OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:apart
(Results
601 - 625
of
694
) sorted by null
<<
21
22
23
24
25
26
27
28
/prebuilts/gdb/darwin-x86/lib/python2.7/test/
test_datetime.py
[
all
...]
/prebuilts/gdb/linux-x86/lib/python2.7/test/
test_datetime.py
[
all
...]
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/test/
test_datetime.py
[
all
...]
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/test/
test_datetime.py
[
all
...]
/prebuilts/tools/common/m2/repository/org/eclipse/tycho/tycho-bundles-external/0.18.1/eclipse/plugins/
org.eclipse.equinox.p2.touchpoint.natives_1.1.100.v20130327-2119.jar
/system/connectivity/shill/wifi/
wake_on_wifi_unittest.cc
[
all
...]
/toolchain/binutils/binutils-2.25/bfd/po/
ro.po
[
all
...]
sv.po
[
all
...]
tr.po
[
all
...]
es.po
[
all
...]
/toolchain/binutils/binutils-2.25/libiberty/
cp-demangle.c
39
This code first pulls the mangled name
apart
into a list of
[
all
...]
/external/bison/
ChangeLog-2012
541
doc: finish splitting
apart
the manual's Decl Summary section.
555
doc: begin to split
apart
the manual's Decl Summary section.
[
all
...]
/external/c-ares/
ares_platform.c
[
all
...]
/external/clang/lib/CodeGen/
TargetInfo.cpp
[
all
...]
/external/eclipse-basebuilder/basebuilder-3.6.2/org.eclipse.releng.basebuilder/plugins/
org.eclipse.ui.views_3.5.0.I20100527-0800.jar
/external/pcre/dist/doc/
pcre.txt
[
all
...]
/external/v8/test/mjsunit/
unicode-test.js
[
all
...]
/prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/share/info/
as.info
[
all
...]
ld.info
[
all
...]
/prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/share/man/man1/
x86_64-w64-mingw32-g++.1
[
all
...]
x86_64-w64-mingw32-gcc.1
[
all
...]
/prebuilts/gdb/darwin-x86/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/gdb/linux-x86/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py
9
'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types.
Apart
from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
[
all
...]
Completed in 3950 milliseconds
<<
21
22
23
24
25
26
27
28