Home | History | Annotate | Download | only in f2c
      1 /* chbmv.f -- translated by f2c (version 20100827).
      2    You must link the resulting object file with libf2c:
      3 	on Microsoft Windows system, link with libf2c.lib;
      4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
      5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
      6 	-- in that order, at the end of the command line, as in
      7 		cc *.o -lf2c -lm
      8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
      9 
     10 		http://www.netlib.org/f2c/libf2c.zip
     11 */
     12 
     13 #include "datatypes.h"
     14 
     15 /* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
     16 	alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
     17 	beta, complex *y, integer *incy, ftnlen uplo_len)
     18 {
     19     /* System generated locals */
     20     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
     21     real r__1;
     22     complex q__1, q__2, q__3, q__4;
     23 
     24     /* Builtin functions */
     25     void r_cnjg(complex *, complex *);
     26 
     27     /* Local variables */
     28     integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
     29     complex temp1, temp2;
     30     extern logical lsame_(char *, char *, ftnlen, ftnlen);
     31     integer kplus1;
     32     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
     33 
     34 /*     .. Scalar Arguments .. */
     35 /*     .. */
     36 /*     .. Array Arguments .. */
     37 /*     .. */
     38 
     39 /*  Purpose */
     40 /*  ======= */
     41 
     42 /*  CHBMV  performs the matrix-vector  operation */
     43 
     44 /*     y := alpha*A*x + beta*y, */
     45 
     46 /*  where alpha and beta are scalars, x and y are n element vectors and */
     47 /*  A is an n by n hermitian band matrix, with k super-diagonals. */
     48 
     49 /*  Arguments */
     50 /*  ========== */
     51 
     52 /*  UPLO   - CHARACTER*1. */
     53 /*           On entry, UPLO specifies whether the upper or lower */
     54 /*           triangular part of the band matrix A is being supplied as */
     55 /*           follows: */
     56 
     57 /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
     58 /*                                  being supplied. */
     59 
     60 /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
     61 /*                                  being supplied. */
     62 
     63 /*           Unchanged on exit. */
     64 
     65 /*  N      - INTEGER. */
     66 /*           On entry, N specifies the order of the matrix A. */
     67 /*           N must be at least zero. */
     68 /*           Unchanged on exit. */
     69 
     70 /*  K      - INTEGER. */
     71 /*           On entry, K specifies the number of super-diagonals of the */
     72 /*           matrix A. K must satisfy  0 .le. K. */
     73 /*           Unchanged on exit. */
     74 
     75 /*  ALPHA  - COMPLEX         . */
     76 /*           On entry, ALPHA specifies the scalar alpha. */
     77 /*           Unchanged on exit. */
     78 
     79 /*  A      - COMPLEX          array of DIMENSION ( LDA, n ). */
     80 /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
     81 /*           by n part of the array A must contain the upper triangular */
     82 /*           band part of the hermitian matrix, supplied column by */
     83 /*           column, with the leading diagonal of the matrix in row */
     84 /*           ( k + 1 ) of the array, the first super-diagonal starting at */
     85 /*           position 2 in row k, and so on. The top left k by k triangle */
     86 /*           of the array A is not referenced. */
     87 /*           The following program segment will transfer the upper */
     88 /*           triangular part of a hermitian band matrix from conventional */
     89 /*           full matrix storage to band storage: */
     90 
     91 /*                 DO 20, J = 1, N */
     92 /*                    M = K + 1 - J */
     93 /*                    DO 10, I = MAX( 1, J - K ), J */
     94 /*                       A( M + I, J ) = matrix( I, J ) */
     95 /*              10    CONTINUE */
     96 /*              20 CONTINUE */
     97 
     98 /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
     99 /*           by n part of the array A must contain the lower triangular */
    100 /*           band part of the hermitian matrix, supplied column by */
    101 /*           column, with the leading diagonal of the matrix in row 1 of */
    102 /*           the array, the first sub-diagonal starting at position 1 in */
    103 /*           row 2, and so on. The bottom right k by k triangle of the */
