1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "code_generator_mips.h" 18 19 #include "arch/mips/entrypoints_direct_mips.h" 20 #include "arch/mips/instruction_set_features_mips.h" 21 #include "art_method.h" 22 #include "code_generator_utils.h" 23 #include "entrypoints/quick/quick_entrypoints.h" 24 #include "entrypoints/quick/quick_entrypoints_enum.h" 25 #include "gc/accounting/card_table.h" 26 #include "intrinsics.h" 27 #include "intrinsics_mips.h" 28 #include "mirror/array-inl.h" 29 #include "mirror/class-inl.h" 30 #include "offsets.h" 31 #include "thread.h" 32 #include "utils/assembler.h" 33 #include "utils/mips/assembler_mips.h" 34 #include "utils/stack_checks.h" 35 36 namespace art { 37 namespace mips { 38 39 static constexpr int kCurrentMethodStackOffset = 0; 40 static constexpr Register kMethodRegisterArgument = A0; 41 42 Location MipsReturnLocation(Primitive::Type return_type) { 43 switch (return_type) { 44 case Primitive::kPrimBoolean: 45 case Primitive::kPrimByte: 46 case Primitive::kPrimChar: 47 case Primitive::kPrimShort: 48 case Primitive::kPrimInt: 49 case Primitive::kPrimNot: 50 return Location::RegisterLocation(V0); 51 52 case Primitive::kPrimLong: 53 return Location::RegisterPairLocation(V0, V1); 54 55 case Primitive::kPrimFloat: 56 case Primitive::kPrimDouble: 57 return Location::FpuRegisterLocation(F0); 58 59 case Primitive::kPrimVoid: 60 return Location(); 61 } 62 UNREACHABLE(); 63 } 64 65 Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const { 66 return MipsReturnLocation(type); 67 } 68 69 Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const { 70 return Location::RegisterLocation(kMethodRegisterArgument); 71 } 72 73 Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) { 74 Location next_location; 75 76 switch (type) { 77 case Primitive::kPrimBoolean: 78 case Primitive::kPrimByte: 79 case Primitive::kPrimChar: 80 case Primitive::kPrimShort: 81 case Primitive::kPrimInt: 82 case Primitive::kPrimNot: { 83 uint32_t gp_index = gp_index_++; 84 if (gp_index < calling_convention.GetNumberOfRegisters()) { 85 next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index)); 86 } else { 87 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); 88 next_location = Location::StackSlot(stack_offset); 89 } 90 break; 91 } 92 93 case Primitive::kPrimLong: { 94 uint32_t gp_index = gp_index_; 95 gp_index_ += 2; 96 if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) { 97 if (calling_convention.GetRegisterAt(gp_index) == A1) { 98 gp_index_++; // Skip A1, and use A2_A3 instead. 99 gp_index++; 100 } 101 Register low_even = calling_convention.GetRegisterAt(gp_index); 102 Register high_odd = calling_convention.GetRegisterAt(gp_index + 1); 103 DCHECK_EQ(low_even + 1, high_odd); 104 next_location = Location::RegisterPairLocation(low_even, high_odd); 105 } else { 106 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); 107 next_location = Location::DoubleStackSlot(stack_offset); 108 } 109 break; 110 } 111 112 // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double 113 // will take up the even/odd pair, while floats are stored in even regs only. 114 // On 64 bit FPU, both double and float are stored in even registers only. 115 case Primitive::kPrimFloat: 116 case Primitive::kPrimDouble: { 117 uint32_t float_index = float_index_++; 118 if (float_index < calling_convention.GetNumberOfFpuRegisters()) { 119 next_location = Location::FpuRegisterLocation( 120 calling_convention.GetFpuRegisterAt(float_index)); 121 } else { 122 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); 123 next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) 124 : Location::StackSlot(stack_offset); 125 } 126 break; 127 } 128 129 case Primitive::kPrimVoid: 130 LOG(FATAL) << "Unexpected parameter type " << type; 131 break; 132 } 133 134 // Space on the stack is reserved for all arguments. 135 stack_index_ += Primitive::Is64BitType(type) ? 2 : 1; 136 137 return next_location; 138 } 139 140 Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) { 141 return MipsReturnLocation(type); 142 } 143 144 #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> 145 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value() 146 147 class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS { 148 public: 149 explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {} 150 151 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 152 LocationSummary* locations = instruction_->GetLocations(); 153 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 154 __ Bind(GetEntryLabel()); 155 if (instruction_->CanThrowIntoCatchBlock()) { 156 // Live registers will be restored in the catch block if caught. 157 SaveLiveRegisters(codegen, instruction_->GetLocations()); 158 } 159 // We're moving two locations to locations that could overlap, so we need a parallel 160 // move resolver. 161 InvokeRuntimeCallingConvention calling_convention; 162 codegen->EmitParallelMoves(locations->InAt(0), 163 Location::RegisterLocation(calling_convention.GetRegisterAt(0)), 164 Primitive::kPrimInt, 165 locations->InAt(1), 166 Location::RegisterLocation(calling_convention.GetRegisterAt(1)), 167 Primitive::kPrimInt); 168 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds), 169 instruction_, 170 instruction_->GetDexPc(), 171 this, 172 IsDirectEntrypoint(kQuickThrowArrayBounds)); 173 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); 174 } 175 176 bool IsFatal() const OVERRIDE { return true; } 177 178 const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; } 179 180 private: 181 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS); 182 }; 183 184 class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS { 185 public: 186 explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {} 187 188 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 189 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 190 __ Bind(GetEntryLabel()); 191 if (instruction_->CanThrowIntoCatchBlock()) { 192 // Live registers will be restored in the catch block if caught. 193 SaveLiveRegisters(codegen, instruction_->GetLocations()); 194 } 195 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero), 196 instruction_, 197 instruction_->GetDexPc(), 198 this, 199 IsDirectEntrypoint(kQuickThrowDivZero)); 200 CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); 201 } 202 203 bool IsFatal() const OVERRIDE { return true; } 204 205 const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; } 206 207 private: 208 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS); 209 }; 210 211 class LoadClassSlowPathMIPS : public SlowPathCodeMIPS { 212 public: 213 LoadClassSlowPathMIPS(HLoadClass* cls, 214 HInstruction* at, 215 uint32_t dex_pc, 216 bool do_clinit) 217 : SlowPathCodeMIPS(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { 218 DCHECK(at->IsLoadClass() || at->IsClinitCheck()); 219 } 220 221 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 222 LocationSummary* locations = at_->GetLocations(); 223 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 224 225 __ Bind(GetEntryLabel()); 226 SaveLiveRegisters(codegen, locations); 227 228 InvokeRuntimeCallingConvention calling_convention; 229 __ LoadConst32(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex()); 230 231 int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) 232 : QUICK_ENTRY_POINT(pInitializeType); 233 bool direct = do_clinit_ ? IsDirectEntrypoint(kQuickInitializeStaticStorage) 234 : IsDirectEntrypoint(kQuickInitializeType); 235 236 mips_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this, direct); 237 if (do_clinit_) { 238 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); 239 } else { 240 CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); 241 } 242 243 // Move the class to the desired location. 244 Location out = locations->Out(); 245 if (out.IsValid()) { 246 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); 247 Primitive::Type type = at_->GetType(); 248 mips_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); 249 } 250 251 RestoreLiveRegisters(codegen, locations); 252 __ B(GetExitLabel()); 253 } 254 255 const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; } 256 257 private: 258 // The class this slow path will load. 259 HLoadClass* const cls_; 260 261 // The instruction where this slow path is happening. 262 // (Might be the load class or an initialization check). 263 HInstruction* const at_; 264 265 // The dex PC of `at_`. 266 const uint32_t dex_pc_; 267 268 // Whether to initialize the class. 