HomeSort by relevance Sort by last modified time
    Searched full:diagonal (Results 26 - 50 of 721) sorted by null

12 3 4 5 6 7 8 91011>>

  /external/eigen/doc/
QuickReference.dox 538 <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
541 \subsection QuickRef_Diagonal Diagonal matrices
546 view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
550 Declare a diagonal matrix</td><td>\code
552 diag1.diagonal() = vector;\endcode
554 <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
556 vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagona
    [all...]
  /external/eigen/Eigen/src/Eigenvalues/
Tridiagonalization.h 44 * main diagonal and the first diagonal below and above it. The Hessenberg
87 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
88 const Diagonal<const MatrixType>
92 typename internal::add_const_on_value_type<typename Diagonal<
94 const Diagonal<
197 * - the diagonal and lower sub-diagonal represent the real tridiagonal
257 * returned by diagonal() and subDiagonal() instead of creating a new
261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal(
305 Tridiagonalization<MatrixType>::diagonal() const function in class:Eigen::Tridiagonalization
    [all...]
  /external/eigen/Eigen/src/SparseCore/
SparseDiagonalProduct.h 15 // The product of a diagonal matrix with a sparse matrix can be easily
83 // We do not want ReverseInnerIterator for diagonal-sparse products,
90 eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
116 : Base(expr.rhs()*(expr.lhs().diagonal().coeff(outer)), outer)
137 : Base(expr.rhs().innerVector(outer) .cwiseProduct(expr.lhs().diagonal()), 0), m_outer(outer)
154 : Base(expr.lhs()*expr.rhs().diagonal().coeff(outer), outer)
175 : Base(expr.lhs().innerVector(outer) .cwiseProduct(expr.rhs().diagonal().transpose()), 0), m_outer(outer)
  /external/libopus/silk/float/
solve_LS_FLP.c 36 * LDL Factorisation. Finds the upper triangular matrix L and the diagonal
37 * Matrix D (only the diagonal elements returned in a vector)such that
44 silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
49 * triangular matrix, with ones on the diagonal.
60 * triangular, with ones on the diagonal. (ie then A^T is upper triangular)
83 silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
89 where L is lower triangular with ones on diagonal
101 diagonal just multiply with 1/d_i
160 silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */
  /cts/tests/tests/graphics/src/android/graphics/drawable/shapes/cts/
PathShapeTest.java 70 // scale down to half size; diagonal is now 50px
76 int diagonal = 0; local
85 diagonal += 1;
90 assertEquals(25, diagonal, TOLERANCE);
  /external/eigen/Eigen/src/IterativeLinearSolvers/
BasicPreconditioners.h 18 * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
19 * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
21 * A.diagonal().asDiagonal() . x = b
27 * The diagonal entries are pre-inverted and stored into a dense vector.
  /development/perftests/panorama/feature_stab/db_vlvm/
db_bundle.h 35 using only upper half of JtJ, destroying lower half below diagonal in the process
52 using only upper half of JtJ, destroying lower half below diagonal in the process
  /external/eigen/test/eigen2/
eigen2_submatrices.cpp 87 //check diagonal()
88 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
89 m2.diagonal() = 2 * m1.diagonal();
90 m2.diagonal()[0] *= 3;
91 VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
  /external/eigen/test/
selfadjoint.cpp 26 m1.diagonal() = m1.diagonal().real().template cast<Scalar>();
triangular.cpp 102 // check solve with unit diagonal
179 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
182 m2.diagonal().array() -= Scalar(1);
183 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
189 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
192 m2.diagonal().array() -= Scalar(1);
193 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
  /external/libopus/silk/fixed/
solve_LS_FIX.c 50 inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
53 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
61 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
93 where L is lower triangular with ones on diagonal
105 diagonal just multiply with 1/d_i
120 inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
207 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
229 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
  /packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/
db_bundle.h 35 using only upper half of JtJ, destroying lower half below diagonal in the process
52 using only upper half of JtJ, destroying lower half below diagonal in the process
  /external/apache-commons-math/src/main/java/org/apache/commons/math/linear/
SingularValueDecomposition.java 29 * p &times; p diagonal matrix with positive or null elements, V is a p &times;
72 * Returns the diagonal matrix &Sigma; of the decomposition.
73 * <p>&Sigma; is a diagonal matrix. The singular values are provided in
80 * Returns the diagonal elements of the matrix &Sigma; of the decomposition.
83 * @return the diagonal elements of the &Sigma; matrix