    104 /*           array A is not referenced. */
    105 /*           The following program segment will transfer the lower */
    106 /*           triangular part of a hermitian band matrix from conventional */
    107 /*           full matrix storage to band storage: */
    108 
    109 /*                 DO 20, J = 1, N */
    110 /*                    M = 1 - J */
    111 /*                    DO 10, I = J, MIN( N, J + K ) */
    112 /*                       A( M + I, J ) = matrix( I, J ) */
    113 /*              10    CONTINUE */
    114 /*              20 CONTINUE */
    115 
    116 /*           Note that the imaginary parts of the diagonal elements need */
    117 /*           not be set and are assumed to be zero. */
    118 /*           Unchanged on exit. */
    119 
    120 /*  LDA    - INTEGER. */
    121 /*           On entry, LDA specifies the first dimension of A as declared */
    122 /*           in the calling (sub) program. LDA must be at least */
    123 /*           ( k + 1 ). */
    124 /*           Unchanged on exit. */
    125 
    126 /*  X      - COMPLEX          array of DIMENSION at least */
    127 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
    128 /*           Before entry, the incremented array X must contain the */
    129 /*           vector x. */
    130 /*           Unchanged on exit. */
    131 
    132 /*  INCX   - INTEGER. */
    133 /*           On entry, INCX specifies the increment for the elements of */
    134 /*           X. INCX must not be zero. */
    135 /*           Unchanged on exit. */
    136 
    137 /*  BETA   - COMPLEX         . */
    138 /*           On entry, BETA specifies the scalar beta. */
    139 /*           Unchanged on exit. */
    140 
    141 /*  Y      - COMPLEX          array of DIMENSION at least */
    142 /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
    143 /*           Before entry, the incremented array Y must contain the */
    144 /*           vector y. On exit, Y is overwritten by the updated vector y. */
    145 
    146 /*  INCY   - INTEGER. */
    147 /*           On entry, INCY specifies the increment for the elements of */
    148 /*           Y. INCY must not be zero. */
    149 /*           Unchanged on exit. */
    150 
    151 /*  Further Details */
    152 /*  =============== */
    153 
    154 /*  Level 2 Blas routine. */
    155 
    156 /*  -- Written on 22-October-1986. */
    157 /*     Jack Dongarra, Argonne National Lab. */
    158 /*     Jeremy Du Croz, Nag Central Office. */
    159 /*     Sven Hammarling, Nag Central Office. */
    160 /*     Richard Hanson, Sandia National Labs. */
    161 
    162 /*  ===================================================================== */
    163 
    164 /*     .. Parameters .. */
    165 /*     .. */
    166 /*     .. Local Scalars .. */
    167 /*     .. */
    168 /*     .. External Functions .. */
    169 /*     .. */
    170 /*     .. External Subroutines .. */
    171 /*     .. */
    172 /*     .. Intrinsic Functions .. */
    173 /*     .. */
    174 
    175 /*     Test the input parameters. */
    176 
    177     /* Parameter adjustments */
    178     a_dim1 = *lda;
    179     a_offset = 1 + a_dim1;
    180     a -= a_offset;
    181     --x;
    182     --y;
    183 
    184     /* Function Body */
    185     info = 0;
    186     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
    187 	    ftnlen)1, (ftnlen)1)) {
    188 	info = 1;
    189     } else if (*n < 0) {
    190 	info = 2;
    191     } else if (*k < 0) {
    192 	info = 3;
    193     } else if (*lda < *k + 1) {
    194 	info = 6;
    195     } else if (*incx == 0) {
    196 	info = 8;
    197     } else if (*incy == 0) {
    198 	info = 11;
    199     }
    200     if (info != 0) {
    201 	xerbla_("CHBMV ", &info, (ftnlen)6);
    202 	return 0;
    203     }
    204 
    205 /*     Quick return if possible. */
    206 
    207     if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
    208                                                            beta->i == 0.f))) {
    209 	return 0;
    210     }
    211 
    212 /*     Set up the start points in  X  and  Y. */
    213 
    214     if (*incx > 0) {
    215 	kx = 1;
    216     } else {
    217 	kx = 1 - (*n - 1) * *incx;
    218     }
    219     if (*incy > 0) {
    220 	ky = 1;
    221     } else {
    222 	ky = 1 - (*n - 1) * *incy;
    223     }
    224 
    225 /*     Start the operations. In this version the elements of the array A */
    226 /*     are accessed sequentially with one pass through A. */
    227 
    228 /*     First form  y := beta*y. */
    229 
    230     if (beta->r != 1.f || beta->i != 0.f) {
    231 	if (*incy == 1) {