269 const bool do_clinit_; 270 271 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS); 272 }; 273 274 class LoadStringSlowPathMIPS : public SlowPathCodeMIPS { 275 public: 276 explicit LoadStringSlowPathMIPS(HLoadString* instruction) : SlowPathCodeMIPS(instruction) {} 277 278 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 279 LocationSummary* locations = instruction_->GetLocations(); 280 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); 281 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 282 283 __ Bind(GetEntryLabel()); 284 SaveLiveRegisters(codegen, locations); 285 286 InvokeRuntimeCallingConvention calling_convention; 287 const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex(); 288 __ LoadConst32(calling_convention.GetRegisterAt(0), string_index); 289 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString), 290 instruction_, 291 instruction_->GetDexPc(), 292 this, 293 IsDirectEntrypoint(kQuickResolveString)); 294 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); 295 Primitive::Type type = instruction_->GetType(); 296 mips_codegen->MoveLocation(locations->Out(), 297 calling_convention.GetReturnLocation(type), 298 type); 299 300 RestoreLiveRegisters(codegen, locations); 301 __ B(GetExitLabel()); 302 } 303 304 const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; } 305 306 private: 307 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS); 308 }; 309 310 class NullCheckSlowPathMIPS : public SlowPathCodeMIPS { 311 public: 312 explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {} 313 314 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 315 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 316 __ Bind(GetEntryLabel()); 317 if (instruction_->CanThrowIntoCatchBlock()) { 318 // Live registers will be restored in the catch block if caught. 319 SaveLiveRegisters(codegen, instruction_->GetLocations()); 320 } 321 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer), 322 instruction_, 323 instruction_->GetDexPc(), 324 this, 325 IsDirectEntrypoint(kQuickThrowNullPointer)); 326 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); 327 } 328 329 bool IsFatal() const OVERRIDE { return true; } 330 331 const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; } 332 333 private: 334 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS); 335 }; 336 337 class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS { 338 public: 339 SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor) 340 : SlowPathCodeMIPS(instruction), successor_(successor) {} 341 342 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 343 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 344 __ Bind(GetEntryLabel()); 345 SaveLiveRegisters(codegen, instruction_->GetLocations()); 346 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend), 347 instruction_, 348 instruction_->GetDexPc(), 349 this, 350 IsDirectEntrypoint(kQuickTestSuspend)); 351 CheckEntrypointTypes<kQuickTestSuspend, void, void>(); 352 RestoreLiveRegisters(codegen, instruction_->GetLocations()); 353 if (successor_ == nullptr) { 354 __ B(GetReturnLabel()); 355 } else { 356 __ B(mips_codegen->GetLabelOf(successor_)); 357 } 358 } 359 360 MipsLabel* GetReturnLabel() { 361 DCHECK(successor_ == nullptr); 362 return &return_label_; 363 } 364 365 const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; } 366 367 private: 368 // If not null, the block to branch to after the suspend check. 369 HBasicBlock* const successor_; 370 371 // If `successor_` is null, the label to branch to after the suspend check. 372 MipsLabel return_label_; 373 374 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS); 375 }; 376 377 class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS { 378 public: 379 explicit TypeCheckSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {} 380 381 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 382 LocationSummary* locations = instruction_->GetLocations(); 383 Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) : locations->Out(); 384 uint32_t dex_pc = instruction_->GetDexPc(); 385 DCHECK(instruction_->IsCheckCast() 386 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); 387 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 388 389 __ Bind(GetEntryLabel()); 390 SaveLiveRegisters(codegen, locations); 391 392 // We're moving two locations to locations that could overlap, so we need a parallel 393 // move resolver. 394 InvokeRuntimeCallingConvention calling_convention; 395 codegen->EmitParallelMoves(locations->InAt(1), 396 Location::RegisterLocation(calling_convention.GetRegisterAt(0)), 397 Primitive::kPrimNot, 398 object_class, 399 Location::RegisterLocation(calling_convention.GetRegisterAt(1)), 400 Primitive::kPrimNot); 401 402 if (instruction_->IsInstanceOf()) { 403 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial), 404 instruction_, 405 dex_pc, 406 this, 407 IsDirectEntrypoint(kQuickInstanceofNonTrivial)); 408 CheckEntrypointTypes< 409 kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>(); 410 Primitive::Type ret_type = instruction_->GetType(); 411 Location ret_loc = calling_convention.GetReturnLocation(ret_type); 412 mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); 413 } else { 414 DCHECK(instruction_->IsCheckCast()); 415 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), 416 instruction_, 417 dex_pc, 418 this, 419 IsDirectEntrypoint(kQuickCheckCast)); 420 CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>(); 421 } 422 423 RestoreLiveRegisters(codegen, locations); 424 __ B(GetExitLabel()); 425 } 426 427 const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; } 428 429 private: 430 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS); 431 }; 432 433 class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS { 434 public: 435 explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction) 436 : SlowPathCodeMIPS(instruction) {} 437 438 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { 439 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); 440 __ Bind(GetEntryLabel()); 441 SaveLiveRegisters(codegen, instruction_->GetLocations()); 442 mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), 443 instruction_, 444 instruction_->GetDexPc(), 445 this, 446 IsDirectEntrypoint(kQuickDeoptimize)); 447 CheckEntrypointTypes<kQuickDeoptimize, void, void>(); 448 } 449 450 const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; } 451 452 private: 453 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS); 454 }; 455 456 CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph, 457 const MipsInstructionSetFeatures& isa_features, 458 const CompilerOptions& compiler_options, 459 OptimizingCompilerStats* stats) 460 : CodeGenerator(graph, 461 kNumberOfCoreRegisters, 462 kNumberOfFRegisters, 463 kNumberOfRegisterPairs, 464 ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), 465 arraysize(kCoreCalleeSaves)), 466 ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), 467 arraysize(kFpuCalleeSaves)), 468 compiler_options, 469 stats), 470 block_labels_(nullptr), 471 location_builder_(graph, this), 472 instruction_visitor_(graph, this), 473 move_resolver_(graph->GetArena(), this), 474 assembler_(graph->GetArena(), &isa_features), 475 isa_features_(isa_features) { 476 // Save RA (containing the return address) to mimic Quick. 477 AddAllocatedRegister(Location::RegisterLocation(RA)); 478 } 479 480 #undef __ 481 #define __ down_cast<MipsAssembler*>(GetAssembler())-> 482 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value() 483 484 void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) { 485 // Ensure that we fix up branches. 486 __ FinalizeCode(); 487 488 // Adjust native pc offsets in stack maps. 489 for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { 490 uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset; 491 uint32_t new_position = __ GetAdjustedPosition(old_position); 492 DCHECK_GE(new_position, old_position); 493 stack_map_stream_.SetStackMapNativePcOffset(i, new_position); 494 } 495 496 // Adjust pc offsets for the disassembly information. 497 if (disasm_info_ != nullptr) { 498 GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); 499 frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); 500 frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); 501 for (auto& it : *disasm_info_->GetInstructionIntervals()) { 502 it.second.start = __ GetAdjustedPosition(it.second.start); 503 it.second.end = __ GetAdjustedPosition(it.second.end); 504 } 505 for (auto& it : *disasm_info_->GetSlowPathIntervals()) { 506 it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); 507 it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); 508 } 509 } 510 511 CodeGenerator::Finalize(allocator); 512 } 513 514 MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const { 515 return codegen_->GetAssembler(); 516 } 517 518 void ParallelMoveResolverMIPS::EmitMove(size_t index) { 519 DCHECK_LT(index, moves_.size()); 520 MoveOperands* move = moves_[index]; 521 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType()); 522 } 523 524 void ParallelMoveResolverMIPS::EmitSwap(size_t index) { 525 DCHECK_LT(index, moves_.size()); 526 MoveOperands* move = moves_[index]; 527 Primitive::Type type = move->GetType(); 528 Location loc1 = move->GetDestination(); 529 Location loc2 = move->GetSource(); 530 531 DCHECK(!loc1.IsConstant()); 532 DCHECK(!loc2.IsConstant()); 533 534 if (loc1.Equals(loc2)) { 535 return; 536 } 537 538 if (loc1.IsRegister() && loc2.IsRegister()) { 539 // Swap 2 GPRs. 540 Register r1 = loc1.AsRegister<Register>(); 541 Register r2 = loc2.AsRegister<Register>(); 542 __ Move(TMP, r2); 543 __ Move(r2, r1); 544 __ Move(r1, TMP); 545 } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) { 546 FRegister f1 = loc1.AsFpuRegister<FRegister>(); 547 FRegister f2 = loc2.AsFpuRegister<FRegister>(); 548 if (type == Primitive::kPrimFloat) { 549 __ MovS(FTMP, f2); 550 __ MovS(f2, f1); 551 __ MovS(f1, FTMP); 552 } else { 553 DCHECK_EQ(type, Primitive::kPrimDouble); 554 __ MovD(FTMP, f2); 555 __ MovD(f2, f1); 556 __ MovD(f1, FTMP); 557 } 558 } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) || 559 (loc1.IsFpuRegister() && loc2.IsRegister())) { 560 // Swap FPR and GPR. 561 DCHECK_EQ(type, Primitive::kPrimFloat); // Can only swap a float. 