applied to the active sleep time in the mixer thread loop 128 static const uint32_t kMaxThreadSleepTimeShift = 2; 129 130 // minimum normal sink buffer size, expressed in milliseconds rather than frames 131 // FIXME This should be based on experimentally observed scheduling jitter 132 static const uint32_t kMinNormalSinkBufferSizeMs = 20; 133 // maximum normal sink buffer size 134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24; 135 136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread 137 // FIXME This should be based on experimentally observed scheduling jitter 138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12; 139 140 // Offloaded output thread standby delay: allows track transition without going to standby 141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1); 142 143 // Direct output thread minimum sleep time in idle or active(underrun) state 144 static const nsecs_t kDirectMinSleepTimeUs = 10000; 145 146 147 // Whether to use fast mixer 148 static const enum { 149 FastMixer_Never, // never initialize or use: for debugging only 150 FastMixer_Always, // always initialize and use, even if not needed: for debugging only 151 // normal mixer multiplier is 1 152 FastMixer_Static, // initialize if needed, then use all the time if initialized, 153 // multiplier is calculated based on min & max normal mixer buffer size 154 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load, 155 // multiplier is calculated based on min & max normal mixer buffer size 156 // FIXME for FastMixer_Dynamic: 157 // Supporting this option will require fixing HALs that can't handle large writes. 158 // For example, one HAL implementation returns an error from a large write, 159 // and another HAL implementation corrupts memory, possibly in the sample rate converter. 160 // We could either fix the HAL implementations, or provide a wrapper that breaks 161 // up large writes into smaller ones, and the wrapper would need to deal with scheduler. 162 } kUseFastMixer = FastMixer_Static; 163 164 // Whether to use fast capture 165 static const enum { 166 FastCapture_Never, // never initialize or use: for debugging only 167 FastCapture_Always, // always initialize and use, even if not needed: for debugging only 168 FastCapture_Static, // initialize if needed, then use all the time if initialized 169 } kUseFastCapture = FastCapture_Static; 170 171 // Priorities for requestPriority 172 static const int kPriorityAudioApp = 2; 173 static const int kPriorityFastMixer = 3; 174 static const int kPriorityFastCapture = 3; 175 176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the 177 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks, 178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'. 179 180 // This is the default value, if not specified by property. 181 static const int kFastTrackMultiplier = 2; 182 183 // The minimum and maximum allowed values 184 static const int kFastTrackMultiplierMin = 1; 185 static const int kFastTrackMultiplierMax = 2; 186 187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier. 188 static int sFastTrackMultiplier = kFastTrackMultiplier; 189 190 // See Thread::readOnlyHeap(). 191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord. 192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(), 193 // and that all "fast" AudioRecord clients read from. In either case, the size can be small. 194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000; 195 196 // ---------------------------------------------------------------------------- 197 198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT; 199 200 static void sFastTrackMultiplierInit() 201 { 202 char value[PROPERTY_VALUE_MAX]; 203 if (property_get("af.fast_track_multiplier", value, NULL) > 0) { 204 char *endptr; 205 unsigned long ul = strtoul(value, &endptr, 0); 206 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) { 207 sFastTrackMultiplier = (int) ul; 208 } 209 } 210 } 211 212 // ---------------------------------------------------------------------------- 213 214 #ifdef ADD_BATTERY_DATA 215 // To collect the amplifier usage 216 static void addBatteryData(uint32_t params) { 217 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService(); 218 if (service == NULL) { 219 // it already logged 220 return; 221 } 222 223 service->addBatteryData(params); 224 } 225 #endif 226 227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset 228 struct { 229 // call when you acquire a partial wakelock 230 void acquire(const sp<IBinder> &wakeLockToken) { 231 pthread_mutex_lock(&mLock); 232 if (wakeLockToken.get() == nullptr) { 233 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); 234 } else { 235 if (mCount == 0) { 236 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); 237 } 238 ++mCount; 239 } 240 pthread_mutex_unlock(&mLock); 241 } 242 243 // call when you release a partial wakelock. 244 void release(const sp<IBinder> &wakeLockToken) { 245 if (wakeLockToken.get() == nullptr) { 246 return; 247 } 248 pthread_mutex_lock(&mLock); 249 if (--mCount < 0) { 250 ALOGE("negative wakelock count"); 251 mCount = 0; 252 } 253 pthread_mutex_unlock(&mLock); 254 } 255 256 // retrieves the boottime timebase offset from monotonic. 257 int64_t getBoottimeOffset() { 258 pthread_mutex_lock(&mLock); 259 int64_t boottimeOffset = mBoottimeOffset; 260 pthread_mutex_unlock(&mLock); 261 return boottimeOffset; 262 } 263 264 // Adjusts the timebase offset between TIMEBASE_MONOTONIC 265 // and the selected timebase. 266 // Currently only TIMEBASE_BOOTTIME is allowed. 267 // 268 // This only needs to be called upon acquiring the first partial wakelock 269 // after all other partial wakelocks are released. 270 // 271 // We do an empirical measurement of the offset rather than parsing 272 // /proc/timer_list since the latter is not a formal kernel ABI. 273 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) { 274 int clockbase; 275 switch (timebase) { 276 case ExtendedTimestamp::TIMEBASE_BOOTTIME: 277 clockbase = SYSTEM_TIME_BOOTTIME; 278 break; 279 default: 280 LOG_ALWAYS_FATAL("invalid timebase %d", timebase); 281 break; 282 } 283 // try three times to get the clock offset, choose the one 284 // with the minimum gap in measurements. 285 const int tries = 3; 286 nsecs_t bestGap, measured; 287 for (int i = 0; i < tries; ++i) { 288 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC); 289 const nsecs_t tbase = systemTime(clockbase); 290 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC); 291 const nsecs_t gap = tmono2 - tmono; 292 if (i == 0 || gap < bestGap) { 293 bestGap = gap; 294 measured = tbase - ((tmono + tmono2) >> 1); 295 } 296 } 297 298 // to avoid micro-adjusting, we don't change the timebase 299 // unless it is significantly different. 300 // 301 // Assumption: It probably takes more than toleranceNs to 302 // suspend and resume the device. 303 static int64_t toleranceNs = 10000; // 10 us 304 if (llabs(*offset - measured) > toleranceNs) { 305 ALOGV("Adjusting timebase offset old: %lld new: %lld", 306 (long long)*offset, (long long)measured); 307 *offset = measured; 308 } 309 } 310 311 pthread_mutex_t mLock; 312 int32_t mCount; 313 int64_t mBoottimeOffset; 314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization 315 316 // ---------------------------------------------------------------------------- 317 // CPU Stats 318 // ---------------------------------------------------------------------------- 319 320 class CpuStats { 321 public: 322 CpuStats(); 323 void sample(const String8 &title); 324 #ifdef DEBUG_CPU_USAGE 325 private: 326 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns 327 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns 328 329 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles 330 331 int mCpuNum; // thread's current CPU number 332 int mCpukHz; // frequency of thread's current CPU in kHz 333 #endif 334 }; 335 336 CpuStats::CpuStats() 337 #ifdef DEBUG_CPU_USAGE 338 : mCpuNum(-1), mCpukHz(-1) 339 #endif 340 { 341 } 342 343 void CpuStats::sample(const String8 &title 344 #ifndef DEBUG_CPU_USAGE 345 __unused 346 #endif 347 ) { 348 #ifdef DEBUG_CPU_USAGE 349 // get current thread's delta CPU time in wall clock ns 350 double wcNs; 351 bool valid = mCpuUsage.sampleAndEnable(wcNs); 352 353 // record sample for wall clock statistics 354 if (valid) { 355 mWcStats.sample(wcNs); 356 } 357 358 // get the current CPU number 359 int cpuNum = sched_getcpu(); 360 361 // get the current CPU frequency in kHz 362 int cpukHz = mCpuUsage.getCpukHz(cpuNum); 363 364 // check if either CPU number or frequency changed 365 if (cpuNum != mCpuNum || cpukHz != mCpukHz) { 366 mCpuNum = cpuNum; 367 mCpukHz = cpukHz; 368 // ignore sample for purposes of cycles 369 valid = false; 370 } 371 372 // if no change in CPU number or frequency, then record sample for cycle statistics 373 if (valid && mCpukHz > 0) { 374 double cycles = wcNs * cpukHz * 0.000001; 375 mHzStats.sample(cycles); 376 } 377 378 unsigned n = mWcStats.n(); 379 // mCpuUsage.elapsed() is expensive, so don't call it every loop 380 if ((n & 127) == 1) { 381 long long elapsed = mCpuUsage.elapsed(); 382 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) { 383 double perLoop = elapsed / (double) n; 384 double perLoop100 = perLoop * 0.01; 385 double perLoop1k = perLoop * 0.001; 386 double mean = mWcStats.mean(); 387 double stddev = mWcStats.stddev(); 388 double minimum = mWcStats.minimum(); 389 double maximum = mWcStats.maximum(); 390 double meanCycles = mHzStats.mean(); 391 double stddevCycles = mHzStats.stddev(); 392 double minCycles = mHzStats.minimum(); 393 double maxCycles = mHzStats.maximum(); 394 mCpuUsage.resetElapsed(); 395 mWcStats.reset(); 396 mHzStats.reset(); 397 ALOGD("CPU usage for %s over past %.1f secs\n" 398 " (%u mixer loops at %.1f mean ms per loop):\n" 399 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n" 400 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n" 401 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f", 402 title.string(), 403 elapsed * .000000001, n, perLoop * .000001, 404 mean * .001, 405 stddev * .001, 406 minimum * .001, 407 maximum * .001, 408 mean / perLoop100, 409 stddev / perLoop100, 410 minimum / perLoop100, 411 maximum / perLoop100, 412 meanCycles / perLoop1k, 413 stddevCycles / perLoop1k, 414 minCycles / perLoop1k, 415 maxCycles / perLoop1k); 416 417 } 418 } 419 #endif 420 }; 421 422 // ---------------------------------------------------------------------------- 423 // ThreadBase 424 // ---------------------------------------------------------------------------- 425 426 // static 427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type) 428 { 429 switch (type) { 430 case MIXER: 431 return "MIXER"; 432 case DIRECT: 433 return "DIRECT"; 434 case DUPLICATING: 435 return "DUPLICATING"; 436 case RECORD: 437 return "RECORD"; 438 case OFFLOAD: 439 return "OFFLOAD"; 440 default: 441 return "unknown"; 442 } 443 } 444 445 String8 devicesToString(audio_devices_t devices) 446 { 447 static const struct mapping { 448 audio_devices_t mDevices; 449 const char * mString; 450 } mappingsOut[] = { 451 {AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE"}, 452 {AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER"}, 453 {AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET"}, 454 {AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE"}, 455 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO"}, 456 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"}, 457 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT"}, 458 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"}, 459 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"}, 460 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER"}, 461 {AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL"}, 462 {AUDIO_DEVICE_OUT_HDMI, "HDMI"}, 463 {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"}, 464 {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"}, 465 {AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY"}, 466 {AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE"}, 467 {AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX"}, 468 {AUDIO_DEVICE_OUT_LINE, "LINE"}, 469 {AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC"}, 470 {AUDIO_DEVICE_OUT_SPDIF, "SPDIF"}, 471 {AUDIO_DEVICE_OUT_FM, "FM"}, 472 {AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE"}, 473 {AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE"}, 474 {AUDIO_DEVICE_OUT_IP, "IP"}, 475 {AUDIO_DEVICE_OUT_BUS, "BUS"}, 476 {AUDIO_DEVICE_NONE, "NONE"}, // must be last 477 }, mappingsIn[] = { 478 {AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION"}, 479 {AUDIO_DEVICE_IN_AMBIENT, "AMBIENT"}, 480 {AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC"}, 481 {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"}, 482 {AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET"}, 483 {AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL"}, 484 {AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL"}, 485 {AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX"}, 486 {AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC"}, 487 {AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX"}, 488 {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"}, 489 {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"}, 490 {AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY"}, 491 {AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE"}, 492 {AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER"}, 493 {AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER"}, 494 {AUDIO_DEVICE_IN_LINE, "LINE"}, 495 {AUDIO_DEVICE_IN_SPDIF, "SPDIF"}, 496 {AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"}, 497 {AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK"}, 498 {AUDIO_DEVICE_IN_IP, "IP"}, 499 {AUDIO_DEVICE_IN_BUS, "BUS"}, 500 {AUDIO_DEVICE_NONE, "NONE"}, // must be last 501 }; 502 String8 result; 503 audio_devices_t allDevices = AUDIO_DEVICE_NONE; 504 const mapping *entry; 505 if (devices & AUDIO_DEVICE_BIT_IN) { 506 devices &= ~AUDIO_DEVICE_BIT_IN; 507 entry = mappingsIn; 508 } else { 509 entry = mappingsOut; 510 } 511 for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) { 512 allDevices = (audio_devices_t) (allDevices | entry->mDevices); 513 if (devices & entry->mDevices) { 514 if (!result.isEmpty()) { 515 result.append("|"); 516 } 517 result.append(entry->mString); 518 } 519 } 520 if (devices & ~allDevices) { 521 if (!result.isEmpty()) { 522 result.append("|"); 523 } 524 result.appendFormat("0x%X", devices & ~allDevices); 525 } 526 if (result.isEmpty()) { 527 result.append(entry->mString); 528 } 529 return result; 530 } 531 532 String8 inputFlagsToString(audio_input_flags_t flags) 533 { 534 static const struct mapping { 535 audio_input_flags_t mFlag; 536 const char * mString; 537 } mappings[] = { 538 {AUDIO_INPUT_FLAG_FAST, "FAST"}, 539 {AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD"}, 540 {AUDIO_INPUT_FLAG_RAW, "RAW"}, 541 {AUDIO_INPUT_FLAG_SYNC, "SYNC"}, 542 {AUDIO_INPUT_FLAG_NONE, "NONE"}, // must be last 543 }; 544 String8 result; 545 audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE; 546 const mapping *entry; 547 for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) { 548 allFlags = (audio_input_flags_t) (allFlags | entry->mFlag); 549 if (flags & entry->mFlag) { 550 if (!result.isEmpty()) { 551 result.append("|"); 552 } 553 result.append(entry->mString); 554 } 555 } 556 if (flags & ~allFlags) { 557 if (!result.isEmpty()) { 558 result.append("|"); 559 } 560 result.appendFormat("0x%X", flags & ~allFlags); 561 } 562 if (result.isEmpty()) { 563 result.append(entry->mString); 564 } 565 return result; 566 } 567 568 String8 outputFlagsToString(audio_output_flags_t flags) 569 { 570 static const struct mapping { 571 audio_output_flags_t mFlag; 572 const char * mString; 573 } mappings[] = { 574 {AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT"}, 575 {AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY"}, 576 {AUDIO_OUTPUT_FLAG_FAST, "FAST"}, 577 {AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER"}, 578 {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"}, 579 {AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING"}, 580 {AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC"}, 581 {AUDIO_OUTPUT_FLAG_RAW, "RAW"}, 582 {AUDIO_OUTPUT_FLAG_SYNC, "SYNC"}, 583 {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"}, 584 {AUDIO_OUTPUT_FLAG_NONE, "NONE"}, // must be last 585 }; 586 String8 result; 587 audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE; 588 const mapping *entry; 589 for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) { 590 allFlags = (audio_output_flags_t) (allFlags | entry->mFlag); 591 if (flags & entry->mFlag) { 592 if (!result.isEmpty()) { 593 result.append("|"); 594 } 595 result.append(entry->mString); 596 } 597 } 598 if (flags & ~allFlags) { 599 if (!result.isEmpty()) { 600 result.append("|"); 601 } 602 result.appendFormat("0x%X", flags & ~allFlags); 603 } 604 if (result.isEmpty()) { 605 result.append(entry->mString); 606 } 607 return result; 608 } 609 610 const char *sourceToString(audio_source_t source) 611 { 612 switch (source) { 613 case AUDIO_SOURCE_DEFAULT: return "default"; 614 case AUDIO_SOURCE_MIC: return "mic"; 615 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink"; 616 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink"; 617 case AUDIO_SOURCE_VOICE_CALL: return "voice call"; 618 case AUDIO_SOURCE_CAMCORDER: return "camcorder"; 619 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition"; 620 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication"; 621 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix"; 622 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed"; 623 case AUDIO_SOURCE_FM_TUNER: return "FM tuner"; 624 case AUDIO_SOURCE_HOTWORD: return "hotword"; 625 default: return "unknown"; 626 } 627 } 628 629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id, 630 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady) 631 : Thread(false /*canCallJava*/), 632 mType(type), 633 mAudioFlinger(audioFlinger), 634 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize 635 // are set by PlaybackThread::readOutputParameters_l() or 636 // RecordThread::readInputParameters_l() 637 //FIXME: mStandby should be true here. Is this some kind of hack? 638 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice), 639 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE), 640 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id), 641 // mName will be set by concrete (non-virtual) subclass 642 mDeathRecipient(new PMDeathRecipient(this)), 643 mSystemReady(systemReady), 644 mNotifiedBatteryStart(false) 645 { 646 memset(&mPatch, 0, sizeof(struct audio_patch)); 647 } 648 649 AudioFlinger::ThreadBase::~ThreadBase() 650 { 651 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns 652 mConfigEvents.clear(); 653 654 // do not lock the mutex in destructor 655 releaseWakeLock_l(); 656 if (mPowerManager != 0) { 657 sp<IBinder> binder = IInterface::asBinder(mPowerManager); 658 binder->unlinkToDeath(mDeathRecipient); 659 } 660 } 661 662 status_t AudioFlinger::ThreadBase::readyToRun() 663 { 664 status_t status = initCheck(); 665 if (status == NO_ERROR) { 666 ALOGI("AudioFlinger's thread %p ready to run", this); 667 } else { 668 ALOGE("No working audio driver found."); 669 } 670 return status; 671 } 672 673 void AudioFlinger::ThreadBase::exit() 674 { 675 ALOGV("ThreadBase::exit"); 676 // do any cleanup required for exit to succeed 677 preExit(); 678 { 679 // This lock prevents the following race in thread (uniprocessor for illustration): 680 // if (!exitPending()) { 681 // // context switch from here to exit() 682 // // exit() calls requestExit(), what exitPending() observes 683 // // exit() calls signal(), which is dropped since no waiters 684 // // context switch back from exit() to here 685 // mWaitWorkCV.wait(...); 686 // // now thread is hung 687 // } 688 AutoMutex lock(mLock); 689 requestExit(); 690 mWaitWorkCV.broadcast(); 691 } 692 // When Thread::requestExitAndWait is made virtual and this method is renamed to 693 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();" 694 requestExitAndWait(); 695 } 696 697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs) 698 { 699 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string()); 700 Mutex::Autolock _l(mLock); 701 702 return sendSetParameterConfigEvent_l(keyValuePairs); 703 } 704 705 // sendConfigEvent_l() must be called with ThreadBase::mLock held 706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l(). 