    232 	    if (beta->r == 0.f && beta->i == 0.f) {
    233 		i__1 = *n;
    234 		for (i__ = 1; i__ <= i__1; ++i__) {
    235 		    i__2 = i__;
    236 		    y[i__2].r = 0.f, y[i__2].i = 0.f;
    237 /* L10: */
    238 		}
    239 	    } else {
    240 		i__1 = *n;
    241 		for (i__ = 1; i__ <= i__1; ++i__) {
    242 		    i__2 = i__;
    243 		    i__3 = i__;
    244 		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
    245 			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
    246 			    .r;
    247 		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
    248 /* L20: */
    249 		}
    250 	    }
    251 	} else {
    252 	    iy = ky;
    253 	    if (beta->r == 0.f && beta->i == 0.f) {
    254 		i__1 = *n;
    255 		for (i__ = 1; i__ <= i__1; ++i__) {
    256 		    i__2 = iy;
    257 		    y[i__2].r = 0.f, y[i__2].i = 0.f;
    258 		    iy += *incy;
    259 /* L30: */
    260 		}
    261 	    } else {
    262 		i__1 = *n;
    263 		for (i__ = 1; i__ <= i__1; ++i__) {
    264 		    i__2 = iy;
    265 		    i__3 = iy;
    266 		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
    267 			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
    268 			    .r;
    269 		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
    270 		    iy += *incy;
    271 /* L40: */
    272 		}
    273 	    }
    274 	}
    275     }
    276     if (alpha->r == 0.f && alpha->i == 0.f) {
    277 	return 0;
    278     }
    279     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
    280 
    281 /*        Form  y  when upper triangle of A is stored. */
    282 
    283 	kplus1 = *k + 1;
    284 	if (*incx == 1 && *incy == 1) {
    285 	    i__1 = *n;
    286 	    for (j = 1; j <= i__1; ++j) {
    287 		i__2 = j;
    288 		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
    289 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
    290 		temp1.r = q__1.r, temp1.i = q__1.i;
    291 		temp2.r = 0.f, temp2.i = 0.f;
    292 		l = kplus1 - j;
    293 /* Computing MAX */
    294 		i__2 = 1, i__3 = j - *k;
    295 		i__4 = j - 1;
    296 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
    297 		    i__2 = i__;
    298 		    i__3 = i__;
    299 		    i__5 = l + i__ + j * a_dim1;
    300 		    q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    301 			    q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    302 			    .r;
    303 		    q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
    304 		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
    305 		    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
    306 		    i__2 = i__;
    307 		    q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
    308 			     q__3.r * x[i__2].i + q__3.i * x[i__2].r;
    309 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
    310 		    temp2.r = q__1.r, temp2.i = q__1.i;
    311 /* L50: */
    312 		}
    313 		i__4 = j;
    314 		i__2 = j;
    315 		i__3 = kplus1 + j * a_dim1;
    316 		r__1 = a[i__3].r;
    317 		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
    318 		q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
    319 		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
    320 			alpha->r * temp2.i + alpha->i * temp2.r;
    321 		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
    322 		y[i__4].r = q__1.r, y[i__4].i = q__1.i;
    323 /* L60: */
    324 	    }
    325 	} else {
    326 	    jx = kx;
    327 	    jy = ky;
    328 	    i__1 = *n;
    329 	    for (j = 1; j <= i__1; ++j) {
    330 		i__4 = jx;
    331 		q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
    332 			 alpha->r * x[i__4].i + alpha->i * x[i__4].r;
    333 		temp1.r = q__1.r, temp1.i = q__1.i;
    334 		temp2.r = 0.f, temp2.i = 0.f;
    335 		ix = kx;
    336 		iy = ky;
    337 		l = kplus1 - j;
    338 /* Computing MAX */
    339 		i__4 = 1, i__2 = j - *k;
    340 		i__3 = j - 1;
    341 		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
    342 		    i__4 = iy;
    343 		    i__2 = iy;
    344 		    i__5 = l + i__ + j * a_dim1;
    345 		    q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    346 			    q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    347 			    .r;
    348 		    q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
    349 		    y[i__4].r = q__1.r, y[i__4].i = q__1.i;
    350 		    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
    351 		    i__4 = ix;
    352 		    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
    353 			     q__3.r * x[i__4].i + q__3.i * x[i__4].r;
    354 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
    355 		    temp2.r = q__1.r, temp2.i = q__1.i;
    356 		    ix += *incx;
    357 		    iy += *incy;
    358 /* L70: */