562 FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() 563 : loc2.AsFpuRegister<FRegister>(); 564 Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() 565 : loc2.AsRegister<Register>(); 566 __ Move(TMP, r2); 567 __ Mfc1(r2, f1); 568 __ Mtc1(TMP, f1); 569 } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) { 570 // Swap 2 GPR register pairs. 571 Register r1 = loc1.AsRegisterPairLow<Register>(); 572 Register r2 = loc2.AsRegisterPairLow<Register>(); 573 __ Move(TMP, r2); 574 __ Move(r2, r1); 575 __ Move(r1, TMP); 576 r1 = loc1.AsRegisterPairHigh<Register>(); 577 r2 = loc2.AsRegisterPairHigh<Register>(); 578 __ Move(TMP, r2); 579 __ Move(r2, r1); 580 __ Move(r1, TMP); 581 } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) || 582 (loc1.IsFpuRegister() && loc2.IsRegisterPair())) { 583 // Swap FPR and GPR register pair. 584 DCHECK_EQ(type, Primitive::kPrimDouble); 585 FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() 586 : loc2.AsFpuRegister<FRegister>(); 587 Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() 588 : loc2.AsRegisterPairLow<Register>(); 589 Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() 590 : loc2.AsRegisterPairHigh<Register>(); 591 // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and 592 // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR 593 // unpredictable and the following mfch1 will fail. 594 __ Mfc1(TMP, f1); 595 __ MoveFromFpuHigh(AT, f1); 596 __ Mtc1(r2_l, f1); 597 __ MoveToFpuHigh(r2_h, f1); 598 __ Move(r2_l, TMP); 599 __ Move(r2_h, AT); 600 } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) { 601 Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false); 602 } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) { 603 Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true); 604 } else if ((loc1.IsRegister() && loc2.IsStackSlot()) || 605 (loc1.IsStackSlot() && loc2.IsRegister())) { 606 Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() 607 : loc2.AsRegister<Register>(); 608 intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() 609 : loc2.GetStackIndex(); 610 __ Move(TMP, reg); 611 __ LoadFromOffset(kLoadWord, reg, SP, offset); 612 __ StoreToOffset(kStoreWord, TMP, SP, offset); 613 } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) || 614 (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) { 615 Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() 616 : loc2.AsRegisterPairLow<Register>(); 617 Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() 618 : loc2.AsRegisterPairHigh<Register>(); 619 intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() 620 : loc2.GetStackIndex(); 621 intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize) 622 : loc2.GetHighStackIndex(kMipsWordSize); 623 __ Move(TMP, reg_l); 624 __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l); 625 __ StoreToOffset(kStoreWord, TMP, SP, offset_l); 626 __ Move(TMP, reg_h); 627 __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h); 628 __ StoreToOffset(kStoreWord, TMP, SP, offset_h); 629 } else { 630 LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported"; 631 } 632 } 633 634 void ParallelMoveResolverMIPS::RestoreScratch(int reg) { 635 __ Pop(static_cast<Register>(reg)); 636 } 637 638 void ParallelMoveResolverMIPS::SpillScratch(int reg) { 639 __ Push(static_cast<Register>(reg)); 640 } 641 642 void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) { 643 // Allocate a scratch register other than TMP, if available. 644 // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be 645 // automatically unspilled when the scratch scope object is destroyed). 646 ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters()); 647 // If V0 spills onto the stack, SP-relative offsets need to be adjusted. 648 int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0; 649 for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) { 650 __ LoadFromOffset(kLoadWord, 651 Register(ensure_scratch.GetRegister()), 652 SP, 653 index1 + stack_offset); 654 __ LoadFromOffset(kLoadWord, 655 TMP, 656 SP, 657 index2 + stack_offset); 658 __ StoreToOffset(kStoreWord, 659 Register(ensure_scratch.GetRegister()), 660 SP, 661 index2 + stack_offset); 662 __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset); 663 } 664 } 665 666 static dwarf::Reg DWARFReg(Register reg) { 667 return dwarf::Reg::MipsCore(static_cast<int>(reg)); 668 } 669 670 // TODO: mapping of floating-point registers to DWARF. 671 672 void CodeGeneratorMIPS::GenerateFrameEntry() { 673 __ Bind(&frame_entry_label_); 674 675 bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod(); 676 677 if (do_overflow_check) { 678 __ LoadFromOffset(kLoadWord, 679 ZERO, 680 SP, 681 -static_cast<int32_t>(GetStackOverflowReservedBytes(kMips))); 682 RecordPcInfo(nullptr, 0); 683 } 684 685 if (HasEmptyFrame()) { 686 return; 687 } 688 689 // Make sure the frame size isn't unreasonably large. 690 if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) { 691 LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes"; 692 } 693 694 // Spill callee-saved registers. 695 // Note that their cumulative size is small and they can be indexed using 696 // 16-bit offsets. 697 698 // TODO: increment/decrement SP in one step instead of two or remove this comment. 699 700 uint32_t ofs = FrameEntrySpillSize(); 701 bool unaligned_float = ofs & 0x7; 702 bool fpu_32bit = isa_features_.Is32BitFloatingPoint(); 703 __ IncreaseFrameSize(ofs); 704 705 for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { 706 Register reg = kCoreCalleeSaves[i]; 707 if (allocated_registers_.ContainsCoreRegister(reg)) { 708 ofs -= kMipsWordSize; 709 __ Sw(reg, SP, ofs); 710 __ cfi().RelOffset(DWARFReg(reg), ofs); 711 } 712 } 713 714 for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { 715 FRegister reg = kFpuCalleeSaves[i]; 716 if (allocated_registers_.ContainsFloatingPointRegister(reg)) { 717 ofs -= kMipsDoublewordSize; 718 // TODO: Change the frame to avoid unaligned accesses for fpu registers. 719 if (unaligned_float) { 720 if (fpu_32bit) { 721 __ Swc1(reg, SP, ofs); 722 __ Swc1(static_cast<FRegister>(reg + 1), SP, ofs + 4); 723 } else { 724 __ Mfhc1(TMP, reg); 725 __ Swc1(reg, SP, ofs); 726 __ Sw(TMP, SP, ofs + 4); 727 } 728 } else { 729 __ Sdc1(reg, SP, ofs); 730 } 731 // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs); 732 } 733 } 734 735 // Allocate the rest of the frame and store the current method pointer 736 // at its end. 737 738 __ IncreaseFrameSize(GetFrameSize() - FrameEntrySpillSize()); 739 740 static_assert(IsInt<16>(kCurrentMethodStackOffset), 741 "kCurrentMethodStackOffset must fit into int16_t"); 742 __ Sw(kMethodRegisterArgument, SP, kCurrentMethodStackOffset); 743 } 744 745 void CodeGeneratorMIPS::GenerateFrameExit() { 746 __ cfi().RememberState(); 747 748 if (!HasEmptyFrame()) { 749 // Deallocate the rest of the frame. 750 751 __ DecreaseFrameSize(GetFrameSize() - FrameEntrySpillSize()); 752 753 // Restore callee-saved registers. 754 // Note that their cumulative size is small and they can be indexed using 755 // 16-bit offsets. 756 757 // TODO: increment/decrement SP in one step instead of two or remove this comment. 