707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event) 708 { 709 status_t status = NO_ERROR; 710 711 if (event->mRequiresSystemReady && !mSystemReady) { 712 event->mWaitStatus = false; 713 mPendingConfigEvents.add(event); 714 return status; 715 } 716 mConfigEvents.add(event); 717 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType); 718 mWaitWorkCV.signal(); 719 mLock.unlock(); 720 { 721 Mutex::Autolock _l(event->mLock); 722 while (event->mWaitStatus) { 723 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) { 724 event->mStatus = TIMED_OUT; 725 event->mWaitStatus = false; 726 } 727 } 728 status = event->mStatus; 729 } 730 mLock.lock(); 731 return status; 732 } 733 734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid) 735 { 736 Mutex::Autolock _l(mLock); 737 sendIoConfigEvent_l(event, pid); 738 } 739 740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held 741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid) 742 { 743 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid); 744 sendConfigEvent_l(configEvent); 745 } 746 747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio) 748 { 749 Mutex::Autolock _l(mLock); 750 sendPrioConfigEvent_l(pid, tid, prio); 751 } 752 753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held 754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio) 755 { 756 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio); 757 sendConfigEvent_l(configEvent); 758 } 759 760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held 761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair) 762 { 763 sp<ConfigEvent> configEvent; 764 AudioParameter param(keyValuePair); 765 int value; 766 if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) { 767 setMasterMono_l(value != 0); 768 if (param.size() == 1) { 769 return NO_ERROR; // should be a solo parameter - we don't pass down 770 } 771 param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT)); 772 configEvent = new SetParameterConfigEvent(param.toString()); 773 } else { 774 configEvent = new SetParameterConfigEvent(keyValuePair); 775 } 776 return sendConfigEvent_l(configEvent); 777 } 778 779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent( 780 const struct audio_patch *patch, 781 audio_patch_handle_t *handle) 782 { 783 Mutex::Autolock _l(mLock); 784 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle); 785 status_t status = sendConfigEvent_l(configEvent); 786 if (status == NO_ERROR) { 787 CreateAudioPatchConfigEventData *data = 788 (CreateAudioPatchConfigEventData *)configEvent->mData.get(); 789 *handle = data->mHandle; 790 } 791 return status; 792 } 793 794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent( 795 const audio_patch_handle_t handle) 796 { 797 Mutex::Autolock _l(mLock); 798 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle); 799 return sendConfigEvent_l(configEvent); 800 } 801 802 803 // post condition: mConfigEvents.isEmpty() 804 void AudioFlinger::ThreadBase::processConfigEvents_l() 805 { 806 bool configChanged = false; 807 808 while (!mConfigEvents.isEmpty()) { 809 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size()); 810 sp<ConfigEvent> event = mConfigEvents[0]; 811 mConfigEvents.removeAt(0); 812 switch (event->mType) { 813 case CFG_EVENT_PRIO: { 814 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get(); 815 // FIXME Need to understand why this has to be done asynchronously 816 int err = requestPriority(data->mPid, data->mTid, data->mPrio, 817 true /*asynchronous*/); 818 if (err != 0) { 819 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d", 820 data->mPrio, data->mPid, data->mTid, err); 821 } 822 } break; 823 case CFG_EVENT_IO: { 824 IoConfigEventData *data = (IoConfigEventData *)event->mData.get(); 825 ioConfigChanged(data->mEvent, data->mPid); 826 } break; 827 case CFG_EVENT_SET_PARAMETER: { 828 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get(); 829 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) { 830 configChanged = true; 831 } 832 } break; 833 case CFG_EVENT_CREATE_AUDIO_PATCH: { 834 CreateAudioPatchConfigEventData *data = 835 (CreateAudioPatchConfigEventData *)event->mData.get(); 836 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle); 837 } break; 838 case CFG_EVENT_RELEASE_AUDIO_PATCH: { 839 ReleaseAudioPatchConfigEventData *data = 840 (ReleaseAudioPatchConfigEventData *)event->mData.get(); 841 event->mStatus = releaseAudioPatch_l(data->mHandle); 842 } break; 843 default: 844 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType); 845 break; 846 } 847 { 848 Mutex::Autolock _l(event->mLock); 849 if (event->mWaitStatus) { 850 event->mWaitStatus = false; 851 event->mCond.signal(); 852 } 853 } 854 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this); 855 } 856 857 if (configChanged) { 858 cacheParameters_l(); 859 } 860 } 861 862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) { 863 String8 s; 864 const audio_channel_representation_t representation = 865 audio_channel_mask_get_representation(mask); 866 867 switch (representation) { 868 case AUDIO_CHANNEL_REPRESENTATION_POSITION: { 869 if (output) { 870 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, "); 871 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, "); 872 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, "); 873 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, "); 874 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, "); 875 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, "); 876 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, "); 877 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, "); 878 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, "); 879 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, "); 880 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, "); 881 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,"); 882 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, "); 883 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, "); 884 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, "); 885 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, "); 886 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " ); 887 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " ); 888 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, "); 889 } else { 890 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, "); 891 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, "); 892 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, "); 893 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, "); 894 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, "); 895 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, "); 896 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, "); 897 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, "); 898 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, "); 899 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, "); 900 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, "); 901 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, "); 902 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, "); 903 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, "); 904 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, "); 905 } 906 const int len = s.length(); 907 if (len > 2) { 908 (void) s.lockBuffer(len); // needed? 909 s.unlockBuffer(len - 2); // remove trailing ", " 910 } 911 return s; 912 } 913 case AUDIO_CHANNEL_REPRESENTATION_INDEX: 914 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask)); 915 return s; 916 default: 917 s.appendFormat("unknown mask, representation:%d bits:%#x", 918 representation, audio_channel_mask_get_bits(mask)); 919 return s; 920 } 921 } 922 923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused) 924 { 925 const size_t SIZE = 256; 926 char buffer[SIZE]; 927 String8 result; 928 929 bool locked = AudioFlinger::dumpTryLock(mLock); 930 if (!locked) { 931 dprintf(fd, "thread %p may be deadlocked\n", this); 932 } 933 934 dprintf(fd, " Thread name: %s\n", mThreadName); 935 dprintf(fd, " I/O handle: %d\n", mId); 936 dprintf(fd, " TID: %d\n", getTid()); 937 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no"); 938 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate); 939 dprintf(fd, " HAL frame count: %zu\n", mFrameCount); 940 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat)); 941 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize); 942 dprintf(fd, " Channel count: %u\n", mChannelCount); 943 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask, 944 channelMaskToString(mChannelMask, mType != RECORD).string()); 945 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat)); 946 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize); 947 dprintf(fd, " Pending config events:"); 948 size_t numConfig = mConfigEvents.size(); 949 if (numConfig) { 950 for (size_t i = 0; i < numConfig; i++) { 951 mConfigEvents[i]->dump(buffer, SIZE); 952 dprintf(fd, "\n %s", buffer); 953 } 954 dprintf(fd, "\n"); 955 } else { 956 dprintf(fd, " none\n"); 957 } 958 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string()); 959 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string()); 960 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource)); 961 962 if (locked) { 963 mLock.unlock(); 964 } 965 } 966 967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args) 968 { 969 const size_t SIZE = 256; 970 char buffer[SIZE]; 971 String8 result; 972 973 size_t numEffectChains = mEffectChains.size(); 974 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains); 975 write(fd, buffer, strlen(buffer)); 976 977 for (size_t i = 0; i < numEffectChains; ++i) { 978 sp<EffectChain> chain = mEffectChains[i]; 979 if (chain != 0) { 980 chain->dump(fd, args); 981 } 982 } 983 } 984 985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid) 986 { 987 Mutex::Autolock _l(mLock); 988 acquireWakeLock_l(uid); 989 } 990 991 String16 AudioFlinger::ThreadBase::getWakeLockTag() 992 { 993 switch (mType) { 994 case MIXER: 995 return String16("AudioMix"); 996 case DIRECT: 997 return String16("AudioDirectOut"); 998 case DUPLICATING: 999 return String16("AudioDup"); 1000 case RECORD: 1001 return String16("AudioIn"); 1002 case OFFLOAD: 1003 return String16("AudioOffload"); 1004 default: 1005 ALOG_ASSERT(false); 1006 return String16("AudioUnknown"); 1007 } 1008 } 1009 1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid) 1011 { 1012 getPowerManager_l(); 1013 if (mPowerManager != 0) { 1014 sp<IBinder> binder = new BBinder(); 1015 status_t status; 1016 if (uid >= 0) { 1017 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK, 1018 binder, 1019 getWakeLockTag(), 1020 String16("audioserver"), 1021 uid, 1022 true /* FIXME force oneway contrary to .aidl */); 1023 } else { 1024 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK, 1025 binder, 1026 getWakeLockTag(), 1027 String16("audioserver"), 1028 true /* FIXME force oneway contrary to .aidl */); 1029 } 1030 if (status == NO_ERROR) { 1031 mWakeLockToken = binder; 1032 } 1033 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status); 1034 } 1035 1036 if (!mNotifiedBatteryStart) { 1037 BatteryNotifier::getInstance().noteStartAudio(); 1038 mNotifiedBatteryStart = true; 1039 } 1040 gBoottime.acquire(mWakeLockToken); 1041 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] = 1042 gBoottime.getBoottimeOffset(); 1043 } 1044 1045 void AudioFlinger::ThreadBase::releaseWakeLock() 1046 { 1047 Mutex::Autolock _l(mLock); 1048 releaseWakeLock_l(); 1049 } 1050 1051 void AudioFlinger::ThreadBase::releaseWakeLock_l() 1052 { 1053 gBoottime.release(mWakeLockToken); 1054 if (mWakeLockToken != 0) { 1055 ALOGV("releaseWakeLock_l() %s", mThreadName); 1056 if (mPowerManager != 0) { 1057 mPowerManager->releaseWakeLock(mWakeLockToken, 0, 1058 true /* FIXME force oneway contrary to .aidl */); 1059 } 1060 mWakeLockToken.clear(); 1061 } 1062 1063 if (mNotifiedBatteryStart) { 1064 BatteryNotifier::getInstance().noteStopAudio(); 1065 mNotifiedBatteryStart = false; 1066 } 1067 } 1068 1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) { 1070 Mutex::Autolock _l(mLock); 1071 updateWakeLockUids_l(uids); 1072 } 1073 1074 void AudioFlinger::ThreadBase::getPowerManager_l() { 1075 if (mSystemReady && mPowerManager == 0) { 1076 // use checkService() to avoid blocking if power service is not up yet 1077 sp<IBinder> binder = 1078 defaultServiceManager()->checkService(String16("power")); 1079 if (binder == 0) { 1080 ALOGW("Thread %s cannot connect to the power manager service", mThreadName); 1081 } else { 1082 mPowerManager = interface_cast<IPowerManager>(binder); 1083 binder->linkToDeath(mDeathRecipient); 1084 } 1085 } 1086 } 1087 1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) { 1089 getPowerManager_l(); 1090 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called. 1091 if (mSystemReady) { 1092 ALOGE("no wake lock to update, but system ready!"); 1093 } else { 1094 ALOGW("no wake lock to update, system not ready yet"); 1095 } 1096 return; 1097 } 1098 if (mPowerManager != 0) { 1099 sp<IBinder> binder = new BBinder(); 1100 status_t status; 1101 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(), 1102 true /* FIXME force oneway contrary to .aidl */); 1103 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status); 1104 } 1105 } 1106 1107 void AudioFlinger::ThreadBase::clearPowerManager() 1108 { 1109 Mutex::Autolock _l(mLock); 1110 releaseWakeLock_l(); 1111 mPowerManager.clear(); 1112 } 1113 1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused) 1115 { 1116 sp<ThreadBase> thread = mThread.promote(); 1117 if (thread != 0) { 1118 thread->clearPowerManager(); 1119 } 1120 ALOGW("power manager service died !!!"); 1121 } 1122 1123 void AudioFlinger::ThreadBase::setEffectSuspended( 1124 const effect_uuid_t *type, bool suspend, audio_session_t sessionId) 1125 { 1126 Mutex::Autolock _l(mLock); 1127 setEffectSuspended_l(type, suspend, sessionId); 1128 } 1129 1130 void AudioFlinger::ThreadBase::setEffectSuspended_l( 1131 const effect_uuid_t *type, bool suspend, audio_session_t sessionId) 1132 { 1133 sp<EffectChain> chain = getEffectChain_l(sessionId); 1134 if (chain != 0) { 1135 if (type != NULL) { 1136 chain->setEffectSuspended_l(type, suspend); 1137 } else { 1138 chain->setEffectSuspendedAll_l(suspend); 1139 } 1140 } 1141 1142 updateSuspendedSessions_l(type, suspend, sessionId); 1143 } 1144 1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain) 1146 { 1147 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId()); 1148 if (index < 0) { 1149 return; 1150 } 1151 1152 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects = 1153 mSuspendedSessions.valueAt(index); 1154 1155 for (size_t i = 0; i < sessionEffects.size(); i++) { 1156 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i); 1157 for (int j = 0; j < desc->mRefCount; j++) { 1158 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) { 1159 chain->setEffectSuspendedAll_l(true); 1160 } else { 1161 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x", 1162 desc->mType.timeLow); 1163 chain->setEffectSuspended_l(&desc->mType, true); 1164 } 1165 } 1166 } 1167 } 1168 1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type, 1170 bool suspend, 1171 audio_session_t sessionId) 1172 { 1173 ssize_t index = mSuspendedSessions.indexOfKey(sessionId); 1174 1175 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects; 1176 1177 if (suspend) { 1178 if (index >= 0) { 1179 sessionEffects = mSuspendedSessions.valueAt(index); 1180 } else { 1181 mSuspendedSessions.add(sessionId, sessionEffects); 1182 } 1183 } else { 1184 if (index < 0) { 1185 return; 1186 } 1187 sessionEffects = mSuspendedSessions.valueAt(index); 1188 } 1189 1190 1191 int key = EffectChain::kKeyForSuspendAll; 1192 if (type != NULL) { 1193 key = type->timeLow; 1194 } 1195 index = sessionEffects.indexOfKey(key); 1196 1197 sp<SuspendedSessionDesc> desc; 1198 if (suspend) { 1199 if (index >= 0) { 1200 desc = sessionEffects.valueAt(index); 1201 } else { 1202 desc = new SuspendedSessionDesc(); 1203 if (type != NULL) { 1204 desc->mType = *type; 1205 } 1206 sessionEffects.add(key, desc); 1207 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key); 1208 } 1209 desc->mRefCount++; 1210 } else { 1211 if (index < 0) { 1212 return; 1213 } 1214 desc = sessionEffects.valueAt(index); 1215 if (--desc->mRefCount == 0) { 1216 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key); 1217 sessionEffects.removeItemsAt(index); 1218 if (sessionEffects.isEmpty()) { 1219 ALOGV("updateSuspendedSessions_l() restore removing session %d", 1220 sessionId); 1221 mSuspendedSessions.removeItem(sessionId); 1222 } 1223 } 1224 } 1225 if (!sessionEffects.isEmpty()) { 1226 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects); 1227 } 1228 } 1229 1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect, 1231 bool enabled, 1232 audio_session_t sessionId) 1233 { 1234 Mutex::Autolock _l(mLock); 1235 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId); 1236 } 1237 1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect, 1239 bool enabled, 1240 audio_session_t sessionId) 1241 { 1242 if (mType != RECORD) { 1243 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on 1244 // another session. This gives the priority to well behaved effect control panels 1245 // and applications not using global effects. 