    359 		}
    360 		i__3 = jy;
    361 		i__4 = jy;
    362 		i__2 = kplus1 + j * a_dim1;
    363 		r__1 = a[i__2].r;
    364 		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
    365 		q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
    366 		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
    367 			alpha->r * temp2.i + alpha->i * temp2.r;
    368 		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
    369 		y[i__3].r = q__1.r, y[i__3].i = q__1.i;
    370 		jx += *incx;
    371 		jy += *incy;
    372 		if (j > *k) {
    373 		    kx += *incx;
    374 		    ky += *incy;
    375 		}
    376 /* L80: */
    377 	    }
    378 	}
    379     } else {
    380 
    381 /*        Form  y  when lower triangle of A is stored. */
    382 
    383 	if (*incx == 1 && *incy == 1) {
    384 	    i__1 = *n;
    385 	    for (j = 1; j <= i__1; ++j) {
    386 		i__3 = j;
    387 		q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
    388 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
    389 		temp1.r = q__1.r, temp1.i = q__1.i;
    390 		temp2.r = 0.f, temp2.i = 0.f;
    391 		i__3 = j;
    392 		i__4 = j;
    393 		i__2 = j * a_dim1 + 1;
    394 		r__1 = a[i__2].r;
    395 		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
    396 		q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
    397 		y[i__3].r = q__1.r, y[i__3].i = q__1.i;
    398 		l = 1 - j;
    399 /* Computing MIN */
    400 		i__4 = *n, i__2 = j + *k;
    401 		i__3 = min(i__4,i__2);
    402 		for (i__ = j + 1; i__ <= i__3; ++i__) {
    403 		    i__4 = i__;
    404 		    i__2 = i__;
    405 		    i__5 = l + i__ + j * a_dim1;
    406 		    q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    407 			    q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    408 			    .r;
    409 		    q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
    410 		    y[i__4].r = q__1.r, y[i__4].i = q__1.i;
    411 		    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
    412 		    i__4 = i__;
    413 		    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
    414 			     q__3.r * x[i__4].i + q__3.i * x[i__4].r;
    415 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
    416 		    temp2.r = q__1.r, temp2.i = q__1.i;
    417 /* L90: */
    418 		}
    419 		i__3 = j;
    420 		i__4 = j;
    421 		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
    422 			alpha->r * temp2.i + alpha->i * temp2.r;
    423 		q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
    424 		y[i__3].r = q__1.r, y[i__3].i = q__1.i;
    425 /* L100: */
    426 	    }
    427 	} else {
    428 	    jx = kx;
    429 	    jy = ky;
    430 	    i__1 = *n;
    431 	    for (j = 1; j <= i__1; ++j) {
    432 		i__3 = jx;
    433 		q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
    434 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
    435 		temp1.r = q__1.r, temp1.i = q__1.i;
    436 		temp2.r = 0.f, temp2.i = 0.f;
    437 		i__3 = jy;
    438 		i__4 = jy;
    439 		i__2 = j * a_dim1 + 1;
    440 		r__1 = a[i__2].r;
    441 		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
    442 		q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
    443 		y[i__3].r = q__1.r, y[i__3].i = q__1.i;
    444 		l = 1 - j;
    445 		ix = jx;
    446 		iy = jy;
    447 /* Computing MIN */
    448 		i__4 = *n, i__2 = j + *k;
    449 		i__3 = min(i__4,i__2);
    450 		for (i__ = j + 1; i__ <= i__3; ++i__) {
    451 		    ix += *incx;
    452 		    iy += *incy;
    453 		    i__4 = iy;
    454 		    i__2 = iy;
    455 		    i__5 = l + i__ + j * a_dim1;
    456 		    q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    457 			    q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    458 			    .r;
    459 		    q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
    460 		    y[i__4].r = q__1.r, y[i__4].i = q__1.i;
    461 		    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
    462 		    i__4 = ix;
    463 		    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
    464 			     q__3.r * x[i__4].i + q__3.i * x[i__4].r;
    465 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
    466 		    temp2.r = q__1.r, temp2.i = q__1.i;
    467 /* L110: */
    468 		}
    469 		i__3 = jy;
    470 		i__4 = jy;
    471 		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
    472 			alpha->r * temp2.i + alpha->i * temp2.r;
    473 		q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
    474 		y[i__3].r = q__1.r, y[i__3].i = q__1.i;
    475 		jx += *incx;
    476 		jy += *incy;
    477 /* L120: */
    478 	    }
    479 	}
    480     }
    481 
    482     return 0;
    483 
    484 /*     End of CHBMV . */
    485 
    486 } /* chbmv_ */
    487 
    488