758 759 uint32_t ofs = 0; 760 bool unaligned_float = FrameEntrySpillSize() & 0x7; 761 bool fpu_32bit = isa_features_.Is32BitFloatingPoint(); 762 763 for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { 764 FRegister reg = kFpuCalleeSaves[i]; 765 if (allocated_registers_.ContainsFloatingPointRegister(reg)) { 766 if (unaligned_float) { 767 if (fpu_32bit) { 768 __ Lwc1(reg, SP, ofs); 769 __ Lwc1(static_cast<FRegister>(reg + 1), SP, ofs + 4); 770 } else { 771 __ Lwc1(reg, SP, ofs); 772 __ Lw(TMP, SP, ofs + 4); 773 __ Mthc1(TMP, reg); 774 } 775 } else { 776 __ Ldc1(reg, SP, ofs); 777 } 778 ofs += kMipsDoublewordSize; 779 // TODO: __ cfi().Restore(DWARFReg(reg)); 780 } 781 } 782 783 for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { 784 Register reg = kCoreCalleeSaves[i]; 785 if (allocated_registers_.ContainsCoreRegister(reg)) { 786 __ Lw(reg, SP, ofs); 787 ofs += kMipsWordSize; 788 __ cfi().Restore(DWARFReg(reg)); 789 } 790 } 791 792 DCHECK_EQ(ofs, FrameEntrySpillSize()); 793 __ DecreaseFrameSize(ofs); 794 } 795 796 __ Jr(RA); 797 __ Nop(); 798 799 __ cfi().RestoreState(); 800 __ cfi().DefCFAOffset(GetFrameSize()); 801 } 802 803 void CodeGeneratorMIPS::Bind(HBasicBlock* block) { 804 __ Bind(GetLabelOf(block)); 805 } 806 807 void CodeGeneratorMIPS::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { 808 if (src.Equals(dst)) { 809 return; 810 } 811 812 if (src.IsConstant()) { 813 MoveConstant(dst, src.GetConstant()); 814 } else { 815 if (Primitive::Is64BitType(dst_type)) { 816 Move64(dst, src); 817 } else { 818 Move32(dst, src); 819 } 820 } 821 } 822 823 void CodeGeneratorMIPS::Move32(Location destination, Location source) { 824 if (source.Equals(destination)) { 825 return; 826 } 827 828 if (destination.IsRegister()) { 829 if (source.IsRegister()) { 830 __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>()); 831 } else if (source.IsFpuRegister()) { 832 __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>()); 833 } else { 834 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; 835 __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex()); 836 } 837 } else if (destination.IsFpuRegister()) { 838 if (source.IsRegister()) { 839 __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>()); 840 } else if (source.IsFpuRegister()) { 841 __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); 842 } else { 843 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; 844 __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); 845 } 846 } else { 847 DCHECK(destination.IsStackSlot()) << destination; 848 if (source.IsRegister()) { 849 __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex()); 850 } else if (source.IsFpuRegister()) { 851 __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex()); 852 } else { 853 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; 854 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); 855 __ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex()); 856 } 857 } 858 } 859 860 void CodeGeneratorMIPS::Move64(Location destination, Location source) { 861 if (source.Equals(destination)) { 862 return; 863 } 864 865 if (destination.IsRegisterPair()) { 866 if (source.IsRegisterPair()) { 867 __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); 868 __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); 869 } else if (source.IsFpuRegister()) { 870 Register dst_high = destination.AsRegisterPairHigh<Register>(); 871 Register dst_low = destination.AsRegisterPairLow<Register>(); 872 FRegister src = source.AsFpuRegister<FRegister>(); 873 __ Mfc1(dst_low, src); 874 __ MoveFromFpuHigh(dst_high, src); 875 } else { 876 DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination; 877 int32_t off = source.GetStackIndex(); 878 Register r = destination.AsRegisterPairLow<Register>(); 879 __ LoadFromOffset(kLoadDoubleword, r, SP, off); 880 } 881 } else if (destination.IsFpuRegister()) { 882 if (source.IsRegisterPair()) { 883 FRegister dst = destination.AsFpuRegister<FRegister>(); 884 Register src_high = source.AsRegisterPairHigh<Register>(); 885 Register src_low = source.AsRegisterPairLow<Register>(); 886 __ Mtc1(src_low, dst); 887 __ MoveToFpuHigh(src_high, dst); 888 } else if (source.IsFpuRegister()) { 889 __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); 890 } else { 891 DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination; 892 __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); 893 } 894 } else { 895 DCHECK(destination.IsDoubleStackSlot()) << destination; 896 int32_t off = destination.GetStackIndex(); 897 if (source.IsRegisterPair()) { 898 __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, off); 899 } else if (source.IsFpuRegister()) { 900 __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, off); 901 } else { 902 DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination; 903 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); 904 __ StoreToOffset(kStoreWord, TMP, SP, off); 905 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4); 906 __ StoreToOffset(kStoreWord, TMP, SP, off + 4); 907 } 908 } 909 } 910 911 void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) { 912 if (c->IsIntConstant() || c->IsNullConstant()) { 913 // Move 32 bit constant. 914 int32_t value = GetInt32ValueOf(c); 915 if (destination.IsRegister()) { 916 Register dst = destination.AsRegister<Register>(); 917 __ LoadConst32(dst, value); 918 } else { 919 DCHECK(destination.IsStackSlot()) 920 << "Cannot move " << c->DebugName() << " to " << destination; 921 __ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP); 922 } 923 } else if (c->IsLongConstant()) { 924 // Move 64 bit constant. 925 int64_t value = GetInt64ValueOf(c); 926 if (destination.IsRegisterPair()) { 927 Register r_h = destination.AsRegisterPairHigh<Register>(); 928 Register r_l = destination.AsRegisterPairLow<Register>(); 929 __ LoadConst64(r_h, r_l, value); 930 } else { 931 DCHECK(destination.IsDoubleStackSlot()) 932 << "Cannot move " << c->DebugName() << " to " << destination; 933 __ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP); 934 } 935 } else if (c->IsFloatConstant()) { 936 // Move 32 bit float constant. 937 int32_t value = GetInt32ValueOf(c); 938 if (destination.IsFpuRegister()) { 939 __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP); 940 } else { 941 DCHECK(destination.IsStackSlot()) 942 << "Cannot move " << c->DebugName() << " to " << destination; 943 __ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP); 944 } 945 } else { 946 // Move 64 bit double constant. 947 DCHECK(c->IsDoubleConstant()) << c->DebugName(); 948 int64_t value = GetInt64ValueOf(c); 949 if (destination.IsFpuRegister()) { 950 FRegister fd = destination.AsFpuRegister<FRegister>(); 951 __ LoadDConst64(fd, value, TMP); 952 } else { 953 DCHECK(destination.IsDoubleStackSlot()) 954 << "Cannot move " << c->DebugName() << " to " << destination; 955 __ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP); 956 } 957 } 958 } 959 960 void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) { 961 DCHECK(destination.IsRegister()); 962 Register dst = destination.AsRegister<Register>(); 963 __ LoadConst32(dst, value); 964 } 965 966 void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) { 967 if (location.IsRegister()) { 968 locations->AddTemp(location); 969 } else if (location.IsRegisterPair()) { 970 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); 971 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); 972 } else { 973 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; 974 } 975 } 976 977 void CodeGeneratorMIPS::MarkGCCard(Register object, Register value) { 978 MipsLabel done; 979 Register card = AT; 980 Register temp = TMP; 981 __ Beqz(value, &done); 982 __ LoadFromOffset(kLoadWord, 983 card, 984 TR, 985 Thread::CardTableOffset<kMipsWordSize>().Int32Value()); 986 __ Srl(temp, object, gc::accounting::CardTable::kCardShift); 987 __ Addu(temp, card, temp); 988 __ Sb(card, temp, 0); 989 __ Bind(&done); 990 } 991 992 void CodeGeneratorMIPS::SetupBlockedRegisters() const { 993 // Don't allocate the dalvik style register pair passing. 994 blocked_register_pairs_[A1_A2] = true; 995 996 // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated. 997 blocked_core_registers_[ZERO] = true; 998 blocked_core_registers_[K0] = true; 999 blocked_core_registers_[K1] = true; 1000 blocked_core_registers_[GP] = true; 1001 blocked_core_registers_[SP] = true; 1002 blocked_core_registers_[RA] = true; 1003 1004 // AT and TMP(T8) are used as temporary/scratch registers 1005 // (similar to how AT is used by MIPS assemblers). 1006 blocked_core_registers_[AT] = true; 1007 blocked_core_registers_[TMP] = true; 1008 blocked_fpu_registers_[FTMP] = true; 1009 1010 // Reserve suspend and thread registers. 1011 blocked_core_registers_[S0] = true; 1012 blocked_core_registers_[TR] = true; 1013 1014 // Reserve T9 for function calls 1015 blocked_core_registers_[T9] = true; 1016 1017 // Reserve odd-numbered FPU registers. 1018 for (size_t i = 1; i < kNumberOfFRegisters; i += 2) { 1019 blocked_fpu_registers_[i] = true; 1020 } 1021 1022 UpdateBlockedPairRegisters(); 1023 } 1024 1025 void CodeGeneratorMIPS::UpdateBlockedPairRegisters() const { 1026 for (int i = 0; i < kNumberOfRegisterPairs; i++) { 1027 MipsManagedRegister current = 1028 MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i)); 1029 if (blocked_core_registers_[current.AsRegisterPairLow()] 1030 || blocked_core_registers_[current.AsRegisterPairHigh()]) { 1031 blocked_register_pairs_[i] = true; 1032 } 1033 } 1034 } 1035 1036 size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { 1037 __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index); 1038 return kMipsWordSize; 1039 } 1040 1041 size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { 1042 __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index); 1043 return kMipsWordSize; 1044 } 1045 1046 size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { 1047 __ StoreDToOffset(FRegister(reg_id), SP, stack_index); 1048 return kMipsDoublewordSize; 1049 } 1050 1051 size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { 1052 __ LoadDFromOffset(FRegister(reg_id), SP, stack_index); 1053 return kMipsDoublewordSize; 1054 } 1055 1056 void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const { 1057 stream << Register(reg); 1058 } 1059 1060 void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const { 1061 stream << FRegister(reg); 1062 } 1063 1064 void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint, 1065 HInstruction* instruction, 1066 uint32_t dex_pc, 1067 SlowPathCode* slow_path) { 1068 InvokeRuntime(GetThreadOffset<kMipsWordSize>(entrypoint).Int32Value(), 1069 instruction, 1070 dex_pc, 1071 slow_path, 1072 IsDirectEntrypoint(entrypoint)); 1073 } 1074 1075 constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16; 1076 1077 void CodeGeneratorMIPS::InvokeRuntime(int32_t entry_point_offset, 1078 HInstruction* instruction, 1079 uint32_t dex_pc, 1080 SlowPathCode* slow_path, 1081 bool is_direct_entrypoint) { 1082 __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); 1083 __ Jalr(T9); 1084 if (is_direct_entrypoint) { 1085 // Reserve argument space on stack (for $a0-$a3) for 1086 // entrypoints that directly reference native implementations. 