HomeSort by relevance Sort by last modified time
    Searched full:diagonal (Results 151 - 175 of 721) sorted by null

1 2 3 4 5 67 8 91011>>

  /external/eigen/unsupported/Eigen/src/NonLinearOptimization/
r1updt.h 83 /* test for zero diagonal elements in the output s. */
  /external/libgdx/extensions/gdx-bullet/jni/src/bullet/BulletDynamics/MLCPSolvers/
btSolveProjectedGaussSeidel.h 51 if (j != i)//skip main diagonal
  /external/opencv3/modules/cudev/include/opencv2/cudev/grid/detail/
transpose.hpp 67 // do diagonal reordering
  /external/opencv3/modules/viz/src/vtk/
vtkVizInteractorStyle.hpp 104 // Set the basic unit step size : by default 1/250 of bounding diagonal
  /packages/inputmethods/LatinIME/java/src/com/android/inputmethod/keyboard/internal/
BogusMoveEventDetector.java 33 // These thresholds' unit is a diagonal length of a key.
  /development/samples/TicTacToeLib/src/com/example/android/tictactoe/library/
GameActivity.java 234 private void setFinished(State player, int col, int row, int diagonal) {
239 mGameView.setFinished(col, row, diagonal);
  /external/apache-commons-math/src/main/java/org/apache/commons/math/ode/nonstiff/
GraggBulirschStoerIntegrator.java 525 * @param diag working diagonal of the Aitken-Neville's
532 // update the diagonal
565 final double[][] diagonal = new double[sequence.length-1][]; local
568 diagonal[k] = new double[y0.length];
680 (k == 0) ? yMidDots[0] : diagonal[k-1],
818 extrapolate(0, j, diagonal, yMidDots[0]);
836 diagonal[j-1][i] = factor * fk[l2+j][middleIndex+l][i];
838 extrapolate(l2, j, diagonal, yMidDots[l+1]);
    [all...]
  /external/ceres-solver/internal/ceres/
schur_complement_solver.h 66 // of the variables is such that, E'E is a block diagonal
86 // should be non-null and the diagonal matrix corresponding to it
visibility_based_preconditioner.h 92 // be a block diagonal matrix with blocks corresponding to the
108 // correspond to tri-diagonal matrices. Thus there exist a permutation
compressed_row_sparse_matrix.cc 134 CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal,
136 CHECK_NOTNULL(diagonal);
147 values_[i] = diagonal[i];
317 const double* diagonal,
340 values[idx_cursor + r] = diagonal[col_cursor + r];
dogleg_strategy.cc 115 // Vector used to form the diagonal matrix that is used to
165 // diagonal scaling matrix D defined by sqrt(diagonal_).
523 // necessary to add a diagonal matrix at the bottom to prevent the
526 // We do this by computing the same diagonal matrix as the one used
530 // If the solve fails, the multiplier to the diagonal is increased
  /external/dng_sdk/source/
dng_rect.h 188 real64 Diagonal () const
331 real64 Diagonal () const
  /external/eigen/Eigen/src/SparseLU/
SparseLU_SupernodalMatrix.h 247 Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
255 ++it; // Skip the diagonal element
  /external/eigen/doc/
ClassHierarchy.dox 69 diagonal matrices, sparse matrices, etc...
118 Finally, consider an example of something that is not a dense expression, for instance a diagonal matrix. The
TopicLinearAlgebraDecompositions.dox 229 <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
  /external/libgdx/extensions/gdx-bullet/jni/swig-src/softbody/com/badlogic/gdx/physics/bullet/softbody/
Softbody.java 85 public static Matrix3 Diagonal(float x) {
86 return SoftbodyJNI.Diagonal(x);
  /external/apache-commons-math/src/main/java/org/apache/commons/math/linear/
EigenDecompositionImpl.java 36 * by {@link #getD()} is always diagonal and the imaginary values returned
42 * the upper part of the matrix, the part below the diagonal is not accessed at
59 /** Main diagonal of the tridiagonal matrix. */
62 /** Secondary diagonal of the tridiagonal matrix. */
114 * @param main Main diagonal of the symmetric triadiagonal form
469 * to tri-diagonal form.
  /external/eigen/Eigen/src/QR/
ColPivHouseholderQR.h 370 * diagonal coefficient of R.
411 return abs(m_qr.diagonal().prod());
419 return m_qr.diagonal().cwiseAbs().array().log().sum();
487 // generate the householder vector, store it below the diagonal
491 // apply the householder transformation to the diagonal coefficient
494 // remember the maximum absolute value of diagonal coefficients
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixSquareRoot.h 88 // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
107 // pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
250 * stored in the upper triangular part (including the diagonal) of
269 * Only the upper triangular part (including the diagonal) of
  /external/libgdx/extensions/gdx-bullet/jni/src/bullet/BulletDynamics/Featherstone/
btMultiBody.h 61 const btVector3 &inertia, // inertia of base, in base frame; assumed diagonal
651 btVector3 m_baseInertia; // inertia of the base (in local frame; diagonal)
725 btVector3DoubleData m_linkInertia; // inertia of the base (in local frame; diagonal)
756 btVector3FloatData m_linkInertia; // inertia of the base (in local frame; diagonal)
780 btVector3DoubleData m_baseInertia; // inertia of the base (in local frame; diagonal)
796 btVector3FloatData m_baseInertia; // inertia of the base (in local frame; diagonal)
  /external/eigen/Eigen/src/Eigenvalues/
RealQZ.h 31 * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
277 /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
295 /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
309 /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
599 // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
  /external/eigen/Eigen/src/LU/
FullPivLU.h 26 * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
124 * diagonal coefficient of U.
519 return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
585 * Thus, the diagonal of U ends with exactly
600 // the main diagonal. We need that to be able to apply our triangular solvers.
  /external/eigen/blas/f2c/
chbmv.c 83 /* column, with the leading diagonal of the matrix in row */
84 /* ( k + 1 ) of the array, the first super-diagonal starting at */
101 /* column, with the leading diagonal of the matrix in row 1 of */
102 /* the array, the first sub-diagonal starting at position 1 in */
116 /* Note that the imaginary parts of the diagonal elements need */
zhbmv.c 84 /* column, with the leading diagonal of the matrix in row */
85 /* ( k + 1 ) of the array, the first super-diagonal starting at */
102 /* column, with the leading diagonal of the matrix in row 1 of */
103 /* the array, the first sub-diagonal starting at position 1 in */
117 /* Note that the imaginary parts of the diagonal elements need */
  /external/eigen/Eigen/src/Core/
Redux.h 393 /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
397 * \sa diagonal(), sum()
403 return derived().diagonal().sum();

Completed in 630 milliseconds

1 2 3 4 5 67 8 91011>>