1246 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect 1247 // global effects 1248 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) { 1249 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX); 1250 } 1251 } 1252 1253 sp<EffectChain> chain = getEffectChain_l(sessionId); 1254 if (chain != 0) { 1255 chain->checkSuspendOnEffectEnabled(effect, enabled); 1256 } 1257 } 1258 1259 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held 1260 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l( 1261 const effect_descriptor_t *desc, audio_session_t sessionId) 1262 { 1263 // No global effect sessions on record threads 1264 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) { 1265 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s", 1266 desc->name, mThreadName); 1267 return BAD_VALUE; 1268 } 1269 // only pre processing effects on record thread 1270 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) { 1271 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s", 1272 desc->name, mThreadName); 1273 return BAD_VALUE; 1274 } 1275 audio_input_flags_t flags = mInput->flags; 1276 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) { 1277 if (flags & AUDIO_INPUT_FLAG_RAW) { 1278 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode", 1279 desc->name, mThreadName); 1280 return BAD_VALUE; 1281 } 1282 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { 1283 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode", 1284 desc->name, mThreadName); 1285 return BAD_VALUE; 1286 } 1287 } 1288 return NO_ERROR; 1289 } 1290 1291 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held 1292 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l( 1293 const effect_descriptor_t *desc, audio_session_t sessionId) 1294 { 1295 // no preprocessing on playback threads 1296 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) { 1297 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback" 1298 " thread %s", desc->name, mThreadName); 1299 return BAD_VALUE; 1300 } 1301 1302 switch (mType) { 1303 case MIXER: { 1304 // Reject any effect on mixer multichannel sinks. 1305 // TODO: fix both format and multichannel issues with effects. 1306 if (mChannelCount != FCC_2) { 1307 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER" 1308 " thread %s", desc->name, mChannelCount, mThreadName); 1309 return BAD_VALUE; 1310 } 1311 audio_output_flags_t flags = mOutput->flags; 1312 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) { 1313 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { 1314 // global effects are applied only to non fast tracks if they are SW 1315 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { 1316 break; 1317 } 1318 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) { 1319 // only post processing on output stage session 1320 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) { 1321 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed" 1322 " on output stage session", desc->name); 1323 return BAD_VALUE; 1324 } 1325 } else { 1326 // no restriction on effects applied on non fast tracks 1327 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) { 1328 break; 1329 } 1330 } 1331 if (flags & AUDIO_OUTPUT_FLAG_RAW) { 1332 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode", 1333 desc->name); 1334 return BAD_VALUE; 1335 } 1336 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { 1337 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread" 1338 " in fast mode", desc->name); 1339 return BAD_VALUE; 1340 } 1341 } 1342 } break; 1343 case OFFLOAD: 1344 // nothing actionable on offload threads, if the effect: 1345 // - is offloadable: the effect can be created 1346 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable() 1347 // will take care of invalidating the tracks of the thread 1348 break; 1349 case DIRECT: 1350 // Reject any effect on Direct output threads for now, since the format of 1351 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo). 1352 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s", 1353 desc->name, mThreadName); 1354 return BAD_VALUE; 1355 case DUPLICATING: 1356 // Reject any effect on mixer multichannel sinks. 1357 // TODO: fix both format and multichannel issues with effects. 1358 if (mChannelCount != FCC_2) { 1359 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)" 1360 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName); 1361 return BAD_VALUE; 1362 } 1363 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) { 1364 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING" 1365 " thread %s", desc->name, mThreadName); 1366 return BAD_VALUE; 1367 } 1368 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) { 1369 ALOGW("checkEffectCompatibility_l(): post processing effect %s on" 1370 " DUPLICATING thread %s", desc->name, mThreadName); 1371 return BAD_VALUE; 1372 } 1373 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) { 1374 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on" 1375 " DUPLICATING thread %s", desc->name, mThreadName); 1376 return BAD_VALUE; 1377 } 1378 break; 1379 default: 1380 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType); 1381 } 1382 1383 return NO_ERROR; 1384 } 1385 1386 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held 1387 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l( 1388 const sp<AudioFlinger::Client>& client, 1389 const sp<IEffectClient>& effectClient, 1390 int32_t priority, 1391 audio_session_t sessionId, 1392 effect_descriptor_t *desc, 1393 int *enabled, 1394 status_t *status) 1395 { 1396 sp<EffectModule> effect; 1397 sp<EffectHandle> handle; 1398 status_t lStatus; 1399 sp<EffectChain> chain; 1400 bool chainCreated = false; 1401 bool effectCreated = false; 1402 bool effectRegistered = false; 1403 1404 lStatus = initCheck(); 1405 if (lStatus != NO_ERROR) { 1406 ALOGW("createEffect_l() Audio driver not initialized."); 1407 goto Exit; 1408 } 1409 1410 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId); 1411 1412 { // scope for mLock 1413 Mutex::Autolock _l(mLock); 1414 1415 lStatus = checkEffectCompatibility_l(desc, sessionId); 1416 if (lStatus != NO_ERROR) { 1417 goto Exit; 1418 } 1419 1420 // check for existing effect chain with the requested audio session 1421 chain = getEffectChain_l(sessionId); 1422 if (chain == 0) { 1423 // create a new chain for this session 1424 ALOGV("createEffect_l() new effect chain for session %d", sessionId); 1425 chain = new EffectChain(this, sessionId); 1426 addEffectChain_l(chain); 1427 chain->setStrategy(getStrategyForSession_l(sessionId)); 1428 chainCreated = true; 1429 } else { 1430 effect = chain->getEffectFromDesc_l(desc); 1431 } 1432 1433 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get()); 1434 1435 if (effect == 0) { 1436 audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT); 1437 // Check CPU and memory usage 1438 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id); 1439 if (lStatus != NO_ERROR) { 1440 goto Exit; 1441 } 1442 effectRegistered = true; 1443 // create a new effect module if none present in the chain 1444 effect = new EffectModule(this, chain, desc, id, sessionId); 1445 lStatus = effect->status(); 1446 if (lStatus != NO_ERROR) { 1447 goto Exit; 1448 } 1449 effect->setOffloaded(mType == OFFLOAD, mId); 1450 1451 lStatus = chain->addEffect_l(effect); 1452 if (lStatus != NO_ERROR) { 1453 goto Exit; 1454 } 1455 effectCreated = true; 1456 1457 effect->setDevice(mOutDevice); 1458 effect->setDevice(mInDevice); 1459 effect->setMode(mAudioFlinger->getMode()); 1460 effect->setAudioSource(mAudioSource); 1461 } 1462 // create effect handle and connect it to effect module 1463 handle = new EffectHandle(effect, client, effectClient, priority); 1464 lStatus = handle->initCheck(); 1465 if (lStatus == OK) { 1466 lStatus = effect->addHandle(handle.get()); 1467 } 1468 if (enabled != NULL) { 1469 *enabled = (int)effect->isEnabled(); 1470 } 1471 } 1472 1473 Exit: 1474 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) { 1475 Mutex::Autolock _l(mLock); 1476 if (effectCreated) { 1477 chain->removeEffect_l(effect); 1478 } 1479 if (effectRegistered) { 1480 AudioSystem::unregisterEffect(effect->id()); 1481 } 1482 if (chainCreated) { 1483 removeEffectChain_l(chain); 1484 } 1485 handle.clear(); 1486 } 1487 1488 *status = lStatus; 1489 return handle; 1490 } 1491 1492 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId, 1493 int effectId) 1494 { 1495 Mutex::Autolock _l(mLock); 1496 return getEffect_l(sessionId, effectId); 1497 } 1498 1499 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId, 1500 int effectId) 1501 { 1502 sp<EffectChain> chain = getEffectChain_l(sessionId); 1503 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0; 1504 } 1505 1506 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and 1507 // PlaybackThread::mLock held 1508 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect) 1509 { 1510 // check for existing effect chain with the requested audio session 1511 audio_session_t sessionId = effect->sessionId(); 1512 sp<EffectChain> chain = getEffectChain_l(sessionId); 1513 bool chainCreated = false; 1514 1515 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(), 1516 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x", 1517 this, effect->desc().name, effect->desc().flags); 1518 1519 if (chain == 0) { 1520 // create a new chain for this session 1521 ALOGV("addEffect_l() new effect chain for session %d", sessionId); 1522 chain = new EffectChain(this, sessionId); 1523 addEffectChain_l(chain); 1524 chain->setStrategy(getStrategyForSession_l(sessionId)); 1525 chainCreated = true; 1526 } 1527 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get()); 1528 1529 if (chain->getEffectFromId_l(effect->id()) != 0) { 1530 ALOGW("addEffect_l() %p effect %s already present in chain %p", 1531 this, effect->desc().name, chain.get()); 1532 return BAD_VALUE; 1533 } 1534 1535 effect->setOffloaded(mType == OFFLOAD, mId); 1536 1537 status_t status = chain->addEffect_l(effect); 1538 if (status != NO_ERROR) { 1539 if (chainCreated) { 1540 removeEffectChain_l(chain); 1541 } 1542 return status; 1543 } 1544 1545 effect->setDevice(mOutDevice); 1546 effect->setDevice(mInDevice); 1547 effect->setMode(mAudioFlinger->getMode()); 1548 effect->setAudioSource(mAudioSource); 1549 return NO_ERROR; 1550 } 1551 1552 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) { 1553 1554 ALOGV("removeEffect_l() %p effect %p", this, effect.get()); 1555 effect_descriptor_t desc = effect->desc(); 1556 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { 1557 detachAuxEffect_l(effect->id()); 1558 } 1559 1560 sp<EffectChain> chain = effect->chain().promote(); 1561 if (chain != 0) { 1562 // remove effect chain if removing last effect 1563 if (chain->removeEffect_l(effect) == 0) { 1564 removeEffectChain_l(chain); 1565 } 1566 } else { 1567 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get()); 1568 } 1569 } 1570 1571 void AudioFlinger::ThreadBase::lockEffectChains_l( 1572 Vector< sp<AudioFlinger::EffectChain> >& effectChains) 1573 { 1574 effectChains = mEffectChains; 1575 for (size_t i = 0; i < mEffectChains.size(); i++) { 1576 mEffectChains[i]->lock(); 1577 } 1578 } 1579 1580 void AudioFlinger::ThreadBase::unlockEffectChains( 1581 const Vector< sp<AudioFlinger::EffectChain> >& effectChains) 1582 { 1583 for (size_t i = 0; i < effectChains.size(); i++) { 1584 effectChains[i]->unlock(); 1585 } 1586 } 1587 1588 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId) 1589 { 1590 Mutex::Autolock _l(mLock); 1591 return getEffectChain_l(sessionId); 1592 } 1593 1594 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId) 1595 const 1596 { 1597 size_t size = mEffectChains.size(); 1598 for (size_t i = 0; i < size; i++) { 1599 if (mEffectChains[i]->sessionId() == sessionId) { 1600 return mEffectChains[i]; 1601 } 1602 } 1603 return 0; 1604 } 1605 1606 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode) 1607 { 1608 Mutex::Autolock _l(mLock); 1609 size_t size = mEffectChains.size(); 1610 for (size_t i = 0; i < size; i++) { 1611 mEffectChains[i]->setMode_l(mode); 1612 } 1613 } 1614 1615 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config) 1616 { 1617 config->type = AUDIO_PORT_TYPE_MIX; 1618 config->ext.mix.handle = mId; 1619 config->sample_rate = mSampleRate; 1620 config->format = mFormat; 1621 config->channel_mask = mChannelMask; 1622 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK| 1623 AUDIO_PORT_CONFIG_FORMAT; 1624 } 1625 1626 void AudioFlinger::ThreadBase::systemReady() 1627 { 1628 Mutex::Autolock _l(mLock); 1629 if (mSystemReady) { 1630 return; 1631 } 1632 mSystemReady = true; 1633 1634 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) { 1635 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i)); 1636 } 1637 mPendingConfigEvents.clear(); 1638 } 1639 1640 1641 // ---------------------------------------------------------------------------- 1642 // Playback 1643 // ---------------------------------------------------------------------------- 1644 1645 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger, 1646 AudioStreamOut* output, 1647 audio_io_handle_t id, 1648 audio_devices_t device, 1649 type_t type, 1650 bool systemReady) 1651 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady), 1652 mNormalFrameCount(0), mSinkBuffer(NULL), 1653 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision), 1654 mMixerBuffer(NULL), 1655 mMixerBufferSize(0), 1656 mMixerBufferFormat(AUDIO_FORMAT_INVALID), 1657 mMixerBufferValid(false), 1658 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision), 1659 mEffectBuffer(NULL), 1660 mEffectBufferSize(0), 1661 mEffectBufferFormat(AUDIO_FORMAT_INVALID), 1662 mEffectBufferValid(false), 1663 mSuspended(0), mBytesWritten(0), 1664 mFramesWritten(0), 1665 mSuspendedFrames(0), 1666 mActiveTracksGeneration(0), 1667 // mStreamTypes[] initialized in constructor body 1668 mOutput(output), 1669 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false), 1670 mMixerStatus(MIXER_IDLE), 1671 mMixerStatusIgnoringFastTracks(MIXER_IDLE), 1672 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs), 1673 mBytesRemaining(0), 1674 mCurrentWriteLength(0), 1675 mUseAsyncWrite(false), 1676 mWriteAckSequence(0), 1677 mDrainSequence(0), 1678 mSignalPending(false), 1679 mScreenState(AudioFlinger::mScreenState), 1680 // index 0 is reserved for normal mixer's submix 1681 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1), 1682 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false) 1683 { 1684 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id); 1685 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName); 1686 1687 // Assumes constructor is called by AudioFlinger with it's mLock held, but 1688 // it would be safer to explicitly pass initial masterVolume/masterMute as 1689 // parameter. 1690 // 1691 // If the HAL we are using has support for master volume or master mute, 1692 // then do not attenuate or mute during mixing (just leave the volume at 1.0 1693 // and the mute set to false). 1694 mMasterVolume = audioFlinger->masterVolume_l(); 1695 mMasterMute = audioFlinger->masterMute_l(); 1696 if (mOutput && mOutput->audioHwDev) { 1697 if (mOutput->audioHwDev->canSetMasterVolume()) { 1698 mMasterVolume = 1.0; 1699 } 1700 1701 if (mOutput->audioHwDev->canSetMasterMute()) { 1702 mMasterMute = false; 1703 } 1704 } 1705 1706 readOutputParameters_l(); 1707 1708 // ++ operator does not compile 1709 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT; 1710 stream = (audio_stream_type_t) (stream + 1)) { 1711 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream); 1712 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream); 1713 } 1714 } 1715 1716 AudioFlinger::PlaybackThread::~PlaybackThread() 1717 { 1718 mAudioFlinger->unregisterWriter(mNBLogWriter); 1719 free(mSinkBuffer); 1720 free(mMixerBuffer); 1721 free(mEffectBuffer); 1722 } 1723 1724 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args) 1725 { 1726 dumpInternals(fd, args); 1727 dumpTracks(fd, args); 1728 dumpEffectChains(fd, args); 1729 } 1730 1731 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused) 1732 { 1733 const size_t SIZE = 256; 1734 char buffer[SIZE]; 1735 String8 result; 1736 1737 result.appendFormat(" Stream volumes in dB: "); 1738 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) { 1739 const stream_type_t *st = &mStreamTypes[i]; 1740 if (i > 0) { 1741 result.appendFormat(", "); 1742 } 1743 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume)); 1744 if (st->mute) { 1745 result.append("M"); 1746 } 1747 } 1748 result.append("\n"); 1749 write(fd, result.string(), result.length()); 1750 result.clear(); 1751 1752 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way. 1753 FastTrackUnderruns underruns = getFastTrackUnderruns(0); 1754 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n", 1755 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty); 1756 1757 size_t numtracks = mTracks.size(); 1758 size_t numactive = mActiveTracks.size(); 1759 dprintf(fd, " %zu Tracks", numtracks); 1760 size_t numactiveseen = 0; 1761 if (numtracks) { 1762 dprintf(fd, " of which %zu are active\n", numactive); 1763 Track::appendDumpHeader(result); 1764 for (size_t i = 0; i < numtracks; ++i) { 1765 sp<Track> track = mTracks[i]; 1766 if (track != 0) { 1767 bool active = mActiveTracks.indexOf(track) >= 0; 1768 if (active) { 1769 numactiveseen++; 1770 } 1771 track->dump(buffer, SIZE, active); 1772 result.append(buffer); 1773 } 1774 } 1775 } else { 1776 result.append("\n"); 1777 } 1778 if (numactiveseen != numactive) { 1779 // some tracks in the active list were not in the tracks list 1780 snprintf(buffer, SIZE, " The following tracks are in the active list but" 1781 " not in the track list\n"); 1782 result.append(buffer); 1783 Track::appendDumpHeader(result); 1784 for (size_t i = 0; i < numactive; ++i) { 1785 sp<Track> track = mActiveTracks[i].promote(); 1786 if (track != 0 && mTracks.indexOf(track) < 0) { 1787 track->dump(buffer, SIZE, true); 1788 result.append(buffer); 1789 } 1790 } 1791 } 1792 1793 write(fd, result.string(), result.size()); 1794 } 1795 1796 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args) 1797 { 1798 dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type())); 1799 1800 dumpBase(fd, args); 1801 1802 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount); 1803 dprintf(fd, " Last write occurred (msecs): %llu\n", 1804 (unsigned long long) ns2ms(systemTime() - mLastWriteTime)); 1805 dprintf(fd, " Total writes: %d\n", mNumWrites); 1806 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites); 1807 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no"); 1808 dprintf(fd, " Suspend count: %d\n", mSuspended); 1809 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer); 1810 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer); 1811 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer); 1812 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask); 1813 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs); 1814 AudioStreamOut *output = mOutput; 1815 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE; 1816 String8 flagsAsString = outputFlagsToString(flags); 1817 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string()); 1818 } 1819 1820 // Thread virtuals 1821 1822 void AudioFlinger::PlaybackThread::onFirstRef() 1823 { 1824 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO); 1825 } 1826 1827 // ThreadBase virtuals 1828 void AudioFlinger::PlaybackThread::preExit() 1829 { 1830 ALOGV(" preExit()"); 1831 // FIXME this is using hard-coded strings but in the future, this functionality will be 1832 // converted to use audio HAL extensions required to support tunneling 1833 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1"); 1834 } 1835 1836 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held 1837 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l( 1838 const sp<AudioFlinger::Client>& client, 1839 audio_stream_type_t streamType, 1840 uint32_t sampleRate, 1841 audio_format_t format, 1842 audio_channel_mask_t channelMask, 1843 size_t *pFrameCount, 1844 const sp<IMemory>& sharedBuffer, 1845 audio_session_t sessionId, 1846 audio_output_flags_t *flags, 1847 pid_t tid, 1848 int uid, 1849 status_t *status) 1850 { 1851 size_t frameCount = *pFrameCount; 1852 sp<Track> track; 1853 status_t lStatus; 1854 audio_output_flags_t outputFlags = mOutput->flags; 1855 1856 // special case for FAST flag considered OK if fast mixer is present 1857 if (hasFastMixer()) { 1858 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST); 1859 } 1860 1861 // Check if requested flags are compatible with output stream flags 1862 if ((*flags & outputFlags) != *flags) { 1863 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)", 1864 *flags, outputFlags); 1865 *flags = (audio_output_flags_t)(*flags & outputFlags); 1866 } 1867 1868 // client expresses a preference for FAST, but we get the final say 1869 if (*flags & AUDIO_OUTPUT_FLAG_FAST) { 1870 if ( 1871 // PCM data 1872 audio_is_linear_pcm(format) && 1873 // TODO: extract as a data library function that checks that a computationally 1874 // expensive downmixer is not required: isFastOutputChannelConversion() 1875 (channelMask == mChannelMask || 1876 mChannelMask != AUDIO_CHANNEL_OUT_STEREO || 1877 (channelMask == AUDIO_CHANNEL_OUT_MONO 1878 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) && 1879 // hardware sample rate 1880 (sampleRate == mSampleRate) && 1881 // normal mixer has an associated fast mixer 1882 hasFastMixer() && 1883 // there are sufficient fast track slots available 1884 (mFastTrackAvailMask != 0) 1885 // FIXME test that MixerThread for this fast track has a capable output HAL 1886 // FIXME add a permission test also? 1887 ) { 1888 // static tracks can have any nonzero framecount, streaming tracks check against minimum. 