1087 // Called function may use this space to store $a0-$a3 regs. 1088 __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot. 1089 __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); 1090 } else { 1091 __ Nop(); // In delay slot. 1092 } 1093 RecordPcInfo(instruction, dex_pc, slow_path); 1094 } 1095 1096 void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, 1097 Register class_reg) { 1098 __ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value()); 1099 __ LoadConst32(AT, mirror::Class::kStatusInitialized); 1100 __ Blt(TMP, AT, slow_path->GetEntryLabel()); 1101 // Even if the initialized flag is set, we need to ensure consistent memory ordering. 1102 __ Sync(0); 1103 __ Bind(slow_path->GetExitLabel()); 1104 } 1105 1106 void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) { 1107 __ Sync(0); // Only stype 0 is supported. 1108 } 1109 1110 void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction, 1111 HBasicBlock* successor) { 1112 SuspendCheckSlowPathMIPS* slow_path = 1113 new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor); 1114 codegen_->AddSlowPath(slow_path); 1115 1116 __ LoadFromOffset(kLoadUnsignedHalfword, 1117 TMP, 1118 TR, 1119 Thread::ThreadFlagsOffset<kMipsWordSize>().Int32Value()); 1120 if (successor == nullptr) { 1121 __ Bnez(TMP, slow_path->GetEntryLabel()); 1122 __ Bind(slow_path->GetReturnLabel()); 1123 } else { 1124 __ Beqz(TMP, codegen_->GetLabelOf(successor)); 1125 __ B(slow_path->GetEntryLabel()); 1126 // slow_path will return to GetLabelOf(successor). 1127 } 1128 } 1129 1130 InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph, 1131 CodeGeneratorMIPS* codegen) 1132 : InstructionCodeGenerator(graph, codegen), 1133 assembler_(codegen->GetAssembler()), 1134 codegen_(codegen) {} 1135 1136 void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) { 1137 DCHECK_EQ(instruction->InputCount(), 2U); 1138 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 1139 Primitive::Type type = instruction->GetResultType(); 1140 switch (type) { 1141 case Primitive::kPrimInt: { 1142 locations->SetInAt(0, Location::RequiresRegister()); 1143 HInstruction* right = instruction->InputAt(1); 1144 bool can_use_imm = false; 1145 if (right->IsConstant()) { 1146 int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant()); 1147 if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) { 1148 can_use_imm = IsUint<16>(imm); 1149 } else if (instruction->IsAdd()) { 1150 can_use_imm = IsInt<16>(imm); 1151 } else { 1152 DCHECK(instruction->IsSub()); 1153 can_use_imm = IsInt<16>(-imm); 1154 } 1155 } 1156 if (can_use_imm) 1157 locations->SetInAt(1, Location::ConstantLocation(right->AsConstant())); 1158 else 1159 locations->SetInAt(1, Location::RequiresRegister()); 1160 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 1161 break; 1162 } 1163 1164 case Primitive::kPrimLong: { 1165 locations->SetInAt(0, Location::RequiresRegister()); 1166 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); 1167 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 1168 break; 1169 } 1170 1171 case Primitive::kPrimFloat: 1172 case Primitive::kPrimDouble: 1173 DCHECK(instruction->IsAdd() || instruction->IsSub()); 1174 locations->SetInAt(0, Location::RequiresFpuRegister()); 1175 locations->SetInAt(1, Location::RequiresFpuRegister()); 1176 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 1177 break; 1178 1179 default: 1180 LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type; 1181 } 1182 } 1183 1184 void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) { 1185 Primitive::Type type = instruction->GetType(); 1186 LocationSummary* locations = instruction->GetLocations(); 1187 1188 switch (type) { 1189 case Primitive::kPrimInt: { 1190 Register dst = locations->Out().AsRegister<Register>(); 1191 Register lhs = locations->InAt(0).AsRegister<Register>(); 1192 Location rhs_location = locations->InAt(1); 1193 1194 Register rhs_reg = ZERO; 1195 int32_t rhs_imm = 0; 1196 bool use_imm = rhs_location.IsConstant(); 1197 if (use_imm) { 1198 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); 1199 } else { 1200 rhs_reg = rhs_location.AsRegister<Register>(); 1201 } 1202 1203 if (instruction->IsAnd()) { 1204 if (use_imm) 1205 __ Andi(dst, lhs, rhs_imm); 1206 else 1207 __ And(dst, lhs, rhs_reg); 1208 } else if (instruction->IsOr()) { 1209 if (use_imm) 1210 __ Ori(dst, lhs, rhs_imm); 1211 else 1212 __ Or(dst, lhs, rhs_reg); 1213 } else if (instruction->IsXor()) { 1214 if (use_imm) 1215 __ Xori(dst, lhs, rhs_imm); 1216 else 1217 __ Xor(dst, lhs, rhs_reg); 1218 } else if (instruction->IsAdd()) { 1219 if (use_imm) 1220 __ Addiu(dst, lhs, rhs_imm); 1221 else 1222 __ Addu(dst, lhs, rhs_reg); 1223 } else { 1224 DCHECK(instruction->IsSub()); 1225 if (use_imm) 1226 __ Addiu(dst, lhs, -rhs_imm); 1227 else 1228 __ Subu(dst, lhs, rhs_reg); 1229 } 1230 break; 1231 } 1232 1233 case Primitive::kPrimLong: { 1234 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 1235 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 1236 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 1237 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); 1238 Location rhs_location = locations->InAt(1); 1239 bool use_imm = rhs_location.IsConstant(); 1240 if (!use_imm) { 1241 Register rhs_high = rhs_location.AsRegisterPairHigh<Register>(); 1242 Register rhs_low = rhs_location.AsRegisterPairLow<Register>(); 1243 if (instruction->IsAnd()) { 1244 __ And(dst_low, lhs_low, rhs_low); 1245 __ And(dst_high, lhs_high, rhs_high); 1246 } else if (instruction->IsOr()) { 1247 __ Or(dst_low, lhs_low, rhs_low); 1248 __ Or(dst_high, lhs_high, rhs_high); 1249 } else if (instruction->IsXor()) { 1250 __ Xor(dst_low, lhs_low, rhs_low); 1251 __ Xor(dst_high, lhs_high, rhs_high); 1252 } else if (instruction->IsAdd()) { 1253 if (lhs_low == rhs_low) { 1254 // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs. 1255 __ Slt(TMP, lhs_low, ZERO); 1256 __ Addu(dst_low, lhs_low, rhs_low); 1257 } else { 1258 __ Addu(dst_low, lhs_low, rhs_low); 1259 // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged. 1260 __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low); 1261 } 1262 __ Addu(dst_high, lhs_high, rhs_high); 1263 __ Addu(dst_high, dst_high, TMP); 1264 } else { 1265 DCHECK(instruction->IsSub()); 1266 __ Sltu(TMP, lhs_low, rhs_low); 1267 __ Subu(dst_low, lhs_low, rhs_low); 1268 __ Subu(dst_high, lhs_high, rhs_high); 1269 __ Subu(dst_high, dst_high, TMP); 1270 } 1271 } else { 1272 int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant()); 1273 if (instruction->IsOr()) { 1274 uint32_t low = Low32Bits(value); 1275 uint32_t high = High32Bits(value); 1276 if (IsUint<16>(low)) { 1277 if (dst_low != lhs_low || low != 0) { 1278 __ Ori(dst_low, lhs_low, low); 1279 } 1280 } else { 1281 __ LoadConst32(TMP, low); 1282 __ Or(dst_low, lhs_low, TMP); 1283 } 1284 if (IsUint<16>(high)) { 1285 if (dst_high != lhs_high || high != 0) { 1286 __ Ori(dst_high, lhs_high, high); 1287 } 1288 } else { 1289 if (high != low) { 1290 __ LoadConst32(TMP, high); 1291 } 1292 __ Or(dst_high, lhs_high, TMP); 1293 } 1294 } else if (instruction->IsXor()) { 1295 uint32_t low = Low32Bits(value); 1296 uint32_t high = High32Bits(value); 1297 if (IsUint<16>(low)) { 1298 if (dst_low != lhs_low || low != 0) { 1299 __ Xori(dst_low, lhs_low, low); 1300 } 1301 } else { 1302 __ LoadConst32(TMP, low); 1303 __ Xor(dst_low, lhs_low, TMP); 1304 } 1305 if (IsUint<16>(high)) { 1306 if (dst_high != lhs_high || high != 0) { 1307 __ Xori(dst_high, lhs_high, high); 1308 } 1309 } else { 1310 if (high != low) { 1311 __ LoadConst32(TMP, high); 1312 } 1313 __ Xor(dst_high, lhs_high, TMP); 1314 } 1315 } else if (instruction->IsAnd()) { 1316 uint32_t low = Low32Bits(value); 1317 uint32_t high = High32Bits(value); 1318 if (IsUint<16>(low)) { 1319 __ Andi(dst_low, lhs_low, low); 1320 } else if (low != 0xFFFFFFFF) { 1321 __ LoadConst32(TMP, low); 1322 __ And(dst_low, lhs_low, TMP); 1323 } else if (dst_low != lhs_low) { 1324 __ Move(dst_low, lhs_low); 