106 * where J is the diagonal matrix of the inverse of the squares of
TriDiagonalTransformer.java 31 * diagonal is not accessed at all.</p>
45 /** Main diagonal. */
48 /** Secondary diagonal. */
174 * @return the main diagonal elements of the B matrix
181 * Get the main diagonal elements of the matrix T of the transform.
184 * @return the main diagonal elements of the T matrix
191 * Get the secondary diagonal elements of the matrix T of the transform.
194 * @return the secondary diagonal elements of the T matrix
  /external/ceres-solver/internal/ceres/
partitioned_matrix_view.h 78 // Create and return the block diagonal of the matrix E'E.
81 // Create and return the block diagonal of the matrix F'F. Caller
85 // Compute the block diagonal of the matrix E'E and store it in
89 // the block diagonal of E'E.
93 // Compute the block diagonal of the matrix F'F and store it in
97 // the block diagonal of F'F.
compressed_row_sparse_matrix.h 74 // Build a square sparse diagonal matrix with num_rows rows and
75 // columns. The diagonal m(i,i) = diagonal(i);
76 CompressedRowSparseMatrix(const double* diagonal, int num_rows);
131 const double* diagonal,
compressed_row_sparse_matrix_test.cc 170 scoped_array<double> diagonal(new double[num_diagonal_rows]);
172 diagonal[i] =i;
185 diagonal.get(), row_and_column_blocks));
243 Vector diagonal(5);
245 diagonal(i) = i + 1;
250 diagonal.data(), blocks));
264 for (int i = 0; i < diagonal.size(); ++i) {
265 EXPECT_EQ(y[i], diagonal[i]);
270 for (int i = 0; i < diagonal.size(); ++i) {
271 EXPECT_EQ(y[i], diagonal[i])
    [all...]
  /external/eigen/Eigen/src/SVD/
UpperBidiagonalization.h 39 CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
43 Diagonal<const MatrixType,1>,
71 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
77 return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
108 m_bidiagonal.template diagonal<0>().coeffRef(k));
120 m_bidiagonal.template diagonal<1>().coeffRef(k));
  /external/apache-commons-math/src/main/java/org/apache/commons/math/random/
CorrelatedRandomVectorGenerator.java 86 * @param small diagonal elements threshold under which column are
119 * @param small diagonal elements threshold under which column are
176 * <li>columns with the too small diagonal element are discarded</li>
183 * @param small diagonal elements threshold under which column are
204 // find maximal diagonal element
222 // check diagonal element
230 // check remaining diagonal elements
233 // there is at least one sufficiently negative diagonal element,
239 // all remaining diagonal elements are close to zero,
  /external/eigen/Eigen/src/SparseLU/
SparseLU_pivotL.h 51 * \param diagpivotthresh diagonal pivoting threshold
53 * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
73 Index diagind = iperm_c(jcol); // diagonal index
101 // Test if the diagonal element can be used as a pivot (given the threshold value)
104 // Diagonal element exists
  /cts/tests/tests/dpi/src/android/dpi/cts/
ConfigurationTest.java 48 // Watches have a different minimum diagonal.
51 assertTrue("Screen diagonal must be at least " + minSize + " inches: " + diagonalInches,
  /external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/general/
Preconditioner.java 35 * is to compute only the diagonal elements of the hessian and to divide
39 * rationale for this simplified choice is that a negative diagonal element
  /external/eigen/Eigen/src/Core/
ProductBase.h 83 // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
131 const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
135 const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
138 const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
139 { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
MatrixBase.h 99 /** \returns the size of the main diagonal, which is min(rows(),cols()).
192 operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
214 typedef Diagonal<Derived> DiagonalReturnType;
215 DiagonalReturnType diagonal();
216 typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
217 ConstDiagonalReturnType diagonal() const;
219 template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
220 template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
222 template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
223 template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const
    [all...]
  /external/jdiff/src/jdiff/
DiffMyers.java 73 private int[] fdiag; /* Vector, indexed by diagonal, containing
75 along the given diagonal in the forward
77 private int[] bdiag; /* Vector, indexed by diagonal, containing
79 along the given diagonal in the backward
93 The value returned is the number of the diagonal on which the midpoint lies.
94 The diagonal number equals the number of inserted lines minus the number
104 Note that if we return the "wrong" diagonal value, or if
105 the value of bdiag at that diagonal is "wrong",
115 final int dmin = xoff - ylim; // Minimum valid diagonal.
116 final int dmax = xlim - yoff; // Maximum valid diagonal
    [all...]

Completed in 1277 milliseconds

12 3 4 5 6 7 8 91011>>