1889 if (sharedBuffer == 0) { 1890 // read the fast track multiplier property the first time it is needed 1891 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit); 1892 if (ok != 0) { 1893 ALOGE("%s pthread_once failed: %d", __func__, ok); 1894 } 1895 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0 1896 } 1897 1898 // check compatibility with audio effects. 1899 { // scope for mLock 1900 Mutex::Autolock _l(mLock); 1901 // do not accept RAW flag if post processing are present. Note that post processing on 1902 // a fast mixer are necessarily hardware 1903 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE); 1904 if (chain != 0) { 1905 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0, 1906 "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present"); 1907 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW); 1908 } 1909 // Do not accept FAST flag if software global effects are present 1910 chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); 1911 if (chain != 0) { 1912 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0, 1913 "AUDIO_OUTPUT_FLAG_RAW denied: global effect present"); 1914 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW); 1915 if (chain->hasSoftwareEffect()) { 1916 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present"); 1917 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST); 1918 } 1919 } 1920 // Do not accept FAST flag if the session has software effects 1921 chain = getEffectChain_l(sessionId); 1922 if (chain != 0) { 1923 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0, 1924 "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session"); 1925 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW); 1926 if (chain->hasSoftwareEffect()) { 1927 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session"); 1928 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST); 1929 } 1930 } 1931 } 1932 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0, 1933 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu", 1934 frameCount, mFrameCount); 1935 } else { 1936 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu " 1937 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x " 1938 "sampleRate=%u mSampleRate=%u " 1939 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x", 1940 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat, 1941 audio_is_linear_pcm(format), 1942 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask); 1943 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST); 1944 } 1945 } 1946 // For normal PCM streaming tracks, update minimum frame count. 1947 // For compatibility with AudioTrack calculation, buffer depth is forced 1948 // to be at least 2 x the normal mixer frame count and cover audio hardware latency. 1949 // This is probably too conservative, but legacy application code may depend on it. 1950 // If you change this calculation, also review the start threshold which is related. 1951 if (!(*flags & AUDIO_OUTPUT_FLAG_FAST) 1952 && audio_has_proportional_frames(format) && sharedBuffer == 0) { 1953 // this must match AudioTrack.cpp calculateMinFrameCount(). 1954 // TODO: Move to a common library 1955 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream); 1956 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate); 1957 if (minBufCount < 2) { 1958 minBufCount = 2; 1959 } 1960 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack 1961 // or the client should compute and pass in a larger buffer request. 1962 size_t minFrameCount = 1963 minBufCount * sourceFramesNeededWithTimestretch( 1964 sampleRate, mNormalFrameCount, 1965 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/); 1966 if (frameCount < minFrameCount) { // including frameCount == 0 1967 frameCount = minFrameCount; 1968 } 1969 } 1970 *pFrameCount = frameCount; 1971 1972 switch (mType) { 1973 1974 case DIRECT: 1975 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()? 1976 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { 1977 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x " 1978 "for output %p with format %#x", 1979 sampleRate, format, channelMask, mOutput, mFormat); 1980 lStatus = BAD_VALUE; 1981 goto Exit; 1982 } 1983 } 1984 break; 1985 1986 case OFFLOAD: 1987 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { 1988 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \"" 1989 "for output %p with format %#x", 1990 sampleRate, format, channelMask, mOutput, mFormat); 1991 lStatus = BAD_VALUE; 1992 goto Exit; 1993 } 1994 break; 1995 1996 default: 1997 if (!audio_is_linear_pcm(format)) { 1998 ALOGE("createTrack_l() Bad parameter: format %#x \"" 1999 "for output %p with format %#x", 2000 format, mOutput, mFormat); 2001 lStatus = BAD_VALUE; 2002 goto Exit; 2003 } 2004 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { 2005 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate); 2006 lStatus = BAD_VALUE; 2007 goto Exit; 2008 } 2009 break; 2010 2011 } 2012 2013 lStatus = initCheck(); 2014 if (lStatus != NO_ERROR) { 2015 ALOGE("createTrack_l() audio driver not initialized"); 2016 goto Exit; 2017 } 2018 2019 { // scope for mLock 2020 Mutex::Autolock _l(mLock); 2021 2022 // all tracks in same audio session must share the same routing strategy otherwise 2023 // conflicts will happen when tracks are moved from one output to another by audio policy 2024 // manager 2025 uint32_t strategy = AudioSystem::getStrategyForStream(streamType); 2026 for (size_t i = 0; i < mTracks.size(); ++i) { 2027 sp<Track> t = mTracks[i]; 2028 if (t != 0 && t->isExternalTrack()) { 2029 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType()); 2030 if (sessionId == t->sessionId() && strategy != actual) { 2031 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u", 2032 strategy, actual); 2033 lStatus = BAD_VALUE; 2034 goto Exit; 2035 } 2036 } 2037 } 2038 2039 track = new Track(this, client, streamType, sampleRate, format, 2040 channelMask, frameCount, NULL, sharedBuffer, 2041 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT); 2042 2043 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY; 2044 if (lStatus != NO_ERROR) { 2045 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus); 2046 // track must be cleared from the caller as the caller has the AF lock 2047 goto Exit; 2048 } 2049 mTracks.add(track); 2050 2051 sp<EffectChain> chain = getEffectChain_l(sessionId); 2052 if (chain != 0) { 2053 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer()); 2054 track->setMainBuffer(chain->inBuffer()); 2055 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType())); 2056 chain->incTrackCnt(); 2057 } 2058 2059 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) { 2060 pid_t callingPid = IPCThreadState::self()->getCallingPid(); 2061 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, 2062 // so ask activity manager to do this on our behalf 2063 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp); 2064 } 2065 } 2066 2067 lStatus = NO_ERROR; 2068 2069 Exit: 2070 *status = lStatus; 2071 return track; 2072 } 2073 2074 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const 2075 { 2076 return latency; 2077 } 2078 2079 uint32_t AudioFlinger::PlaybackThread::latency() const 2080 { 2081 Mutex::Autolock _l(mLock); 2082 return latency_l(); 2083 } 2084 uint32_t AudioFlinger::PlaybackThread::latency_l() const 2085 { 2086 if (initCheck() == NO_ERROR) { 2087 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream)); 2088 } else { 2089 return 0; 2090 } 2091 } 2092 2093 void AudioFlinger::PlaybackThread::setMasterVolume(float value) 2094 { 2095 Mutex::Autolock _l(mLock); 2096 // Don't apply master volume in SW if our HAL can do it for us. 2097 if (mOutput && mOutput->audioHwDev && 2098 mOutput->audioHwDev->canSetMasterVolume()) { 2099 mMasterVolume = 1.0; 2100 } else { 2101 mMasterVolume = value; 2102 } 2103 } 2104 2105 void AudioFlinger::PlaybackThread::setMasterMute(bool muted) 2106 { 2107 Mutex::Autolock _l(mLock); 2108 // Don't apply master mute in SW if our HAL can do it for us. 2109 if (mOutput && mOutput->audioHwDev && 2110 mOutput->audioHwDev->canSetMasterMute()) { 2111 mMasterMute = false; 2112 } else { 2113 mMasterMute = muted; 2114 } 2115 } 2116 2117 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value) 2118 { 2119 Mutex::Autolock _l(mLock); 2120 mStreamTypes[stream].volume = value; 2121 broadcast_l(); 2122 } 2123 2124 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted) 2125 { 2126 Mutex::Autolock _l(mLock); 2127 mStreamTypes[stream].mute = muted; 2128 broadcast_l(); 2129 } 2130 2131 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const 2132 { 2133 Mutex::Autolock _l(mLock); 2134 return mStreamTypes[stream].volume; 2135 } 2136 2137 // addTrack_l() must be called with ThreadBase::mLock held 2138 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track) 2139 { 2140 status_t status = ALREADY_EXISTS; 2141 2142 if (mActiveTracks.indexOf(track) < 0) { 2143 // the track is newly added, make sure it fills up all its 2144 // buffers before playing. This is to ensure the client will 2145 // effectively get the latency it requested. 2146 if (track->isExternalTrack()) { 2147 TrackBase::track_state state = track->mState; 2148 mLock.unlock(); 2149 status = AudioSystem::startOutput(mId, track->streamType(), 2150 track->sessionId()); 2151 mLock.lock(); 2152 // abort track was stopped/paused while we released the lock 2153 if (state != track->mState) { 2154 if (status == NO_ERROR) { 2155 mLock.unlock(); 2156 AudioSystem::stopOutput(mId, track->streamType(), 2157 track->sessionId()); 2158 mLock.lock(); 2159 } 2160 return INVALID_OPERATION; 2161 } 2162 // abort if start is rejected by audio policy manager 2163 if (status != NO_ERROR) { 2164 return PERMISSION_DENIED; 2165 } 2166 #ifdef ADD_BATTERY_DATA 2167 // to track the speaker usage 2168 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart); 2169 #endif 2170 } 2171 2172 // set retry count for buffer fill 2173 if (track->isOffloaded()) { 2174 if (track->isStopping_1()) { 2175 track->mRetryCount = kMaxTrackStopRetriesOffload; 2176 } else { 2177 track->mRetryCount = kMaxTrackStartupRetriesOffload; 2178 } 2179 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED; 2180 } else { 2181 track->mRetryCount = kMaxTrackStartupRetries; 2182 track->mFillingUpStatus = 2183 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING; 2184 } 2185 2186 track->mResetDone = false; 2187 track->mPresentationCompleteFrames = 0; 2188 mActiveTracks.add(track); 2189 mWakeLockUids.add(track->uid()); 2190 mActiveTracksGeneration++; 2191 mLatestActiveTrack = track; 2192 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 2193 if (chain != 0) { 2194 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(), 2195 track->sessionId()); 2196 chain->incActiveTrackCnt(); 2197 } 2198 2199 status = NO_ERROR; 2200 } 2201 2202 onAddNewTrack_l(); 2203 return status; 2204 } 2205 2206 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track) 2207 { 2208 track->terminate(); 2209 // active tracks are removed by threadLoop() 2210 bool trackActive = (mActiveTracks.indexOf(track) >= 0); 2211 track->mState = TrackBase::STOPPED; 2212 if (!trackActive) { 2213 removeTrack_l(track); 2214 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) { 2215 track->mState = TrackBase::STOPPING_1; 2216 } 2217 2218 return trackActive; 2219 } 2220 2221 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track) 2222 { 2223 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); 2224 mTracks.remove(track); 2225 deleteTrackName_l(track->name()); 2226 // redundant as track is about to be destroyed, for dumpsys only 2227 track->mName = -1; 2228 if (track->isFastTrack()) { 2229 int index = track->mFastIndex; 2230 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks); 2231 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index))); 2232 mFastTrackAvailMask |= 1 << index; 2233 // redundant as track is about to be destroyed, for dumpsys only 2234 track->mFastIndex = -1; 2235 } 2236 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 2237 if (chain != 0) { 2238 chain->decTrackCnt(); 2239 } 2240 } 2241 2242 void AudioFlinger::PlaybackThread::broadcast_l() 2243 { 2244 // Thread could be blocked waiting for async 2245 // so signal it to handle state changes immediately 2246 // If threadLoop is currently unlocked a signal of mWaitWorkCV will 2247 // be lost so we also flag to prevent it blocking on mWaitWorkCV 2248 mSignalPending = true; 2249 mWaitWorkCV.broadcast(); 2250 } 2251 2252 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys) 2253 { 2254 Mutex::Autolock _l(mLock); 2255 if (initCheck() != NO_ERROR) { 2256 return String8(); 2257 } 2258 2259 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string()); 2260 const String8 out_s8(s); 2261 free(s); 2262 return out_s8; 2263 } 2264 2265 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) { 2266 sp<AudioIoDescriptor> desc = new AudioIoDescriptor(); 2267 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event); 2268 2269 desc->mIoHandle = mId; 2270 2271 switch (event) { 2272 case AUDIO_OUTPUT_OPENED: 2273 case AUDIO_OUTPUT_CONFIG_CHANGED: 2274 desc->mPatch = mPatch; 2275 desc->mChannelMask = mChannelMask; 2276 desc->mSamplingRate = mSampleRate; 2277 desc->mFormat = mFormat; 2278 desc->mFrameCount = mNormalFrameCount; // FIXME see 2279 // AudioFlinger::frameCount(audio_io_handle_t) 2280 desc->mFrameCountHAL = mFrameCount; 2281 desc->mLatency = latency_l(); 2282 break; 2283 2284 case AUDIO_OUTPUT_CLOSED: 2285 default: 2286 break; 2287 } 2288 mAudioFlinger->ioConfigChanged(event, desc, pid); 2289 } 2290 2291 void AudioFlinger::PlaybackThread::writeCallback() 2292 { 2293 ALOG_ASSERT(mCallbackThread != 0); 2294 mCallbackThread->resetWriteBlocked(); 2295 } 2296 2297 void AudioFlinger::PlaybackThread::drainCallback() 2298 { 2299 ALOG_ASSERT(mCallbackThread != 0); 2300 mCallbackThread->resetDraining(); 2301 } 2302 2303 void AudioFlinger::PlaybackThread::errorCallback() 2304 { 2305 ALOG_ASSERT(mCallbackThread != 0); 2306 mCallbackThread->setAsyncError(); 2307 } 2308 2309 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence) 2310 { 2311 Mutex::Autolock _l(mLock); 2312 // reject out of sequence requests 2313 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) { 2314 mWriteAckSequence &= ~1; 2315 mWaitWorkCV.signal(); 2316 } 2317 } 2318 2319 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence) 2320 { 2321 Mutex::Autolock _l(mLock); 2322 // reject out of sequence requests 2323 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) { 2324 mDrainSequence &= ~1; 2325 mWaitWorkCV.signal(); 2326 } 2327 } 2328 2329 // static 2330 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event, 2331 void *param __unused, 2332 void *cookie) 2333 { 2334 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie; 2335 ALOGV("asyncCallback() event %d", event); 2336 switch (event) { 2337 case STREAM_CBK_EVENT_WRITE_READY: 2338 me->writeCallback(); 2339 break; 2340 case STREAM_CBK_EVENT_DRAIN_READY: 2341 me->drainCallback(); 2342 break; 2343 case STREAM_CBK_EVENT_ERROR: 2344 me->errorCallback(); 2345 break; 2346 default: 2347 ALOGW("asyncCallback() unknown event %d", event); 2348 break; 2349 } 2350 return 0; 2351 } 2352 2353 void AudioFlinger::PlaybackThread::readOutputParameters_l() 2354 { 2355 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL 2356 mSampleRate = mOutput->getSampleRate(); 2357 mChannelMask = mOutput->getChannelMask(); 2358 if (!audio_is_output_channel(mChannelMask)) { 2359 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask); 2360 } 2361 if ((mType == MIXER || mType == DUPLICATING) 2362 && !isValidPcmSinkChannelMask(mChannelMask)) { 2363 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output", 2364 mChannelMask); 2365 } 2366 mChannelCount = audio_channel_count_from_out_mask(mChannelMask); 2367 2368 // Get actual HAL format. 2369 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common); 2370 // Get format from the shim, which will be different than the HAL format 2371 // if playing compressed audio over HDMI passthrough. 2372 mFormat = mOutput->getFormat(); 2373 if (!audio_is_valid_format(mFormat)) { 2374 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat); 2375 } 2376 if ((mType == MIXER || mType == DUPLICATING) 2377 && !isValidPcmSinkFormat(mFormat)) { 2378 LOG_FATAL("HAL format %#x not supported for mixed output", 2379 mFormat); 2380 } 2381 mFrameSize = mOutput->getFrameSize(); 2382 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common); 2383 mFrameCount = mBufferSize / mFrameSize; 2384 if (mFrameCount & 15) { 2385 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames", 2386 mFrameCount); 2387 } 2388 2389 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) && 2390 (mOutput->stream->set_callback != NULL)) { 2391 if (mOutput->stream->set_callback(mOutput->stream, 2392 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) { 2393 mUseAsyncWrite = true; 2394 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this); 2395 } 2396 } 2397 2398 mHwSupportsPause = false; 2399 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) { 2400 if (mOutput->stream->pause != NULL) { 2401 if (mOutput->stream->resume != NULL) { 2402 mHwSupportsPause = true; 2403 } else { 2404 ALOGW("direct output implements pause but not resume"); 2405 } 2406 } else if (mOutput->stream->resume != NULL) { 2407 ALOGW("direct output implements resume but not pause"); 2408 } 2409 } 2410 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) { 2411 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume"); 2412 } 2413 2414 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) { 2415 // For best precision, we use float instead of the associated output 2416 // device format (typically PCM 16 bit). 2417 2418 mFormat = AUDIO_FORMAT_PCM_FLOAT; 2419 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); 2420 mBufferSize = mFrameSize * mFrameCount; 2421 2422 // TODO: We currently use the associated output device channel mask and sample rate. 2423 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads 2424 // (if a valid mask) to avoid premature downmix. 2425 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads 2426 // instead of the output device sample rate to avoid loss of high frequency information. 2427 // This may need to be updated as MixerThread/OutputTracks are added and not here. 2428 } 2429 2430 // Calculate size of normal sink buffer relative to the HAL output buffer size 2431 double multiplier = 1.0; 2432 if (mType == MIXER && (kUseFastMixer == FastMixer_Static || 2433 kUseFastMixer == FastMixer_Dynamic)) { 2434 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000; 2435 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000; 2436 2437 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer 2438 minNormalFrameCount = (minNormalFrameCount + 15) & ~15; 2439 maxNormalFrameCount = maxNormalFrameCount & ~15; 2440 if (maxNormalFrameCount < minNormalFrameCount) { 2441 maxNormalFrameCount = minNormalFrameCount; 2442 } 2443 multiplier = (double) minNormalFrameCount / (double) mFrameCount; 2444 if (multiplier <= 1.0) { 2445 multiplier = 1.0; 2446 } else if (multiplier <= 2.0) { 2447 if (2 * mFrameCount <= maxNormalFrameCount) { 2448 multiplier = 2.0; 2449 } else { 2450 multiplier = (double) maxNormalFrameCount / (double) mFrameCount; 2451 } 2452 } else { 2453 multiplier = floor(multiplier); 2454 } 2455 } 2456 mNormalFrameCount = multiplier * mFrameCount; 2457 // round up to nearest 16 frames to satisfy AudioMixer 2458 if (mType == MIXER || mType == DUPLICATING) { 2459 mNormalFrameCount = (mNormalFrameCount + 15) & ~15; 2460 } 2461 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount, 2462 mNormalFrameCount); 2463 2464 // Check if we want to throttle the processing to no more than 2x normal rate 2465 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */); 2466 mThreadThrottleTimeMs = 0; 2467 mThreadThrottleEndMs = 0; 2468 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate); 2469 2470 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames. 2471 // Originally this was int16_t[] array, need to remove legacy implications. 2472 free(mSinkBuffer); 2473 mSinkBuffer = NULL; 2474 // For sink buffer size, we use the frame size from the downstream sink to avoid problems 2475 // with non PCM formats for compressed music, e.g. AAC, and Offload threads. 2476 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; 2477 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); 2478 2479 // We resize the mMixerBuffer according to the requirements of the sink buffer which 2480 // drives the output. 2481 free(mMixerBuffer); 2482 mMixerBuffer = NULL; 2483 if (mMixerBufferEnabled) { 2484 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT. 2485 mMixerBufferSize = mNormalFrameCount * mChannelCount 2486 * audio_bytes_per_sample(mMixerBufferFormat); 2487 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize); 2488 } 2489 free(mEffectBuffer); 2490 mEffectBuffer = NULL; 2491 if (mEffectBufferEnabled) { 2492 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only 2493 mEffectBufferSize = mNormalFrameCount * mChannelCount 2494 * audio_bytes_per_sample(mEffectBufferFormat); 2495 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize); 2496 } 2497 2498 // force reconfiguration of effect chains and engines to take new buffer size and audio 2499 // parameters into account 2500 // Note that mLock is not held when readOutputParameters_l() is called from the constructor 2501 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't 2502 // matter. 2503 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains 2504 Vector< sp<EffectChain> > effectChains = mEffectChains; 2505 for (size_t i = 0; i < effectChains.size(); i ++) { 2506 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false); 2507 } 2508 } 2509 2510 2511 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames) 2512 { 2513 if (halFrames == NULL || dspFrames == NULL) { 2514 return BAD_VALUE; 2515 } 2516 Mutex::Autolock _l(mLock); 2517 if (initCheck() != NO_ERROR) { 2518 return INVALID_OPERATION; 2519 } 2520 int64_t framesWritten = mBytesWritten / mFrameSize; 2521 *halFrames = framesWritten; 2522 2523 if (isSuspended()) { 2524 // return an estimation of rendered frames when the output is suspended 2525 size_t latencyFrames = (latency_l() * mSampleRate) / 1000; 2526 *dspFrames = (uint32_t) 2527 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0); 2528 return NO_ERROR; 2529 } else { 2530 status_t status; 2531 uint32_t frames; 2532 status = mOutput->getRenderPosition(&frames); 2533 *dspFrames = (size_t)frames; 2534 return status; 2535 } 2536 } 2537 2538 // hasAudioSession_l() must be called with ThreadBase::mLock held 2539 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const 2540 { 2541 uint32_t result = 0; 2542 if (getEffectChain_l(sessionId) != 0) { 2543 result = EFFECT_SESSION; 2544 } 2545 2546 for (size_t i = 0; i < mTracks.size(); ++i) { 2547 sp<Track> track = mTracks[i]; 2548 if (sessionId == track->sessionId() && !track->isInvalid()) { 2549 result |= TRACK_SESSION; 2550 if (track->isFastTrack()) { 2551 result |= FAST_SESSION; 2552 } 2553 break; 2554 } 2555 } 2556 2557 return result; 2558 } 2559 2560 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId) 2561 { 2562 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that 2563 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected 2564 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { 2565 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); 2566 } 2567 for (size_t i = 0; i < mTracks.size(); i++) { 2568 sp<Track> track = mTracks[i]; 2569 if (sessionId == track->sessionId() && !track->isInvalid()) { 2570 return AudioSystem::getStrategyForStream(track->streamType()); 2571 } 2572 } 2573 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); 2574 } 2575 2576 2577 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const 2578 { 2579 Mutex::Autolock _l(mLock); 2580 return mOutput; 2581 } 2582 2583 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput() 2584 { 2585 Mutex::Autolock _l(mLock); 2586 AudioStreamOut *output = mOutput; 2587 mOutput = NULL; 2588 // FIXME FastMixer might also have a raw ptr to mOutputSink; 2589 // must push a NULL and wait for ack 2590 mOutputSink.clear(); 2591 mPipeSink.clear(); 2592 mNormalSink.clear(); 2593 return output; 2594 } 2595 2596 // this method must always be called either with ThreadBase mLock held or inside the thread loop 2597 audio_stream_t* AudioFlinger::PlaybackThread::stream() const 2598 { 2599 if (mOutput == NULL) { 2600 return NULL; 2601 } 2602 return &mOutput->stream->common; 2603 } 2604 2605 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const 2606 { 2607 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000); 2608 } 2609 2610 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event) 2611 { 2612 if (!isValidSyncEvent(event)) { 2613 return BAD_VALUE; 2614 } 2615 2616 Mutex::Autolock _l(mLock); 2617 2618 for (size_t i = 0; i < mTracks.size(); ++i) { 2619 sp<Track> track = mTracks[i]; 2620 if (event->triggerSession() == track->sessionId()) { 2621 (void) track->setSyncEvent(event); 2622 return NO_ERROR; 2623 } 2624 } 2625 2626 return NAME_NOT_FOUND; 2627 } 2628 2629 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const 2630 { 2631 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE; 2632 } 2633 2634 void AudioFlinger::PlaybackThread::threadLoop_removeTracks( 2635 const Vector< sp<Track> >& tracksToRemove) 2636 { 2637 size_t count = tracksToRemove.size(); 2638 if (count > 0) { 2639 for (size_t i = 0 ; i < count ; i++) { 2640 const sp<Track>& track = tracksToRemove.itemAt(i); 2641 if (track->isExternalTrack()) { 2642 AudioSystem::stopOutput(mId, track->streamType(), 2643 track->sessionId()); 2644 #ifdef ADD_BATTERY_DATA 2645 // to track the speaker usage 2646 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop); 2647 #endif 2648 if (track->isTerminated()) { 2649 AudioSystem::releaseOutput(mId, track->streamType(), 2650 track->sessionId()); 2651 } 2652 } 2653 } 2654 } 2655 } 2656 2657 void AudioFlinger::PlaybackThread::checkSilentMode_l() 2658 { 2659 if (!mMasterMute) { 2660 char value[PROPERTY_VALUE_MAX]; 2661 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) { 2662 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX"); 2663 return; 2664 } 2665 if (property_get("ro.audio.silent", value, "0") > 0) { 2666 char *endptr; 2667 unsigned long ul = strtoul(value, &endptr, 0); 2668 if (*endptr == '\0' && ul != 0) { 2669 ALOGD("Silence is golden"); 2670 // The setprop command will not allow a property to be changed after 2671 // the first time it is set, so we don't have to worry about un-muting. 2672 setMasterMute_l(true); 2673 } 2674 } 2675 } 2676 } 2677 2678 // shared by MIXER and DIRECT, overridden by DUPLICATING 2679 ssize_t AudioFlinger::PlaybackThread::threadLoop_write() 2680 { 2681 mInWrite = true; 2682 ssize_t bytesWritten; 2683 const size_t offset = mCurrentWriteLength - mBytesRemaining; 2684 2685 // If an NBAIO sink is present, use it to write the normal mixer's submix 2686 if (mNormalSink != 0) { 2687 2688 const size_t count = mBytesRemaining / mFrameSize; 2689 2690 ATRACE_BEGIN("write"); 2691 // update the setpoint when AudioFlinger::mScreenState changes 2692 uint32_t screenState = AudioFlinger::mScreenState; 2693 if (screenState != mScreenState) { 2694 mScreenState = screenState; 2695 MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); 2696 if (pipe != NULL) { 2697 pipe->setAvgFrames((mScreenState & 1) ? 2698 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); 2699 } 2700 } 2701 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count); 2702 ATRACE_END(); 2703 if (framesWritten > 0) { 2704 bytesWritten = framesWritten * mFrameSize; 2705 } else { 2706 bytesWritten = framesWritten; 2707 } 2708 // otherwise use the HAL / AudioStreamOut directly 2709 } else { 2710 // Direct output and offload threads 2711 2712 if (mUseAsyncWrite) { 2713 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request"); 2714 mWriteAckSequence += 2; 2715 mWriteAckSequence |= 1; 2716 ALOG_ASSERT(mCallbackThread != 0); 2717 mCallbackThread->setWriteBlocked(mWriteAckSequence); 2718 } 2719 // FIXME We should have an implementation of timestamps for direct output threads. 2720 // They are used e.g for multichannel PCM playback over HDMI. 2721 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining); 2722 2723 if (mUseAsyncWrite && 2724 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) { 2725 // do not wait for async callback in case of error of full write 2726 mWriteAckSequence &= ~1; 2727 ALOG_ASSERT(mCallbackThread != 0); 2728 mCallbackThread->setWriteBlocked(mWriteAckSequence); 2729 } 2730 } 2731 2732 mNumWrites++; 2733 mInWrite = false; 2734 mStandby = false; 2735 return bytesWritten; 2736 } 2737 2738 void AudioFlinger::PlaybackThread::threadLoop_drain() 2739 { 2740 if (mOutput->stream->drain) { 2741 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full"); 2742 if (mUseAsyncWrite) { 2743 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request"); 2744 mDrainSequence |= 1; 2745 ALOG_ASSERT(mCallbackThread != 0); 2746 mCallbackThread->setDraining(mDrainSequence); 2747 } 2748 mOutput->stream->drain(mOutput->stream, 2749 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY 2750 : AUDIO_DRAIN_ALL); 2751 } 2752 } 2753 2754 void AudioFlinger::PlaybackThread::threadLoop_exit() 2755 { 2756 { 2757 Mutex::Autolock _l(mLock); 2758 for (size_t i = 0; i < mTracks.size(); i++) { 2759 sp<Track> track = mTracks[i]; 2760 track->invalidate(); 2761 } 2762 } 2763 } 2764 2765 /* 2766 The derived values that are cached: 2767 - mSinkBufferSize from frame count * frame size 2768 - mActiveSleepTimeUs from activeSleepTimeUs() 2769 - mIdleSleepTimeUs from idleSleepTimeUs() 2770 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least 2771 kDefaultStandbyTimeInNsecs when connected to an A2DP device. 2772 - maxPeriod from frame count and sample rate (MIXER only) 2773 2774 The parameters that affect these derived values are: 2775 - frame count 2776 - frame size 2777 - sample rate 2778 - device type: A2DP or not 2779 - device latency 2780 - format: PCM or not 2781 - active sleep time 2782 - idle sleep time 2783 */ 2784 2785 void AudioFlinger::PlaybackThread::cacheParameters_l() 2786 { 2787 mSinkBufferSize = mNormalFrameCount * mFrameSize; 2788 mActiveSleepTimeUs = activeSleepTimeUs(); 2789 mIdleSleepTimeUs = idleSleepTimeUs(); 2790 2791 // make sure standby delay is not too short when connected to an A2DP sink to avoid 2792 // truncating audio when going to standby. 2793 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs; 2794 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) { 2795 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) { 2796 mStandbyDelayNs = kDefaultStandbyTimeInNsecs; 2797 } 2798 } 2799 } 2800 2801 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType) 2802 { 2803 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu", 2804 this, streamType, mTracks.size()); 2805 bool trackMatch = false; 2806 size_t size = mTracks.size(); 2807 for (size_t i = 0; i < size; i++) { 2808 sp<Track> t = mTracks[i]; 2809 if (t->streamType() == streamType && t->isExternalTrack()) { 2810 t->invalidate(); 2811 trackMatch = true; 2812 } 2813 } 2814 return trackMatch; 2815 } 2816 2817 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType) 2818 { 2819 Mutex::Autolock _l(mLock); 2820 invalidateTracks_l(streamType); 2821 } 2822 2823 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain) 2824 { 2825 audio_session_t session = chain->sessionId(); 2826 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled 2827 ? mEffectBuffer : mSinkBuffer); 2828 bool ownsBuffer = false; 2829 2830 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session); 2831 if (session > AUDIO_SESSION_OUTPUT_MIX) { 2832 // Only one effect chain can be present in direct output thread and it uses 2833 // the sink buffer as input 2834 if (mType != DIRECT) { 2835 size_t numSamples = mNormalFrameCount * mChannelCount; 2836 buffer = new int16_t[numSamples]; 2837 memset(buffer, 0, numSamples * sizeof(int16_t)); 2838 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session); 2839 ownsBuffer = true; 2840 } 2841 2842 // Attach all tracks with same session ID to this chain. 2843 for (size_t i = 0; i < mTracks.size(); ++i) { 2844 sp<Track> track = mTracks[i]; 2845 if (session == track->sessionId()) { 2846 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(), 2847 buffer); 2848 track->setMainBuffer(buffer); 2849 chain->incTrackCnt(); 2850 } 2851 } 2852 2853 // indicate all active tracks in the chain 2854 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { 2855 sp<Track> track = mActiveTracks[i].promote(); 2856 if (track == 0) { 2857 continue; 2858 } 2859 if (session == track->sessionId()) { 2860 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session); 2861 chain->incActiveTrackCnt(); 2862 } 2863 } 2864 } 2865 chain->setThread(this); 2866 chain->setInBuffer(buffer, ownsBuffer); 2867 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled 2868 ? mEffectBuffer : mSinkBuffer)); 2869 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect 2870 // chains list in order to be processed last as it contains output stage effects. 2871 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before 2872 // session AUDIO_SESSION_OUTPUT_STAGE to be processed 2873 // after track specific effects and before output stage. 2874 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and 2875 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX. 2876 // Effect chain for other sessions are inserted at beginning of effect 2877 // chains list to be processed before output mix effects. Relative order between other 2878 // sessions is not important. 2879 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 && 2880 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX, 2881 "audio_session_t constants misdefined"); 2882 size_t size = mEffectChains.size(); 2883 size_t i = 0; 2884 for (i = 0; i < size; i++) { 2885 if (mEffectChains[i]->sessionId() < session) { 2886 break; 2887 } 2888 } 2889 mEffectChains.insertAt(chain, i); 2890 checkSuspendOnAddEffectChain_l(chain); 2891 2892 return NO_ERROR; 2893 } 2894 2895 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain) 2896 { 2897 audio_session_t session = chain->sessionId(); 2898 2899 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session); 2900 2901 for (size_t i = 0; i < mEffectChains.size(); i++) { 2902 if (chain == mEffectChains[i]) { 2903 mEffectChains.removeAt(i); 2904 // detach all active tracks from the chain 2905 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { 2906 sp<Track> track = mActiveTracks[i].promote(); 2907 if (track == 0) { 2908 continue; 2909 } 2910 if (session == track->sessionId()) { 2911 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d", 2912 chain.get(), session); 2913 chain->decActiveTrackCnt(); 2914 } 2915 } 2916 2917 // detach all tracks with same session ID from this chain 2918 for (size_t i = 0; i < mTracks.size(); ++i) { 2919 sp<Track> track = mTracks[i]; 2920 if (session == track->sessionId()) { 2921 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer)); 2922 chain->decTrackCnt(); 2923 } 2924 } 2925 break; 2926 } 2927 } 2928 return mEffectChains.size(); 2929 } 2930 2931 status_t AudioFlinger::PlaybackThread::attachAuxEffect( 2932 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId) 2933 { 2934 Mutex::Autolock _l(mLock); 2935 return attachAuxEffect_l(track, EffectId); 2936 } 2937 2938 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l( 2939 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId) 2940 { 2941 status_t status = NO_ERROR; 2942 2943 if (EffectId == 0) { 2944 track->setAuxBuffer(0, NULL); 2945 } else { 2946 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX 2947 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId); 2948 if (effect != 0) { 2949 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { 2950 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer()); 2951 } else { 2952 status = INVALID_OPERATION; 2953 } 2954 } else { 2955 status = BAD_VALUE; 2956 } 2957 } 2958 return status; 2959 } 2960 2961 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId) 2962 { 2963 for (size_t i = 0; i < mTracks.size(); ++i) { 2964 sp<Track> track = mTracks[i]; 2965 if (track->auxEffectId() == effectId) { 2966 attachAuxEffect_l(track, 0); 2967 } 2968 } 2969 } 2970 2971 bool AudioFlinger::PlaybackThread::threadLoop() 2972 { 2973 Vector< sp<Track> > tracksToRemove; 2974 2975 mStandbyTimeNs = systemTime(); 2976 nsecs_t lastWriteFinished = -1; // time last server write completed 2977 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written 2978 2979 // MIXER 2980 nsecs_t lastWarning = 0; 2981 2982 // DUPLICATING 2983 // FIXME could this be made local to while loop? 2984 writeFrames = 0; 2985 2986 int lastGeneration = 0; 2987 2988 cacheParameters_l(); 2989 mSleepTimeUs = mIdleSleepTimeUs; 2990 2991 if (mType == MIXER) { 2992 sleepTimeShift = 0; 2993 } 2994 2995 CpuStats cpuStats; 2996 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid())); 2997 2998 acquireWakeLock(); 2999 3000 // mNBLogWriter->log can only be called while thread mutex mLock is held. 3001 // So if you need to log when mutex is unlocked, set logString to a non-NULL string, 3002 // and then that string will be logged at the next convenient opportunity. 3003 const char *logString = NULL; 3004 3005 checkSilentMode_l(); 3006 3007 while (!exitPending()) 3008 { 3009 cpuStats.sample(myName); 3010 3011 Vector< sp<EffectChain> > effectChains; 3012 3013 { // scope for mLock 3014 3015 Mutex::Autolock _l(mLock); 3016 3017 processConfigEvents_l(); 3018 3019 if (logString != NULL) { 3020 mNBLogWriter->logTimestamp(); 3021 mNBLogWriter->log(logString); 3022 logString = NULL; 3023 } 3024 3025 // Gather the framesReleased counters for all active tracks, 3026 // and associate with the sink frames written out. We need 3027 // this to convert the sink timestamp to the track timestamp. 3028 bool kernelLocationUpdate = false; 3029 if (mNormalSink != 0) { 3030 // Note: The DuplicatingThread may not have a mNormalSink. 3031 // We always fetch the timestamp here because often the downstream 3032 // sink will block while writing. 3033 ExtendedTimestamp timestamp; // use private copy to fetch 3034 (void) mNormalSink->getTimestamp(timestamp); 3035 3036 // We keep track of the last valid kernel position in case we are in underrun 3037 // and the normal mixer period is the same as the fast mixer period, or there 3038 // is some error from the HAL. 3039 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { 3040 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = 3041 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; 3042 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = 3043 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; 3044 3045 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = 3046 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER]; 3047 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = 3048 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER]; 3049 } 3050 3051 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { 3052 kernelLocationUpdate = true; 3053 } else { 3054 ALOGVV("getTimestamp error - no valid kernel position"); 3055 } 3056 3057 // copy over kernel info 3058 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = 3059 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] 3060 + mSuspendedFrames; // add frames discarded when suspended 3061 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = 3062 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; 3063 } 3064 // mFramesWritten for non-offloaded tracks are contiguous 3065 // even after standby() is called. This is useful for the track frame 3066 // to sink frame mapping. 3067 bool serverLocationUpdate = false; 3068 if (mFramesWritten != lastFramesWritten) { 3069 serverLocationUpdate = true; 3070 lastFramesWritten = mFramesWritten; 3071 } 3072 // Only update timestamps if there is a meaningful change. 3073 // Either the kernel timestamp must be valid or we have written something. 3074 if (kernelLocationUpdate || serverLocationUpdate) { 3075 if (serverLocationUpdate) { 3076 // use the time before we called the HAL write - it is a bit more accurate 3077 // to when the server last read data than the current time here. 3078 // 3079 // If we haven't written anything, mLastWriteTime will be -1 3080 // and we use systemTime(). 3081 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten; 3082 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1 3083 ? systemTime() : mLastWriteTime; 3084 } 3085 const size_t size = mActiveTracks.size(); 3086 for (size_t i = 0; i < size; ++i) { 3087 sp<Track> t = mActiveTracks[i].promote(); 3088 if (t != 0 && !t->isFastTrack()) { 3089 t->updateTrackFrameInfo( 3090 t->mAudioTrackServerProxy->framesReleased(), 3091 mFramesWritten, 3092 mTimestamp); 3093 } 3094 } 3095 } 3096 3097 saveOutputTracks(); 3098 if (mSignalPending) { 3099 // A signal was raised while we were unlocked 3100 mSignalPending = false; 3101 } else if (waitingAsyncCallback_l()) { 3102 if (exitPending()) { 3103 break; 3104 } 3105 bool released = false; 3106 if (!keepWakeLock()) { 3107 releaseWakeLock_l(); 3108 released = true; 3109 } 3110 mWakeLockUids.clear(); 3111 mActiveTracksGeneration++; 3112 ALOGV("wait async completion"); 3113 mWaitWorkCV.wait(mLock); 3114 ALOGV("async completion/wake"); 3115 if (released) { 3116 acquireWakeLock_l(); 3117 } 3118 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 3119 mSleepTimeUs = 0; 3120 3121 continue; 3122 } 3123 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) || 3124 isSuspended()) { 3125 // put audio hardware into standby after short delay 3126 if (shouldStandby_l()) { 3127 3128 threadLoop_standby(); 3129 3130 mStandby = true; 3131 } 3132 3133 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) { 3134 // we're about to wait, flush the binder command buffer 3135 IPCThreadState::self()->flushCommands(); 3136 3137 clearOutputTracks(); 3138 3139 if (exitPending()) { 3140 break; 3141 } 3142 3143 releaseWakeLock_l(); 3144 mWakeLockUids.clear(); 3145 mActiveTracksGeneration++; 3146 // wait until we have something to do... 3147 ALOGV("%s going to sleep", myName.string()); 3148 mWaitWorkCV.wait(mLock); 3149 ALOGV("%s waking up", myName.string()); 3150 acquireWakeLock_l(); 3151 3152 mMixerStatus = MIXER_IDLE; 3153 mMixerStatusIgnoringFastTracks = MIXER_IDLE; 3154 mBytesWritten = 0; 3155 mBytesRemaining = 0; 3156 checkSilentMode_l(); 3157 3158 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 3159 mSleepTimeUs = mIdleSleepTimeUs; 3160 if (mType == MIXER) { 3161 sleepTimeShift = 0; 3162 } 3163 3164 continue; 3165 } 3166 } 3167 // mMixerStatusIgnoringFastTracks is also updated internally 3168 mMixerStatus = prepareTracks_l(&tracksToRemove); 3169 3170 // compare with previously applied list 3171 if (lastGeneration != mActiveTracksGeneration) { 3172 // update wakelock 3173 updateWakeLockUids_l(mWakeLockUids); 3174 lastGeneration = mActiveTracksGeneration; 3175 } 3176 3177 // prevent any changes in effect chain list and in each effect chain 3178 // during mixing and effect process as the audio buffers could be deleted 3179 // or modified if an effect is created or deleted 3180 lockEffectChains_l(effectChains); 3181 } // mLock scope ends 3182 3183 if (mBytesRemaining == 0) { 3184 mCurrentWriteLength = 0; 3185 if (mMixerStatus == MIXER_TRACKS_READY) { 3186 // threadLoop_mix() sets mCurrentWriteLength 3187 threadLoop_mix(); 3188 } else if ((mMixerStatus != MIXER_DRAIN_TRACK) 3189 && (mMixerStatus != MIXER_DRAIN_ALL)) { 3190 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data 3191 // must be written to HAL 3192 threadLoop_sleepTime(); 3193 if (mSleepTimeUs == 0) { 3194 mCurrentWriteLength = mSinkBufferSize; 3195 } 3196 } 3197 // Either threadLoop_mix() or threadLoop_sleepTime() should have set 3198 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0. 3199 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid) 3200 // or mSinkBuffer (if there are no effects). 3201 // 3202 // This is done pre-effects computation; if effects change to 3203 // support higher precision, this needs to move. 3204 // 3205 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l(). 3206 // TODO use mSleepTimeUs == 0 as an additional condition. 3207 if (mMixerBufferValid) { 3208 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer; 3209 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat; 3210 3211 // mono blend occurs for mixer threads only (not direct or offloaded) 3212 // and is handled here if we're going directly to the sink. 3213 if (requireMonoBlend() && !mEffectBufferValid) { 3214 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount, 3215 true /*limit*/); 3216 } 3217 3218 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat, 3219 mNormalFrameCount * mChannelCount); 3220 } 3221 3222 mBytesRemaining = mCurrentWriteLength; 3223 if (isSuspended()) { 3224 // Simulate write to HAL when suspended (e.g. BT SCO phone call). 3225 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer. 3226 const size_t framesRemaining = mBytesRemaining / mFrameSize; 3227 mBytesWritten += mBytesRemaining; 3228 mFramesWritten += framesRemaining; 3229 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position 3230 mBytesRemaining = 0; 3231 } 3232 3233 // only process effects if we're going to write 3234 if (mSleepTimeUs == 0 && mType != OFFLOAD) { 3235 for (size_t i = 0; i < effectChains.size(); i ++) { 3236 effectChains[i]->process_l(); 3237 } 3238 } 3239 } 3240 // Process effect chains for offloaded thread even if no audio 3241 // was read from audio track: process only updates effect state 3242 // and thus does have to be synchronized with audio writes but may have 3243 // to be called while waiting for async write callback 3244 if (mType == OFFLOAD) { 3245 for (size_t i = 0; i < effectChains.size(); i ++) { 3246 effectChains[i]->process_l(); 3247 } 3248 } 3249 3250 // Only if the Effects buffer is enabled and there is data in the 3251 // Effects buffer (buffer valid), we need to 3252 // copy into the sink buffer. 3253 // TODO use mSleepTimeUs == 0 as an additional condition. 3254 if (mEffectBufferValid) { 3255 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat); 3256 3257 if (requireMonoBlend()) { 3258 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount, 3259 true /*limit*/); 3260 } 3261 3262 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat, 3263 mNormalFrameCount * mChannelCount); 3264 } 3265 3266 // enable changes in effect chain 3267 unlockEffectChains(effectChains); 3268 3269 if (!waitingAsyncCallback()) { 3270 // mSleepTimeUs == 0 means we must write to audio hardware 3271 if (mSleepTimeUs == 0) { 3272 ssize_t ret = 0; 3273 // We save lastWriteFinished here, as previousLastWriteFinished, 3274 // for throttling. On thread start, previousLastWriteFinished will be 3275 // set to -1, which properly results in no throttling after the first write. 3276 nsecs_t previousLastWriteFinished = lastWriteFinished; 3277 nsecs_t delta = 0; 3278 if (mBytesRemaining) { 3279 // FIXME rewrite to reduce number of system calls 3280 mLastWriteTime = systemTime(); // also used for dumpsys 3281 ret = threadLoop_write(); 3282 lastWriteFinished = systemTime(); 3283 delta = lastWriteFinished - mLastWriteTime; 3284 if (ret < 0) { 3285 mBytesRemaining = 0; 3286 } else { 3287 mBytesWritten += ret; 3288 mBytesRemaining -= ret; 3289 mFramesWritten += ret / mFrameSize; 3290 } 3291 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) || 3292 (mMixerStatus == MIXER_DRAIN_ALL)) { 3293 threadLoop_drain(); 3294 } 3295 if (mType == MIXER && !mStandby) { 3296 // write blocked detection 3297 if (delta > maxPeriod) { 3298 mNumDelayedWrites++; 3299 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) { 3300 ATRACE_NAME("underrun"); 3301 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p", 3302 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this); 3303 lastWarning = lastWriteFinished; 3304 } 3305 } 3306 3307 if (mThreadThrottle 3308 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks) 3309 && ret > 0) { // we wrote something 3310 // Limit MixerThread data processing to no more than twice the 3311 // expected processing rate. 3312 // 3313 // This helps prevent underruns with NuPlayer and other applications 3314 // which may set up buffers that are close to the minimum size, or use 3315 // deep buffers, and rely on a double-buffering sleep strategy to fill. 3316 // 3317 // The throttle smooths out sudden large data drains from the device, 3318 // e.g. when it comes out of standby, which often causes problems with 3319 // (1) mixer threads without a fast mixer (which has its own warm-up) 3320 // (2) minimum buffer sized tracks (even if the track is full, 3321 // the app won't fill fast enough to handle the sudden draw). 3322 // 3323 // Total time spent in last processing cycle equals time spent in 3324 // 1. threadLoop_write, as well as time spent in 3325 // 2. threadLoop_mix (significant for heavy mixing, especially 3326 // on low tier processors) 3327 3328 // it's OK if deltaMs is an overestimate. 3329 const int32_t deltaMs = 3330 (lastWriteFinished - previousLastWriteFinished) / 1000000; 3331 const int32_t throttleMs = mHalfBufferMs - deltaMs; 3332 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) { 3333 usleep(throttleMs * 1000); 3334 // notify of throttle start on verbose log 3335 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs, 3336 "mixer(%p) throttle begin:" 3337 " ret(%zd) deltaMs(%d) requires sleep %d ms", 3338 this, ret, deltaMs, throttleMs); 3339 mThreadThrottleTimeMs += throttleMs; 3340 // Throttle must be attributed to the previous mixer loop's write time 3341 // to allow back-to-back throttling. 3342 lastWriteFinished += throttleMs * 1000000; 3343 } else { 3344 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs; 3345 if (diff > 0) { 3346 // notify of throttle end on debug log 3347 // but prevent spamming for bluetooth 3348 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()), 3349 "mixer(%p) throttle end: throttle time(%u)", this, diff); 3350 mThreadThrottleEndMs = mThreadThrottleTimeMs; 3351 } 3352 } 3353 } 3354 } 3355 3356 } else { 3357 ATRACE_BEGIN("sleep"); 3358 Mutex::Autolock _l(mLock); 3359 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) { 3360 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs)); 3361 } 3362 ATRACE_END(); 3363 } 3364 } 3365 3366 // Finally let go of removed track(s), without the lock held 3367 // since we can't guarantee the destructors won't acquire that 3368 // same lock. This will also mutate and push a new fast mixer state. 3369 threadLoop_removeTracks(tracksToRemove); 3370 tracksToRemove.clear(); 3371 3372 // FIXME I don't understand the need for this here; 3373 // it was in the original code but maybe the 3374 // assignment in saveOutputTracks() makes this unnecessary? 3375 clearOutputTracks(); 3376 3377 // Effect chains will be actually deleted here if they were removed from 3378 // mEffectChains list during mixing or effects processing 3379 effectChains.clear(); 3380 3381 // FIXME Note that the above .clear() is no longer necessary since effectChains 3382 // is now local to this block, but will keep it for now (at least until merge done). 3383 } 3384 3385 threadLoop_exit(); 3386 3387 if (!mStandby) { 3388 threadLoop_standby(); 3389 mStandby = true; 3390 } 3391 3392 releaseWakeLock(); 3393 mWakeLockUids.clear(); 3394 mActiveTracksGeneration++; 3395 3396 ALOGV("Thread %p type %d exiting", this, mType); 3397 return false; 3398 } 3399 3400 // removeTracks_l() must be called with ThreadBase::mLock held 3401 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove) 3402 { 3403 size_t count = tracksToRemove.size(); 3404 if (count > 0) { 3405 for (size_t i=0 ; i<count ; i++) { 3406 const sp<Track>& track = tracksToRemove.itemAt(i); 3407 mActiveTracks.remove(track); 3408 mWakeLockUids.remove(track->uid()); 3409 mActiveTracksGeneration++; 3410 ALOGV("removeTracks_l removing track on session %d", track->sessionId()); 3411 sp<EffectChain> chain = getEffectChain_l(track->sessionId()); 3412 if (chain != 0) { 3413 ALOGV("stopping track on chain %p for session Id: %d", chain.get(), 3414 track->sessionId()); 3415 chain->decActiveTrackCnt(); 3416 } 3417 if (track->isTerminated()) { 3418 removeTrack_l(track); 3419 } 3420 } 3421 } 3422 3423 } 3424 3425 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp) 3426 { 3427 if (mNormalSink != 0) { 3428 ExtendedTimestamp ets; 3429 status_t status = mNormalSink->getTimestamp(ets); 3430 if (status == NO_ERROR) { 3431 status = ets.getBestTimestamp(×tamp); 3432 } 3433 return status; 3434 } 3435 if ((mType == OFFLOAD || mType == DIRECT) 3436 && mOutput != NULL && mOutput->stream->get_presentation_position) { 3437 uint64_t position64; 3438 int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime); 3439 if (ret == 0) { 3440 timestamp.mPosition = (uint32_t)position64; 3441 return NO_ERROR; 3442 } 3443 } 3444 return INVALID_OPERATION; 3445 } 3446 3447 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch, 3448 audio_patch_handle_t *handle) 3449 { 3450 status_t status; 3451 if (property_get_bool("af.patch_park", false /* default_value */)) { 3452 // Park FastMixer to avoid potential DOS issues with writing to the HAL 3453 // or if HAL does not properly lock against access. 3454 AutoPark<FastMixer> park(mFastMixer); 3455 status = PlaybackThread::createAudioPatch_l(patch, handle); 3456 } else { 3457 status = PlaybackThread::createAudioPatch_l(patch, handle); 3458 } 3459 return status; 3460 } 3461 3462 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch, 3463 audio_patch_handle_t *handle) 3464 { 3465 status_t status = NO_ERROR; 3466 3467 // store new device and send to effects 3468 audio_devices_t type = AUDIO_DEVICE_NONE; 3469 for (unsigned int i = 0; i < patch->num_sinks; i++) { 3470 type |= patch->sinks[i].ext.device.type; 3471 } 3472 3473 #ifdef ADD_BATTERY_DATA 3474 // when changing the audio output device, call addBatteryData to notify 3475 // the change 3476 if (mOutDevice != type) { 3477 uint32_t params = 0; 3478 // check whether speaker is on 3479 if (type & AUDIO_DEVICE_OUT_SPEAKER) { 3480 params |= IMediaPlayerService::kBatteryDataSpeakerOn; 3481 } 3482 3483 audio_devices_t deviceWithoutSpeaker 3484 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER; 3485 // check if any other device (except speaker) is on 3486 if (type & deviceWithoutSpeaker) { 3487 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; 3488 } 3489 3490 if (params != 0) { 3491 addBatteryData(params); 3492 } 3493 } 3494 #endif 3495 3496 for (size_t i = 0; i < mEffectChains.size(); i++) { 3497 mEffectChains[i]->setDevice_l(type); 3498 } 3499 3500 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when 3501 // the thread is created so that the first patch creation triggers an ioConfigChanged callback 3502 bool configChanged = mPrevOutDevice != type; 3503 mOutDevice = type; 3504 mPatch = *patch; 3505 3506 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 3507 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); 3508 status = hwDevice->create_audio_patch(hwDevice, 3509 patch->num_sources, 3510 patch->sources, 3511 patch->num_sinks, 3512 patch->sinks, 3513 handle); 3514 } else { 3515 char *address; 3516 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) { 3517 //FIXME: we only support address on first sink with HAL version < 3.0 3518 address = audio_device_address_to_parameter( 3519 patch->sinks[0].ext.device.type, 3520 patch->sinks[0].ext.device.address); 3521 } else { 3522 address = (char *)calloc(1, 1); 3523 } 3524 AudioParameter param = AudioParameter(String8(address)); 3525 free(address); 3526 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type); 3527 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 3528 param.toString().string()); 3529 *handle = AUDIO_PATCH_HANDLE_NONE; 3530 } 3531 if (configChanged) { 3532 mPrevOutDevice = type; 3533 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); 3534 } 3535 return status; 3536 } 3537 3538 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle) 3539 { 3540 status_t status; 3541 if (property_get_bool("af.patch_park", false /* default_value */)) { 3542 // Park FastMixer to avoid potential DOS issues with writing to the HAL 3543 // or if HAL does not properly lock against access. 3544 AutoPark<FastMixer> park(mFastMixer); 3545 status = PlaybackThread::releaseAudioPatch_l(handle); 3546 } else { 3547 status = PlaybackThread::releaseAudioPatch_l(handle); 3548 } 3549 return status; 3550 } 3551 3552 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle) 3553 { 3554 status_t status = NO_ERROR; 3555 3556 mOutDevice = AUDIO_DEVICE_NONE; 3557 3558 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { 3559 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); 3560 status = hwDevice->release_audio_patch(hwDevice, handle); 3561 } else { 3562 AudioParameter param; 3563 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0); 3564 status = mOutput->stream->common.set_parameters(&mOutput->stream->common, 3565 param.toString().string()); 3566 } 3567 return status; 3568 } 3569 3570 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track) 3571 { 3572 Mutex::Autolock _l(mLock); 3573 mTracks.add(track); 3574 } 3575 3576 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track) 3577 { 3578 Mutex::Autolock _l(mLock); 3579 destroyTrack_l(track); 3580 } 3581 3582 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config) 3583 { 3584 ThreadBase::getAudioPortConfig(config); 3585 config->role = AUDIO_PORT_ROLE_SOURCE; 3586 config->ext.mix.hw_module = mOutput->audioHwDev->handle(); 3587 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT; 3588 } 3589 3590 // ---------------------------------------------------------------------------- 3591 3592 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output, 3593 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type) 3594 : PlaybackThread(audioFlinger, output, id, device, type, systemReady), 3595 // mAudioMixer below 3596 // mFastMixer below 3597 mFastMixerFutex(0), 3598 mMasterMono(false) 3599 // mOutputSink below 3600 // mPipeSink below 3601 // mNormalSink below 3602 { 3603 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type); 3604 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, " 3605 "mFrameCount=%zu, mNormalFrameCount=%zu", 3606 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount, 3607 mNormalFrameCount); 3608 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); 3609 3610 if (type == DUPLICATING) { 3611 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks 3612 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write(). 3613 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink. 3614 return; 3615 } 3616 // create an NBAIO sink for the HAL output stream, and negotiate 3617 mOutputSink = new AudioStreamOutSink(output->stream); 3618 size_t numCounterOffers = 0; 3619 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; 3620 #if !LOG_NDEBUG 3621 ssize_t index = 3622 #else 3623 (void) 3624 #endif 3625 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers); 3626 ALOG_ASSERT(index == 0); 3627 3628 // initialize fast mixer depending on configuration 3629 bool initFastMixer; 3630 switch (kUseFastMixer) { 3631 case FastMixer_Never: 3632 initFastMixer = false; 3633 break; 3634 case FastMixer_Always: 3635 initFastMixer = true; 3636 break; 3637 case FastMixer_Static: 3638 case FastMixer_Dynamic: 3639 initFastMixer = mFrameCount < mNormalFrameCount; 3640 break; 3641 } 3642 if (initFastMixer) { 3643 audio_format_t fastMixerFormat; 3644 if (mMixerBufferEnabled && mEffectBufferEnabled) { 3645 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT; 3646 } else { 3647 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT; 3648 } 3649 if (mFormat != fastMixerFormat) { 3650 // change our Sink format to accept our intermediate precision 3651 mFormat = fastMixerFormat; 3652 free(mSinkBuffer); 3653 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); 3654 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; 3655 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); 3656 } 3657 3658 // create a MonoPipe to connect our submix to FastMixer 3659 NBAIO_Format format = mOutputSink->format(); 3660 #ifdef TEE_SINK 3661 NBAIO_Format origformat = format; 3662 #endif 3663 // adjust format to match that of the Fast Mixer 3664 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat); 3665 format.mFormat = fastMixerFormat; 3666 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount; 3667 3668 // This pipe depth compensates for scheduling latency of the normal mixer thread. 3669 // When it wakes up after a maximum latency, it runs a few cycles quickly before 3670 // finally blocking. Note the pipe implementation rounds up the request to a power of 2. 3671 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/); 3672 const NBAIO_Format offers[1] = {format}; 3673 size_t numCounterOffers = 0; 3674 #if !LOG_NDEBUG || defined(TEE_SINK) 3675 ssize_t index = 3676 #else 3677 (void) 3678 #endif 3679 monoPipe->negotiate(offers, 1, NULL, numCounterOffers); 3680 ALOG_ASSERT(index == 0); 3681 monoPipe->setAvgFrames((mScreenState & 1) ? 3682 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); 3683 mPipeSink = monoPipe; 3684 3685 #ifdef TEE_SINK 3686 if (mTeeSinkOutputEnabled) { 3687 // create a Pipe to archive a copy of FastMixer's output for dumpsys 3688 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat); 3689 const NBAIO_Format offers2[1] = {origformat}; 3690 numCounterOffers = 0; 3691 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers); 3692 ALOG_ASSERT(index == 0); 3693 mTeeSink = teeSink; 3694 PipeReader *teeSource = new PipeReader(*teeSink); 3695 numCounterOffers = 0; 3696 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers); 3697 ALOG_ASSERT(index == 0); 3698 mTeeSource = teeSource; 3699 } 3700 #endif 3701 3702 // create fast mixer and configure it initially with just one fast track for our submix 3703 mFastMixer = new FastMixer(); 3704 FastMixerStateQueue *sq = mFastMixer->sq(); 3705 #ifdef STATE_QUEUE_DUMP 3706 sq->setObserverDump(&mStateQueueObserverDump); 3707 sq->setMutatorDump(&mStateQueueMutatorDump); 3708 #endif 3709 FastMixerState *state = sq->begin(); 3710 FastTrack *fastTrack = &state->mFastTracks[0]; 3711 // wrap the source side of the MonoPipe to make it an AudioBufferProvider 3712 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe)); 3713 fastTrack->mVolumeProvider = NULL; 3714 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer 3715 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer 3716 fastTrack->mGeneration++; 3717 state->mFastTracksGen++; 3718 state->mTrackMask = 1; 3719 // fast mixer will use the HAL output sink 3720 state->mOutputSink = mOutputSink.get(); 3721 state->mOutputSinkGen++; 3722 state->mFrameCount = mFrameCount; 3723 state->mCommand = FastMixerState::COLD_IDLE; 3724 // already done in constructor initialization list 3725 //mFastMixerFutex = 0; 3726 state->mColdFutexAddr = &mFastMixerFutex; 3727 state->mColdGen++; 3728 state->mDumpState = &mFastMixerDumpState; 3729 #ifdef TEE_SINK 3730 state->mTeeSink = mTeeSink.get(); 3731 #endif 3732 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer"); 3733 state->mNBLogWriter = mFastMixerNBLogWriter.get(); 3734 sq->end(); 3735 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3736 3737 // start the fast mixer 3738 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO); 3739 pid_t tid = mFastMixer->getTid(); 3740 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); 3741 3742 #ifdef AUDIO_WATCHDOG 3743 // create and start the watchdog 3744 mAudioWatchdog = new AudioWatchdog(); 3745 mAudioWatchdog->setDump(&mAudioWatchdogDump); 3746 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO); 3747 tid = mAudioWatchdog->getTid(); 3748 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); 3749 #endif 3750 3751 } 3752 3753 switch (kUseFastMixer) { 3754 case FastMixer_Never: 3755 case FastMixer_Dynamic: 3756 mNormalSink = mOutputSink; 3757 break; 3758 case FastMixer_Always: 3759 mNormalSink = mPipeSink; 3760 break; 3761 case FastMixer_Static: 3762 mNormalSink = initFastMixer ? mPipeSink : mOutputSink; 3763 break; 3764 } 3765 } 3766 3767 AudioFlinger::MixerThread::~MixerThread() 3768 { 3769 if (mFastMixer != 0) { 3770 FastMixerStateQueue *sq = mFastMixer->sq(); 3771 FastMixerState *state = sq->begin(); 3772 if (state->mCommand == FastMixerState::COLD_IDLE) { 3773 int32_t old = android_atomic_inc(&mFastMixerFutex); 3774 if (old == -1) { 3775 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); 3776 } 3777 } 3778 state->mCommand = FastMixerState::EXIT; 3779 sq->end(); 3780 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3781 mFastMixer->join(); 3782 // Though the fast mixer thread has exited, it's state queue is still valid. 3783 // We'll use that extract the final state which contains one remaining fast track 3784 // corresponding to our sub-mix. 3785 state = sq->begin(); 3786 ALOG_ASSERT(state->mTrackMask == 1); 3787 FastTrack *fastTrack = &state->mFastTracks[0]; 3788 ALOG_ASSERT(fastTrack->mBufferProvider != NULL); 3789 delete fastTrack->mBufferProvider; 3790 sq->end(false /*didModify*/); 3791 mFastMixer.clear(); 3792 #ifdef AUDIO_WATCHDOG 3793 if (mAudioWatchdog != 0) { 3794 mAudioWatchdog->requestExit(); 3795 mAudioWatchdog->requestExitAndWait(); 3796 mAudioWatchdog.clear(); 3797 } 3798 #endif 3799 } 3800 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter); 3801 delete mAudioMixer; 3802 } 3803 3804 3805 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const 3806 { 3807 if (mFastMixer != 0) { 3808 MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); 3809 latency += (pipe->getAvgFrames() * 1000) / mSampleRate; 3810 } 3811 return latency; 3812 } 3813 3814 3815 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove) 3816 { 3817 PlaybackThread::threadLoop_removeTracks(tracksToRemove); 3818 } 3819 3820 ssize_t AudioFlinger::MixerThread::threadLoop_write() 3821 { 3822 // FIXME we should only do one push per cycle; confirm this is true 3823 // Start the fast mixer if it's not already running 3824 if (mFastMixer != 0) { 3825 FastMixerStateQueue *sq = mFastMixer->sq(); 3826 FastMixerState *state = sq->begin(); 3827 if (state->mCommand != FastMixerState::MIX_WRITE && 3828 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) { 3829 if (state->mCommand == FastMixerState::COLD_IDLE) { 3830 3831 // FIXME workaround for first HAL write being CPU bound on some devices 3832 ATRACE_BEGIN("write"); 3833 mOutput->write((char *)mSinkBuffer, 0); 3834 ATRACE_END(); 3835 3836 int32_t old = android_atomic_inc(&mFastMixerFutex); 3837 if (old == -1) { 3838 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); 3839 } 3840 #ifdef AUDIO_WATCHDOG 3841 if (mAudioWatchdog != 0) { 3842 mAudioWatchdog->resume(); 3843 } 3844 #endif 3845 } 3846 state->mCommand = FastMixerState::MIX_WRITE; 3847 #ifdef FAST_THREAD_STATISTICS 3848 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ? 3849 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); 3850 #endif 3851 sq->end(); 3852 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); 3853 if (kUseFastMixer == FastMixer_Dynamic) { 3854 mNormalSink = mPipeSink; 3855 } 3856 } else { 3857 sq->end(false /*didModify*/); 3858 } 3859 } 3860 return PlaybackThread::threadLoop_write(); 3861 } 3862 3863 void AudioFlinger::MixerThread::threadLoop_standby() 3864 { 3865 // Idle the fast mixer if it's currently running 3866 if (mFastMixer != 0) { 3867 FastMixerStateQueue *sq = mFastMixer->sq(); 3868 FastMixerState *state = sq->begin(); 3869 if (!(state->mCommand & FastMixerState::IDLE)) { 3870 state->mCommand = FastMixerState::COLD_IDLE; 3871 state->mColdFutexAddr = &mFastMixerFutex; 3872 state->mColdGen++; 3873 mFastMixerFutex = 0; 3874 sq->end(); 3875 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now 3876 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); 3877 if (kUseFastMixer == FastMixer_Dynamic) { 3878 mNormalSink = mOutputSink; 3879 } 3880 #ifdef AUDIO_WATCHDOG 3881 if (mAudioWatchdog != 0) { 3882 mAudioWatchdog->pause(); 3883 } 3884 #endif 3885 } else { 3886 sq->end(false /*didModify*/); 3887 } 3888 } 3889 PlaybackThread::threadLoop_standby(); 3890 } 3891 3892 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l() 3893 { 3894 return false; 3895 } 3896 3897 bool AudioFlinger::PlaybackThread::shouldStandby_l() 3898 { 3899 return !mStandby; 3900 } 3901 3902 bool AudioFlinger::PlaybackThread::waitingAsyncCallback() 3903 { 3904 Mutex::Autolock _l(mLock); 3905 return waitingAsyncCallback_l(); 3906 } 3907 3908 // shared by MIXER and DIRECT, overridden by DUPLICATING 3909 void AudioFlinger::PlaybackThread::threadLoop_standby() 3910 { 3911 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended); 3912 mOutput->standby(); 3913 if (mUseAsyncWrite != 0) { 3914 // discard any pending drain or write ack by incrementing sequence 3915 mWriteAckSequence = (mWriteAckSequence + 2) & ~1; 3916 mDrainSequence = (mDrainSequence + 2) & ~1; 3917 ALOG_ASSERT(mCallbackThread != 0); 3918 mCallbackThread->setWriteBlocked(mWriteAckSequence); 3919 mCallbackThread->setDraining(mDrainSequence); 3920 } 3921 mHwPaused = false; 3922 } 3923 3924 void AudioFlinger::PlaybackThread::onAddNewTrack_l() 3925 { 3926 ALOGV("signal playback thread"); 3927 broadcast_l(); 3928 } 3929 3930 void AudioFlinger::PlaybackThread::onAsyncError() 3931 { 3932 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) { 3933 invalidateTracks((audio_stream_type_t)i); 3934 } 3935 } 3936 3937 void AudioFlinger::MixerThread::threadLoop_mix() 3938 { 3939 // mix buffers... 3940 mAudioMixer->process(); 3941 mCurrentWriteLength = mSinkBufferSize; 3942 // increase sleep time progressively when application underrun condition clears. 3943 // Only increase sleep time if the mixer is ready for two consecutive times to avoid 3944 // that a steady state of alternating ready/not ready conditions keeps the sleep time 3945 // such that we would underrun the audio HAL. 3946 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) { 3947 sleepTimeShift--; 3948 } 3949 mSleepTimeUs = 0; 3950 mStandbyTimeNs = systemTime() + mStandbyDelayNs; 3951 //TODO: delay standby when effects have a tail 3952 3953 } 3954 3955 void AudioFlinger::MixerThread::threadLoop_sleepTime() 3956 { 3957 // If no tracks are ready, sleep once for the duration of an output 3958 // buffer size, then write 0s to the output 3959 if (mSleepTimeUs == 0) { 3960 if (mMixerStatus == MIXER_TRACKS_ENABLED) { 3961 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift; 3962 if (mSleepTimeUs < kMinThreadSleepTimeUs) { 3963 mSleepTimeUs = kMinThreadSleepTimeUs; 3964 } 3965 // reduce sleep time in case of consecutive application underruns to avoid 3966 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer 3967 // duration we would end up writing less data than needed by the audio HAL if 3968 // the condition persists. 3969 if (sleepTimeShift < kMaxThreadSleepTimeShift) { 3970 sleepTimeShift++; 3971 } 3972 } else { 3973 mSleepTimeUs = mIdleSleepTimeUs; 3974 } 3975 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) { 3976 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared 3977 // before effects processing or output. 3978 if (mMixerBufferValid) { 3979 memset(mMixerBuffer, 0, mMixerBufferSize); 3980 } else { 3981 memset(mSinkBuffer, 0, mSinkBufferSize); 3982 } 3983 mSleepTimeUs = 0; 3984 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED), 3985 "anticipated start"); 3986 } 3987 // TODO add standby time extension fct of effect tail 3988 } 3989 3990 // prepareTracks_l() must be called with ThreadBase::mLock held 3991 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l( 3992 Vector< sp<Track> > *tracksToRemove) 3993 { 3994 3995 mixer_state mixerStatus = MIXER_IDLE; 3996 // find out which tracks need to be processed 3997 size_t count = mActiveTracks.size(); 3998 size_t mixedTracks = 0; 3999 size_t tracksWithEffect = 0; 4000 // counts only _active_ fast tracks 4001 size_t fastTracks = 0; 4002 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset 4003 4004 float masterVolume = mMasterVolume; 4005 bool masterMute = mMasterMute; 4006 4007 if (masterMute) { 4008 masterVolume = 0; 4009 } 4010 // Delegate master volume control to effect in output mix effect chain if needed 4011 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); 4012 if (chain != 0) { 4013 uint32_t v = (uint32_t)(masterVolume * (1 << 24)); 4014 chain->setVolume_l(&v, &v); 4015 masterVolume = (float)((v + (1 << 23)) >> 24); 4016 chain.clear(); 4017 } 4018 4019 // prepare a new state to push 4020 FastMixerStateQueue *sq = NULL; 4021 FastMixerState *state = NULL; 4022 bool didModify = false; 4023 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED; 4024 if (mFastMixer != 0) { 4025 sq = mFastMixer->sq(); 4026 state = sq->begin(); 4027 } 4028 4029 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found. 4030 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found. 4031 4032 for (size_t i=0 ; i<count ; i++) { 4033 const sp<Track> t = mActiveTracks[i].promote(); 4034 if (t == 0) { 4035 continue; 4036 } 4037 4038 // this const just means the local variable doesn't change 4039 Track* const track = t.get(); 4040 4041 // process fast tracks 4042 if (track->isFastTrack()) { 4043 4044 // It's theoretically possible (though unlikely) for a fast track to be created 4045 // and then removed within the same normal mix cycle. This is not a problem, as 4046 // the track never becomes active so it's fast mixer slot is never touched. 4047 // The converse, of removing an (active) track and then creating a new track 4048 // at the identical fast mixer slot within the same normal mix cycle, 4049 // is impossible because the slot isn't marked available until the end of each cycle. 4050 int j = track->mFastIndex; 4051 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks); 4052 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j))); 4053 FastTrack *fastTrack = &state->mFastTracks[j]; 4054 4055 // Determine whether the track is currently in underrun condition, 4056 // and whether it had a recent underrun. 4057 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j]; 4058 FastTrackUnderruns underruns = ftDump->mUnderruns; 4059 uint32_t recentFull = (underruns.mBitFields.mFull - 4060 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK; 4061 uint32_t recentPartial = (underruns.mBitFields.mPartial - 4062 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK; 4063 uint32_t recentEmpty = (underruns.mBitFields.mEmpty - 4064 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK; 4065 uint32_t recentUnderruns = recentPartial + recentEmpty; 4066 track->mObservedUnderruns = underruns; 4067 // don't count underruns that occur while stopping or pausing 4068 // or stopped which can occur when flush() is called while active 4069 if (!(track->isStopping() || track->isPausing() || track->isStopped()) && 4070 recentUnderruns > 0) { 4071 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun 4072 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount); 4073 } else { 4074 track->mAudioTrackServerProxy->tallyUnderrunFrames(0); 4075 } 4076 4077 // This is similar to the state machine for normal tracks, 4078 // with a few modifications for fast tracks. 4079 bool isActive = true; 4080 switch (track->mState) { 4081 case TrackBase::STOPPING_1: 4082 // track stays active in STOPPING_1 state until first underrun 4083 if (recentUnderruns > 0 || track->isTerminated()) { 4084 track->mState = TrackBase::STOPPING_2; 4085 } 4086 break; 4087 case TrackBase::PAUSING: 4088 // ramp down is not yet implemented 4089 track->setPaused(); 4090 break; 4091 case TrackBase::RESUMING: 4092 // ramp up is not yet implemented 4093 track->mState = TrackBase::ACTIVE; 4094 break; 4095 case TrackBase::ACTIVE: 4096 if (recentFull > 0 || recentPartial > 0) { 4097 // track has provided at least some frames recently: reset retry count 4098 track->mRetryCount = kMaxTrackRetries; 4099 } 4100 if (recentUnderruns == 0) { 4101 // no recent underruns: stay active 4102 break; 4103 } 4104 // there has recently been an underrun of some kind 4105 if (track->sharedBuffer() == 0) { 4106 // were any of the recent underruns "empty" (no frames available)? 4107 if (recentEmpty == 0) { 4108 // no, then ignore the partial underruns as they are allowed indefinitely 4109 break; 4110 } 4111 // there has recently been an "empty" underrun: decrement the retry counter 4112 if (--(track->mRetryCount) > 0) { 4113 break; 4114 } 4115 // indicate to client process that the track was disabled because of underrun; 4116 // it will then automatically call start() when data is available 4117 track->disable(); 4118 // remove from active list, but state remains ACTIVE [confusing but true] 4119 isActive = false; 4120 break; 4121 } 4122 // fall through 4123 case TrackBase::STOPPING_2: 4124 case TrackBase::PAUSED: 4125 case TrackBase::STOPPED: 4126 case TrackBase::FLUSHED: // flush() while active 4127 // Check for presentation complete if track is inactive 4128 // We have consumed all the buffers of this track. 4129 // This would be incomplete if we auto-paused on underrun 4130 { 4131 size_t audioHALFrames = 4132 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000; 4133 int64_t framesWritten = mBytesWritten / mFrameSize; 4134 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) { 4135 // track stays in active list until presentation is complete 4136 break; 4137 } 4138 } 4139 if (track->isStopping_2()) { 4140 track->mState = TrackBase::STOPPED; 4141 } 4142 if (track->isStopped()) { 4143 // Can't reset directly, as fast mixer is still polling this track 4144 // track->reset(); 4145 // So instead mark this track as needing to be reset after push with ack 4146 resetMask |= 1 << i; 4147 } 4148 isActive = false; 4149 break; 4150 case TrackBase::IDLE: 4151 default: 4152 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState); 4153 } 4154 4155 if (isActive) { 4156 // was it previously inactive? 4157 if (!(state->mTrackMask & (1 << j))) { 4158 ExtendedAudioBufferProvider *eabp = track; 4159 VolumeProvider *vp = track; 4160 fastTrack->mBufferProvider = eabp; 4161 fastTrack->mVolumeProvider = vp; 4162 fastTrack->mChannelMask = track->mChannelMask; 4163 fastTrack->mFormat = track->mFormat; 4164 fastTrack->mGeneration++; 4165 state->mTrackMask |= 1 << j; 4166 didModify = true; 4167 // no acknowledgement required for newly active tracks 4168 } 4169 // cache the combined master volume and stream type volume for fast mixer; this 4170 // lacks any synchronization or barrier so VolumeProvider may read a stale value 4171 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume; 4172 ++fastTracks; 4173 } else { 4174 // was it previously active? 4175 if (state->mTrackMask & (1 << j)) { 4176 fastTrack->mBufferProvider = NULL; 4177 fastTrack->mGeneration++; 4178 state->mTrackMask &= ~(1 << j); 4179 didModify = true; 4180 // If any fast tracks were removed, we must wait for acknowledgement 4181 // because we're about to decrement the last sp<> on those tracks. 4182 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; 4183 } else { 4184 LOG_ALWAYS_FATAL("fast track %d should have been active; " 4185 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d", 4186 j, track->mState, state->mTrackMask, recentUnderruns, 4187 track->sharedBuffer() != 0); 4188 } 4189 tracksToRemove->add(track); 4190 // Avoids a misleading display in dumpsys 4191 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL; 4192 } 4193 continue; 4194 } 4195 4196 { // local variable scope to avoid goto warning 4197 4198 audio_track_cblk_t* cblk = track->cblk(); 4199 4200 // The first time a track is added we wait 4201 // for all its buffers to be filled before processing it 4202 int name = track->name(); 4203 // make sure that we have enough frames to mix one full buffer. 4204 // enforce this condition only once to enable draining the buffer in case the client 4205 // app does not call stop() and relies on underrun to stop: 4206 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed 4207 // during last round 4208 size_t desiredFrames; 4209 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate(); 4210 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); 4211 4212 desiredFrames = sourceFramesNeededWithTimestretch( 4213 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed); 4214 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed. 4215 // add frames already consumed but not yet released by the resampler 4216 // because mAudioTrackServerProxy->framesReady() will include these frames 4217 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name()); 4218 4219 uint32_t minFrames = 1; 4220 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() && 4221 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) { 4222 minFrames = desiredFrames; 4223 } 4224 4225 size_t framesReady = track->framesReady(); 4226 if (ATRACE_ENABLED()) { 4227 // I wish we had formatted trace names 4228 char traceName[16]; 4229 strcpy(traceName, "nRdy"); 4230 int name = track->name(); 4231 if (AudioMixer::TRACK0 <= name && 4232 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) { 4233 name -= AudioMixer::TRACK0; 4234 traceName[4] = (name / 10) + '0'; 4235 traceName[5] = (name % 10) + '0'; 4236 } else { 4237 traceName[4] = '?'; 4238 traceName[5] = '?'; 4239 } 4240 traceName[6] = '\0'; 4241 ATRACE_INT(traceName, framesReady); 4242 } 4243 if ((framesReady >= minFrames) && track->isReady() && 4244 !track->isPaused() && !track->isTerminated()) 4245 { 4246 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this); 4247 4248 mixedTracks++; 4249 4250 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means 4251 // there is an effect chain connected to the track 4252 chain.clear(); 4253 if (track->mainBuffer() != mSinkBuffer && 4254 track->mainBuffer() != mMixerBuffer) { 4255 if (mEffectBufferEnabled) { 4256 mEffectBufferValid = true; // Later can set directly. 4257 } 4258 chain = getEffectChain_l(track->sessionId()); 4259 // Delegate volume control to effect in track effect chain if needed 4260 if (chain != 0) { 4261 tracksWithEffect++; 4262 } else { 4263 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on " 4264 "session %d", 4265 name, track->sessionId()); 4266 } 4267 } 4268 4269 4270 int param = AudioMixer::VOLUME; 4271 if (track->mFillingUpStatus == Track::FS_FILLED) { 4272 // no ramp for the first volume setting 4273 track->mFillingUpStatus = Track::FS_ACTIVE; 4274 if (track->mState == TrackBase::RESUMING) { 4275 track->mState = TrackBase::ACTIVE; 4276 param = AudioMixer::RAMP_VOLUME; 4277 } 4278 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL); 4279 // FIXME should not make a decision based on mServer 4280 } else if (cblk->mServer != 0) { 4281 // If the track is stopped before the first frame was mixed, 4282 // do not apply ramp 4283 param = AudioMixer::RAMP_VOLUME; 4284 } 4285 4286 // compute volume for this track 4287 uint32_t vl, vr; // in U8.24 integer format 4288 float vlf, vrf, vaf; // in [0.0, 1.0] float format 4289 if (track->isPausing() || mStreamTypes[track->streamType()].mute) { 4290 vl = vr = 0; 4291 vlf = vrf = vaf = 0.; 4292 if (track->isPausing()) { 4293 track->setPaused(); 4294 } 4295 } else { 4296 4297 // read original volumes with volume control 4298 float typeVolume = mStreamTypes[track->streamType()].volume; 4299 float v = masterVolume * typeVolume; 4300 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy; 4301 gain_minifloat_packed_t vlr = proxy->getVolumeLR(); 4302 vlf = float_from_gain(gain_minifloat_unpack_left(vlr)); 4303 vrf = float_from_gain(gain_minifloat_unpack_right(vlr)); 4304 // track volumes come from shared memory, so can't be trusted and must be clamped 4305 if (vlf > GAIN_FLOAT_UNITY) { 4306 ALOGV("Track left volume out of range: %.3g", vlf); 4307 vlf = GAIN_FLOAT_UNITY; 4308 } 4309 if (vrf > GAIN_FLOAT_UNITY) { 4310 ALOGV("Track right volume out of range: %.3g", vrf); 4311 vrf = GAIN_FLOAT_UNITY; 4312 } 4313 // now apply the master volume and stream type volume 4314 vlf *= v; 4315 vrf *= v; 4316 // assuming master volume and stream type volume each go up to 1.0, 4317 // then derive vl and vr as U8.24 versions for the effect chain 4318 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT; 4319 vl = (uint32_t) (scaleto8_24 * vlf); 4320 vr = (uint32_t) (scaleto8_24 * vrf); 4321 // vl and vr are now in U8.24 format 4322 uint16_t sendLevel = proxy->getSendLevel_U4_12(); 4323 // send level comes from shared memory and so may be corrupt 4324 if (sendLevel > MAX_GAIN_INT) { 4325 ALOGV("Track send level out of range: %04X", sendLevel); 4326 sendLevel = MAX_GAIN_INT; 4327 } 4328 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel 4329 vaf = v * sendLevel * (1. / MAX_GAIN_INT); 4330 } 4331 4332 // Delegate volume control to effect in track effect chain if needed 4333 if (chain != 0 && chain->setVolume_l(&vl, &vr)) { 4334 // Do not ramp volume if volume is controlled by effect 4335 param = AudioMixer::VOLUME; 4336 // Update remaining floating point volume levels 4337 vlf = (float)vl / (1 << 24); 4338 vrf = (float)vr / (1 << 24); 4339 track->mHasVolumeController = true; 4340 } else { 4341 // force no volume ramp when volume controller was just disabled or removed 4342 // from effect chain to avoid volume spike 4343 if (track->mHasVolumeController) { 4344 param = AudioMixer::VOLUME; 4345 } 4346 track->mHasVolumeController = false; 4347 } 4348 4349 // XXX: these things DON'T need to be done each time 4350 mAudioMixer->setBufferProvider(name, track); 4351 mAudioMixer->enable(name); 4352 4353 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf); 4354 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf); 4355 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf); 4356 mAudioMixer->setParameter( 4357 name, 4358 AudioMixer::TRACK, 4359 AudioMixer::FORMAT, (void *)track->format()); 4360 mAudioMixer->setParameter( 4361 name, 4362 AudioMixer::TRACK, 4363 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask()); 4364 mAudioMixer->setParameter( 4365 name, 4366 AudioMixer::TRACK, 4367 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask); 4368 // limit track sample rate to 2 x output sample rate, which changes at re-configuration 4369 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX; 4370 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate(); 4371 if (reqSampleRate == 0) { 4372 reqSampleRate = mSampleRate; 4373 } else if (reqSampleRate > maxSampleRate) { 4374 reqSampleRate = maxSampleRate; 4375 } 4376 mAudioMixer->setParameter( 4377 name, 4378 AudioMixer::RESAMPLE, 4379 AudioMixer::SAMPLE_RATE, 4380 (void *)(uintptr_t)reqSampleRate); 4381 4382 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); 4383 mAudioMixer->setParameter( 4384 name, 4385 AudioMixer::TIMESTRETCH, 4386 AudioMixer::PLAYBACK_RATE, 4387 &playbackRate); 4388 4389 /* 4390 * Select the appropriate output buffer for the track. 4391 * 4392 * Tracks with effects go into their own effects chain buffer 4393 * and from there into either mEffectBuffer or mSinkBuffer. 4394 * 4395 * Other tracks can use mMixerBuffer for higher precision 4396 * channel accumulation. If this buffer is enabled 4397 * (mMixerBufferEnabled true), then selected tracks will accumulate 4398 * into it. 4399 * 4400 */ 4401 if (mMixerBufferEnabled 4402 && (track->mainBuffer() == mSinkBuffer 4403 || track->mainBuffer() == mMixerBuffer)) { 4404 mAudioMixer->setParameter( 4405 name, 4406 AudioMixer::TRACK, 4407 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat); 4408 mAudioMixer->setParameter( 4409 name, 4410 AudioMixer::TRACK, 4411 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer); 4412 // TODO: override track->mainBuffer()? 4413 mMixerBufferValid = true; 4414 } else { 4415 mAudioMixer->setParameter( 4416 name, 4417 AudioMixer::TRACK, 4418 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT); 4419 mAudioMixer->setParameter( 4420 name, 4421 AudioMixer::TRACK, 4422 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer()); 4423 } 4424 mAudioMixer->setParameter( 4425 name, 4426 AudioMixer::TRACK, 4427 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer()); 4428 4429 // reset retry count 4430 track->mRetryCount = kMaxTrackRetries; 4431 4432 // If one track is ready, set the mixer ready if: 4433 // - the mixer was not ready during previous round OR 4434 // - no other track is not ready 4435 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY || 4436 mixerStatus != MIXER_TRACKS_ENABLED) { 4437 mixerStatus = MIXER_TRACKS_READY; 4438 } 4439 } else { 4440 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) { 4441 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)", 4442 track, framesReady, desiredFrames); 4443 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames); 4444 } else { 4445 track->mAudioTrackServerProxy->tallyUnderrunFrames(0); 4446 } 4447 4448 // clear effect chain input buffer if an active track underruns to avoid sending 4449 // previous audio buffer again to effects 4450 chain = getEffectChain_l(track->sessionId()); 4451 if (chain != 0) { 4452 chain->clearInputBuffer(); 4453 } 4454 4455 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this); 4456 if ((track->sharedBuffer() != 0) || track->isTerminated() || 4457 track->isStopped() || track->isPaused()) { 4458 // We have consumed all the buffers of this track. 4459 // Remove it from the list of active tracks. 4460 // TODO: use actual buffer filling status instead of latency when available from 4461 // audio HAL 4462 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000; 4463 int64_t framesWritten = mBytesWritten / mFrameSize; 4464 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) { 4465 if (track->isStopped()) { 4466 track->reset(); 4467 } 4468 tracksToRemove->add(track); 4469 } 4470 } else { 4471 // No buffers for this track. Give it a few chances to 4472 // fill a buffer, then remove it from active list. 4473 if (--(track->mRetryCount) <= 0) { 4474 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this); 4475 tracksToRemove->add(track); 4476 // indicate to client process that the track was disabled because of underrun; 4477 // it will then automatically call start() when data is available 4478 track->disable(); 4479 // If one track is not ready, mark the mixer also not ready if: 4480 // - the mixer was ready during previous round OR 4481 // - no other track is ready 4482 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY || 4483 mixerStatus != MIXER_TRACKS_READY) { 4484 mixerStatus = MIXER_TRACKS_ENABLED; 4485 } 4486 } 4487 mAudioMixer->disable(name); 4488 } 4489 4490 } // local variable scope to avoid goto warning 4491 4492 } 4493 4494 // Push the new FastMixer state if necessary 4495 bool pauseAudioWatchdog = false; 4496 if (didModify) { 4497 state->mFastTracksGen++; 4498 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle 4499 if (kUseFastMixer == FastMixer_Dynamic && 4500 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) { 4501 state->mCommand = FastMixerState::COLD_IDLE; 4502 state->mColdFutexAddr = &mFastMixerFutex; 4503 state->mColdGen++; 4504 mFastMixerFutex = 0; 4505 if (kUseFastMixer == FastMixer_Dynamic) { 4506 mNormalSink = mOutputSink; 4507 } 4508 // If we go into cold idle, need to wait for acknowledgement 4509 // so that fast mixer stops doing I/O. 4510 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; 4511 pauseAudioWatchdog = true; 4512 } 4513 } 4514 if (sq != NULL) { 4515 sq->end(didModify); 4516 sq->push(block); 4517 } 4518 #ifdef AUDIO_WATCHDOG 4519 if (pauseAudioWatchdog && mAudioWatchdog != 0) { 4520 mAudioWatchdog->pause(); 4521 } 4522 #endif 4523 4524 // Now perform the deferred reset on fast tracks that have stopped 4525 while (resetMask != 0) { 4526 size_t i = __builtin_ctz(resetMask); 4527 ALOG_ASSERT(i < count); 4528 resetMask &= ~(1 << i); 4529 sp<Track> t = mActiveTracks[i].promote(); 4530 if (t == 0) { 4531 continue; 4532 } 4533 Track* track = t.get(); 4534 ALOG_ASSERT(track->isFastTrack() && track->isStopped()); 4535 track->reset(); 4536 } 4537 4538 // remove all the tracks that need to be... 4539 removeTracks_l(*tracksToRemove); 4540 4541 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) { 4542 mEffectBufferValid = true; 4543 } 4544 4545 if (mEffectBufferValid) { 4546 // as long as there are effects we should clear the effects buffer, to avoid 4547 // passing a non-clean buffer to the effect chain 4548 memset(mEffectBuffer, 0, mEffectBufferSize); 4549 } 4550 // sink or mix buffer must be cleared if all tracks are connected to an 4551 // effect chain as in this case the mixer will not write to the sink or mix buffer 4552 // and track effects will accumulate into it 4553 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || 4554 (mixedTracks == 0 && fastTracks > 0))) { 4555 // FIXME as a performance optimization, should remember previous zero status 4556 if (mMixerBufferValid) { 4557 memset(mMixerBuffer, 0, mMixerBufferSize); 4558 // TODO: In testing, mSinkBuffer below need not be cleared because 4559 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer 4560 // after mixing. 4561 // 4562 // To enforce this guarantee: 4563 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || 4564 // (mixedTracks == 0 && fastTracks > 0)) 4565 // must imply MIXER_TRACKS_READY. 4566 // Later, we may clear buffers regardless, and skip much of this logic. 4567 } 4568 // FIXME as a performance optimization, should remember previous zero status 4569 memset