1325 } 1326 if (IsUint<16>(high)) { 1327 __ Andi(dst_high, lhs_high, high); 1328 } else if (high != 0xFFFFFFFF) { 1329 if (high != low) { 1330 __ LoadConst32(TMP, high); 1331 } 1332 __ And(dst_high, lhs_high, TMP); 1333 } else if (dst_high != lhs_high) { 1334 __ Move(dst_high, lhs_high); 1335 } 1336 } else { 1337 if (instruction->IsSub()) { 1338 value = -value; 1339 } else { 1340 DCHECK(instruction->IsAdd()); 1341 } 1342 int32_t low = Low32Bits(value); 1343 int32_t high = High32Bits(value); 1344 if (IsInt<16>(low)) { 1345 if (dst_low != lhs_low || low != 0) { 1346 __ Addiu(dst_low, lhs_low, low); 1347 } 1348 if (low != 0) { 1349 __ Sltiu(AT, dst_low, low); 1350 } 1351 } else { 1352 __ LoadConst32(TMP, low); 1353 __ Addu(dst_low, lhs_low, TMP); 1354 __ Sltu(AT, dst_low, TMP); 1355 } 1356 if (IsInt<16>(high)) { 1357 if (dst_high != lhs_high || high != 0) { 1358 __ Addiu(dst_high, lhs_high, high); 1359 } 1360 } else { 1361 if (high != low) { 1362 __ LoadConst32(TMP, high); 1363 } 1364 __ Addu(dst_high, lhs_high, TMP); 1365 } 1366 if (low != 0) { 1367 __ Addu(dst_high, dst_high, AT); 1368 } 1369 } 1370 } 1371 break; 1372 } 1373 1374 case Primitive::kPrimFloat: 1375 case Primitive::kPrimDouble: { 1376 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 1377 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 1378 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 1379 if (instruction->IsAdd()) { 1380 if (type == Primitive::kPrimFloat) { 1381 __ AddS(dst, lhs, rhs); 1382 } else { 1383 __ AddD(dst, lhs, rhs); 1384 } 1385 } else { 1386 DCHECK(instruction->IsSub()); 1387 if (type == Primitive::kPrimFloat) { 1388 __ SubS(dst, lhs, rhs); 1389 } else { 1390 __ SubD(dst, lhs, rhs); 1391 } 1392 } 1393 break; 1394 } 1395 1396 default: 1397 LOG(FATAL) << "Unexpected binary operation type " << type; 1398 } 1399 } 1400 1401 void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) { 1402 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); 1403 1404 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); 1405 Primitive::Type type = instr->GetResultType(); 1406 switch (type) { 1407 case Primitive::kPrimInt: 1408 locations->SetInAt(0, Location::RequiresRegister()); 1409 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); 1410 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 1411 break; 1412 case Primitive::kPrimLong: 1413 locations->SetInAt(0, Location::RequiresRegister()); 1414 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); 1415 locations->SetOut(Location::RequiresRegister()); 1416 break; 1417 default: 1418 LOG(FATAL) << "Unexpected shift type " << type; 1419 } 1420 } 1421 1422 static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte; 1423 1424 void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) { 1425 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); 1426 LocationSummary* locations = instr->GetLocations(); 1427 Primitive::Type type = instr->GetType(); 1428 1429 Location rhs_location = locations->InAt(1); 1430 bool use_imm = rhs_location.IsConstant(); 1431 Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>(); 1432 int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0; 1433 const uint32_t shift_mask = 1434 (type == Primitive::kPrimInt) ? kMaxIntShiftDistance : kMaxLongShiftDistance; 1435 const uint32_t shift_value = rhs_imm & shift_mask; 1436 // Are the INS (Insert Bit Field) and ROTR instructions supported? 1437 bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); 1438 1439 switch (type) { 1440 case Primitive::kPrimInt: { 1441 Register dst = locations->Out().AsRegister<Register>(); 1442 Register lhs = locations->InAt(0).AsRegister<Register>(); 1443 if (use_imm) { 1444 if (shift_value == 0) { 1445 if (dst != lhs) { 1446 __ Move(dst, lhs); 1447 } 1448 } else if (instr->IsShl()) { 1449 __ Sll(dst, lhs, shift_value); 1450 } else if (instr->IsShr()) { 1451 __ Sra(dst, lhs, shift_value); 1452 } else if (instr->IsUShr()) { 1453 __ Srl(dst, lhs, shift_value); 1454 } else { 1455 if (has_ins_rotr) { 1456 __ Rotr(dst, lhs, shift_value); 1457 } else { 1458 __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask); 1459 __ Srl(dst, lhs, shift_value); 1460 __ Or(dst, dst, TMP); 1461 } 1462 } 1463 } else { 1464 if (instr->IsShl()) { 1465 __ Sllv(dst, lhs, rhs_reg); 1466 } else if (instr->IsShr()) { 1467 __ Srav(dst, lhs, rhs_reg); 1468 } else if (instr->IsUShr()) { 1469 __ Srlv(dst, lhs, rhs_reg); 1470 } else { 1471 if (has_ins_rotr) { 1472 __ Rotrv(dst, lhs, rhs_reg); 1473 } else { 1474 __ Subu(TMP, ZERO, rhs_reg); 1475 // 32-bit shift instructions use the 5 least significant bits of the shift count, so 1476 // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case 1477 // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out 1478 // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`, 1479 // IOW, the OR'd values are equal. 1480 __ Sllv(TMP, lhs, TMP); 1481 __ Srlv(dst, lhs, rhs_reg); 1482 __ Or(dst, dst, TMP); 1483 } 1484 } 1485 } 1486 break; 1487 } 1488 1489 case Primitive::kPrimLong: { 1490 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 1491 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 1492 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 1493 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); 1494 if (use_imm) { 1495 if (shift_value == 0) { 1496 codegen_->Move64(locations->Out(), locations->InAt(0)); 1497 } else if (shift_value < kMipsBitsPerWord) { 1498 if (has_ins_rotr) { 1499 if (instr->IsShl()) { 1500 __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value); 1501 __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value); 1502 __ Sll(dst_low, lhs_low, shift_value); 1503 } else if (instr->IsShr()) { 1504 __ Srl(dst_low, lhs_low, shift_value); 1505 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); 1506 __ Sra(dst_high, lhs_high, shift_value); 1507 } else if (instr->IsUShr()) { 1508 __ Srl(dst_low, lhs_low, shift_value); 1509 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); 1510 __ Srl(dst_high, lhs_high, shift_value); 1511 } else { 1512 __ Srl(dst_low, lhs_low, shift_value); 1513 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); 1514 __ Srl(dst_high, lhs_high, shift_value); 1515 __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value); 1516 } 1517 } else { 1518 if (instr->IsShl()) { 1519 __ Sll(dst_low, lhs_low, shift_value); 1520 __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value); 1521 __ Sll(dst_high, lhs_high, shift_value); 1522 __ Or(dst_high, dst_high, TMP); 1523 } else if (instr->IsShr()) { 1524 __ Sra(dst_high, lhs_high, shift_value); 1525 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); 1526 __ Srl(dst_low, lhs_low, shift_value); 1527 __ Or(dst_low, dst_low, TMP); 1528 } else if (instr->IsUShr()) { 1529 __ Srl(dst_high, lhs_high, shift_value); 1530 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); 1531 __ Srl(dst_low, lhs_low, shift_value); 1532 __ Or(dst_low, dst_low, TMP); 1533 } else { 1534 __ Srl(TMP, lhs_low, shift_value); 1535 __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value); 1536 __ Or(dst_low, dst_low, TMP); 1537 __ Srl(TMP, lhs_high, shift_value); 1538 __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value); 1539 __ Or(dst_high, dst_high, TMP); 1540 } 1541 } 1542 } else { 1543 const uint32_t shift_value_high = shift_value - kMipsBitsPerWord; 1544 if (instr->IsShl()) { 1545 __ Sll(dst_high, lhs_low, shift_value_high); 1546 __ Move(dst_low, ZERO); 1547 } else if (instr->IsShr()) { 1548 __ Sra(dst_low, lhs_high, shift_value_high); 1549 __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1); 1550 } else if (instr->IsUShr()) { 1551 __ Srl(dst_low, lhs_high, shift_value_high); 1552 __ Move(dst_high, ZERO); 1553 } else { 1554 if (shift_value == kMipsBitsPerWord) { 1555 // 64-bit rotation by 32 is just a swap. 1556 __ Move(dst_low, lhs_high); 1557 __ Move(dst_high, lhs_low); 1558 } else { 1559 if (has_ins_rotr) { 1560 __ Srl(dst_low, lhs_high, shift_value_high); 1561 __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high); 1562 __ Srl(dst_high, lhs_low, shift_value_high); 1563 __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high); 1564 } else { 1565 __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high); 1566 __ Srl(dst_low, lhs_high, shift_value_high); 1567 __ Or(dst_low, dst_low, TMP); 1568 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high); 1569 __ Srl(dst_high, lhs_low, shift_value_high); 1570 __ Or(dst_high, dst_high, TMP); 1571 } 1572 } 1573 } 1574 } 1575 } else { 1576 MipsLabel done; 1577 if (instr->IsShl()) { 1578 __ Sllv(dst_low, lhs_low, rhs_reg); 1579 __ Nor(AT, ZERO, rhs_reg); 1580 __ Srl(TMP, lhs_low, 1); 1581 __ Srlv(TMP, TMP, AT); 1582 __ Sllv(dst_high, lhs_high, rhs_reg); 1583 __ Or(dst_high, dst_high, TMP); 1584 __ Andi(TMP, rhs_reg, kMipsBitsPerWord); 1585 __ Beqz(TMP, &done); 1586 __ Move(dst_high, dst_low); 1587 __ Move(dst_low, ZERO); 1588 } else if (instr->IsShr()) { 1589 __ Srav(dst_high, lhs_high, rhs_reg); 1590 __ Nor(AT, ZERO, rhs_reg); 1591 __ Sll(TMP, lhs_high, 1); 1592 __ Sllv(TMP, TMP, AT); 1593 __ Srlv(dst_low, lhs_low, rhs_reg); 1594 __ Or(dst_low, dst_low, TMP); 1595 __ Andi(TMP, rhs_reg, kMipsBitsPerWord); 1596 __ Beqz(TMP, &done); 1597 __ Move(dst_low, dst_high); 1598 __ Sra(dst_high, dst_high, 31); 1599 } else if (instr->IsUShr()) { 1600 __ Srlv(dst_high, lhs_high, rhs_reg); 1601 __ Nor(AT, ZERO, rhs_reg); 1602 __ Sll(TMP, lhs_high, 1); 1603 __ Sllv(TMP, TMP, AT); 1604 __ Srlv(dst_low, lhs_low, rhs_reg); 1605 __ Or(dst_low, dst_low, TMP); 1606 __ Andi(TMP, rhs_reg, kMipsBitsPerWord); 1607 __ Beqz(TMP, &done); 1608 __ Move(dst_low, dst_high); 1609 __ Move(dst_high, ZERO); 1610 } else { 1611 __ Nor(AT, ZERO, rhs_reg); 1612 __ Srlv(TMP, lhs_low, rhs_reg); 1613 __ Sll(dst_low, lhs_high, 1); 1614 __ Sllv(dst_low, dst_low, AT); 1615 __ Or(dst_low, dst_low, TMP); 1616 __ Srlv(TMP, lhs_high, rhs_reg); 1617 __ Sll(dst_high, lhs_low, 1); 1618 __ Sllv(dst_high, dst_high, AT); 1619 __ Or(dst_high, dst_high, TMP); 1620 __ Andi(TMP, rhs_reg, kMipsBitsPerWord); 1621 __ Beqz(TMP, &done); 1622 __ Move(TMP, dst_high); 1623 __ Move(dst_high, dst_low); 1624 __ Move(dst_low, TMP); 1625 } 1626 __ Bind(&done); 1627 } 1628 break; 1629 } 1630 1631 default: 1632 LOG(FATAL) << "Unexpected shift operation type " << type; 1633 } 1634 } 1635 1636 void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) { 1637 HandleBinaryOp(instruction); 1638 } 1639 1640 void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) { 1641 HandleBinaryOp(instruction); 1642 } 1643 1644 void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) { 1645 HandleBinaryOp(instruction); 1646 } 1647 1648 void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) { 1649 HandleBinaryOp(instruction); 1650 } 1651 1652 void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) { 1653 LocationSummary* locations = 1654 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); 1655 locations->SetInAt(0, Location::RequiresRegister()); 1656 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); 1657 if (Primitive::IsFloatingPointType(instruction->GetType())) { 1658 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 1659 } else { 1660 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 1661 } 1662 } 1663 1664 void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) { 1665 LocationSummary* locations = instruction->GetLocations(); 1666 Register obj = locations->InAt(0).AsRegister<Register>(); 1667 Location index = locations->InAt(1); 1668 Primitive::Type type = instruction->GetType(); 1669 1670 switch (type) { 1671 case Primitive::kPrimBoolean: { 1672 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); 1673 Register out = locations->Out().AsRegister<Register>(); 1674 if (index.IsConstant()) { 1675 size_t offset = 1676 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; 1677 __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset); 1678 } else { 1679 __ Addu(TMP, obj, index.AsRegister<Register>()); 1680 __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset); 1681 } 1682 break; 1683 } 1684 1685 case Primitive::kPrimByte: { 1686 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); 1687 Register out = locations->Out().AsRegister<Register>(); 1688 if (index.IsConstant()) { 1689 size_t offset = 1690 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; 1691 __ LoadFromOffset(kLoadSignedByte, out, obj, offset); 1692 } else { 1693 __ Addu(TMP, obj, index.AsRegister<Register>()); 1694 __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset); 1695 } 1696 break; 1697 } 1698 1699 case Primitive::kPrimShort: { 1700 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); 1701 Register out = locations->Out().AsRegister<Register>(); 1702 if (index.IsConstant()) { 1703 size_t offset = 1704 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; 1705 __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset); 1706 } else { 1707 __ Sll(TMP, index.AsRegister<Register>(), TIMES_2); 1708 __ Addu(TMP, obj, TMP); 1709 __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset); 1710 } 1711 break; 1712 } 1713 1714 case Primitive::kPrimChar: { 1715 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); 1716 Register out = locations->Out().AsRegister<Register>(); 1717 if (index.IsConstant()) { 1718 size_t offset = 1719 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; 1720 __ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset); 1721 } else { 1722 __ Sll(TMP, index.AsRegister<Register>(), TIMES_2); 1723 __ Addu(TMP, obj, TMP); 1724 __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset); 1725 } 1726 break; 1727 } 1728 1729 case Primitive::kPrimInt: 1730 case Primitive::kPrimNot: { 1731 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t)); 1732 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); 1733 Register out = locations->Out().AsRegister<Register>(); 1734 if (index.IsConstant()) { 1735 size_t offset = 1736 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; 1737 __ LoadFromOffset(kLoadWord, out, obj, offset); 1738 } else { 1739 __ Sll(TMP, index.AsRegister<Register>(), TIMES_4); 1740 __ Addu(TMP, obj, TMP); 1741 __ LoadFromOffset(kLoadWord, out, TMP, data_offset); 1742 } 1743 break; 1744 } 1745 1746 case Primitive::kPrimLong: { 1747 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); 1748 Register out = locations->Out().AsRegisterPairLow<Register>(); 1749 if (index.IsConstant()) { 1750 size_t offset = 1751 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; 1752 __ LoadFromOffset(kLoadDoubleword, out, obj, offset); 1753 } else { 1754 __ Sll(TMP, index.AsRegister<Register>(), TIMES_8); 1755 __ Addu(TMP, obj, TMP); 1756 __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset); 1757 } 1758 break; 1759 } 1760 1761 case Primitive::kPrimFloat: { 1762 uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); 1763 FRegister out = locations->Out().AsFpuRegister<FRegister>(); 1764 if (index.IsConstant()) { 1765 size_t offset = 1766 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; 1767 __ LoadSFromOffset(out, obj, offset); 1768 } else { 1769 __ Sll(TMP, index.AsRegister<Register>(), TIMES_4); 1770 __ Addu(TMP, obj, TMP); 1771 __ LoadSFromOffset(out, TMP, data_offset); 1772 } 1773 break; 1774 } 1775 1776 case Primitive::kPrimDouble: { 1777 uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); 1778 FRegister out = locations->Out().AsFpuRegister<FRegister>(); 1779 if (index.IsConstant()) { 1780 size_t offset = 1781 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; 1782 __ LoadDFromOffset(out, obj, offset); 1783 } else { 1784 __ Sll(TMP, index.AsRegister<Register>(), TIMES_8); 1785 __ Addu(TMP, obj, TMP); 1786 __ LoadDFromOffset(out, TMP, data_offset); 1787 } 1788 break; 1789 } 1790 1791 case Primitive::kPrimVoid: 1792 LOG(FATAL) << "Unreachable type " << instruction->GetType(); 1793 UNREACHABLE(); 1794 } 1795 codegen_->MaybeRecordImplicitNullCheck(instruction); 1796 } 1797 1798 void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) { 1799 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 1800 locations->SetInAt(0, Location::RequiresRegister()); 1801 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 1802 } 1803 1804 void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) { 1805 LocationSummary* locations = instruction->GetLocations(); 1806 uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); 1807 Register obj = locations->InAt(0).AsRegister<Register>(); 1808 Register out = locations->Out().AsRegister<Register>(); 1809 __ LoadFromOffset(kLoadWord, out, obj, offset); 1810 codegen_->MaybeRecordImplicitNullCheck(instruction); 1811 } 1812 1813 void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) { 1814 bool needs_runtime_call = instruction->NeedsTypeCheck(); 1815 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( 1816 instruction, 1817 needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall); 1818 if (needs_runtime_call) { 1819 InvokeRuntimeCallingConvention calling_convention; 1820 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 1821 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); 1822 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); 1823 } else { 1824 locations->SetInAt(0, Location::RequiresRegister()); 1825 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); 1826 if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) { 1827 locations->SetInAt(2, Location::RequiresFpuRegister()); 1828 } else { 1829 locations->SetInAt(2, Location::RequiresRegister()); 1830 } 1831 } 1832 } 1833 1834 void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) { 1835 LocationSummary* locations = instruction->GetLocations(); 1836 Register obj = locations->InAt(0).AsRegister<Register>(); 1837 Location index = locations->InAt(1); 1838 Primitive::Type value_type = instruction->GetComponentType(); 1839 bool needs_runtime_call = locations->WillCall(); 1840 bool needs_write_barrier = 1841 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); 1842 1843 switch (value_type) { 1844 case Primitive::kPrimBoolean: 1845 case Primitive::kPrimByte: { 1846 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); 1847 Register value = locations->InAt(2).AsRegister<Register>(); 1848 if (index.IsConstant()) { 1849 size_t offset = 1850 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; 1851 __ StoreToOffset(kStoreByte, value, obj, offset); 1852 } else { 1853 __ Addu(TMP, obj, index.AsRegister<Register>()); 1854 __ StoreToOffset(kStoreByte, value, TMP, data_offset); 1855 } 1856 break; 1857 } 1858 1859 case Primitive::kPrimShort: 1860 case Primitive::kPrimChar: { 1861 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); 1862 Register value = locations->InAt(2).AsRegister<Register>(); 1863 if (index.IsConstant()) { 1864 size_t offset = 1865 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; 1866 __ StoreToOffset(kStoreHalfword, value, obj, offset); 1867 } else { 1868 __ Sll(TMP, index.AsRegister<Register>(), TIMES_2); 1869 __ Addu(TMP, obj, TMP); 1870 __ StoreToOffset(kStoreHalfword, value, TMP, data_offset); 1871 } 1872 break; 1873 } 1874 1875 case Primitive::kPrimInt: 1876 case Primitive::kPrimNot: { 1877 if (!needs_runtime_call) { 1878 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); 1879 Register value = locations->InAt(2).AsRegister<Register>(); 1880 if (index.IsConstant()) { 1881 size_t offset = 1882 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; 1883 __ StoreToOffset(kStoreWord, value, obj, offset); 1884 } else { 1885 DCHECK(index.IsRegister()) << index; 1886 __ Sll(TMP, index.AsRegister<Register>(), TIMES_4); 1887 __ Addu(TMP, obj, TMP); 1888 __ StoreToOffset(kStoreWord, value, TMP, data_offset); 1889 } 1890 codegen_->MaybeRecordImplicitNullCheck(instruction); 1891 if (needs_write_barrier) { 1892 DCHECK_EQ(value_type, Primitive::kPrimNot); 1893 codegen_->MarkGCCard(obj, value); 1894 } 1895 } else { 1896 DCHECK_EQ(value_type, Primitive::kPrimNot); 1897 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), 1898 instruction, 1899 instruction->GetDexPc(), 1900 nullptr, 1901 IsDirectEntrypoint(kQuickAputObject)); 1902 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); 1903 } 1904 break; 1905 } 1906 1907 case Primitive::kPrimLong: { 1908 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); 1909 Register value = locations->InAt(2).AsRegisterPairLow<Register>(); 1910 if (index.IsConstant()) { 1911 size_t offset = 1912 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; 1913 __ StoreToOffset(kStoreDoubleword, value, obj, offset); 1914 } else { 1915 __ Sll(TMP, index.AsRegister<Register>(), TIMES_8); 1916 __ Addu(TMP, obj, TMP); 1917 __ StoreToOffset(kStoreDoubleword, value, TMP, data_offset); 1918 } 1919 break; 1920 } 1921 1922 case Primitive::kPrimFloat: { 1923 uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); 1924 FRegister value = locations->InAt(2).AsFpuRegister<FRegister>(); 1925 DCHECK(locations->InAt(2).IsFpuRegister()); 1926 if (index.IsConstant()) { 1927 size_t offset = 1928 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; 1929 __ StoreSToOffset(value, obj, offset); 1930 } else { 1931 __ Sll(TMP, index.AsRegister<Register>(), TIMES_4); 1932 __ Addu(TMP, obj, TMP); 1933 __ StoreSToOffset(value, TMP, data_offset); 1934 } 1935 break; 1936 } 1937 1938 case Primitive::kPrimDouble: { 1939 uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); 1940 FRegister value = locations->InAt(2).AsFpuRegister<FRegister>(); 1941 DCHECK(locations->InAt(2).IsFpuRegister()); 1942 if (index.IsConstant()) { 1943 size_t offset = 1944 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; 1945 __ StoreDToOffset(value, obj, offset); 1946 } else { 1947 __ Sll(TMP, index.AsRegister<Register>(), TIMES_8); 1948 __ Addu(TMP, obj, TMP); 1949 __ StoreDToOffset(value, TMP, data_offset); 1950 } 1951 break; 1952 } 1953 1954 case Primitive::kPrimVoid: 1955 LOG(FATAL) << "Unreachable type " << instruction->GetType(); 1956 UNREACHABLE(); 1957 } 1958 1959 // Ints and objects are handled in the switch. 1960 if (value_type != Primitive::kPrimInt && value_type != Primitive::kPrimNot) { 1961 codegen_->MaybeRecordImplicitNullCheck(instruction); 1962 } 1963 } 1964 1965 void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { 1966 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() 1967 ? LocationSummary::kCallOnSlowPath 1968 : LocationSummary::kNoCall; 1969 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); 1970 locations->SetInAt(0, Location::RequiresRegister()); 1971 locations->SetInAt(1, Location::RequiresRegister()); 1972 if (instruction->HasUses()) { 1973 locations->SetOut(Location::SameAsFirstInput()); 1974 } 1975 } 1976 1977 void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { 1978 LocationSummary* locations = instruction->GetLocations(); 1979 BoundsCheckSlowPathMIPS* slow_path = 1980 new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction); 1981 codegen_->AddSlowPath(slow_path); 1982 1983 Register index = locations->InAt(0).AsRegister<Register>(); 1984 Register length = locations->InAt(1).AsRegister<Register>(); 1985 1986 // length is limited by the maximum positive signed 32-bit integer. 1987 // Unsigned comparison of length and index checks for index < 0 1988 // and for length <= index simultaneously. 1989 __ Bgeu(index, length, slow_path->GetEntryLabel()); 1990 } 1991 1992 void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) { 1993 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( 1994 instruction, 1995 LocationSummary::kCallOnSlowPath); 1996 locations->SetInAt(0, Location::RequiresRegister()); 1997 locations->SetInAt(1, Location::RequiresRegister()); 1998 // Note that TypeCheckSlowPathMIPS uses this register too. 1999 locations->AddTemp(Location::RequiresRegister()); 2000 } 2001 2002 void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) { 2003 LocationSummary* locations = instruction->GetLocations(); 2004 Register obj = locations->InAt(0).AsRegister<Register>(); 2005 Register cls = locations->InAt(1).AsRegister<Register>(); 2006 Register obj_cls = locations->GetTemp(0).AsRegister<Register>(); 2007 2008 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction); 2009 codegen_->AddSlowPath(slow_path); 2010 2011 // TODO: avoid this check if we know obj is not null. 2012 __ Beqz(obj, slow_path->GetExitLabel()); 2013 // Compare the class of `obj` with `cls`. 2014 __ LoadFromOffset(kLoadWord, obj_cls, obj, mirror::Object::ClassOffset().Int32Value()); 2015 __ Bne(obj_cls, cls, slow_path->GetEntryLabel()); 2016 __ Bind(slow_path->GetExitLabel()); 2017 } 2018 2019 void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) { 2020 LocationSummary* locations = 2021 new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); 2022 locations->SetInAt(0, Location::RequiresRegister()); 2023 if (check->HasUses()) { 2024 locations->SetOut(Location::SameAsFirstInput()); 2025 } 2026 } 2027 2028 void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) { 2029 // We assume the class is not null. 2030 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS( 2031 check->GetLoadClass(), 2032 check, 2033 check->GetDexPc(), 2034 true); 2035 codegen_->AddSlowPath(slow_path); 2036 GenerateClassInitializationCheck(slow_path, 2037 check->GetLocations()->InAt(0).AsRegister<Register>()); 2038 } 2039 2040 void LocationsBuilderMIPS::VisitCompare(HCompare* compare) { 2041 Primitive::Type in_type = compare->InputAt(0)->GetType(); 2042 2043 LocationSummary* locations = 2044 new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); 2045 2046 switch (in_type) { 2047 case Primitive::kPrimBoolean: 2048 case Primitive::kPrimByte: 2049 case Primitive::kPrimShort: 2050 case Primitive::kPrimChar: 2051 case Primitive::kPrimInt: 2052 case Primitive::kPrimLong: 2053 locations->SetInAt(0, Location::RequiresRegister()); 2054 locations->SetInAt(1, Location::RequiresRegister()); 2055 // Output overlaps because it is written before doing the low comparison. 2056 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); 2057 break; 2058 2059 case Primitive::kPrimFloat: 2060 case Primitive::kPrimDouble: 2061 locations->SetInAt(0, Location::RequiresFpuRegister()); 2062 locations->SetInAt(1, Location::RequiresFpuRegister()); 2063 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 2064 break; 2065 2066 default: 2067 LOG(FATAL) << "Unexpected type for compare operation " << in_type; 2068 } 2069 } 2070 2071 void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) { 2072 LocationSummary* locations = instruction->GetLocations(); 2073 Register res = locations->Out().AsRegister<Register>(); 2074 Primitive::Type in_type = instruction->InputAt(0)->GetType(); 2075 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 2076 2077 // 0 if: left == right 2078 // 1 if: left > right 2079 // -1 if: left < right 2080 switch (in_type) { 2081 case Primitive::kPrimBoolean: 2082 case Primitive::kPrimByte: 2083 case Primitive::kPrimShort: 2084 case Primitive::kPrimChar: 2085 case Primitive::kPrimInt: { 2086 Register lhs = locations->InAt(0).AsRegister<Register>(); 2087 Register rhs = locations->InAt(1).AsRegister<Register>(); 2088 __ Slt(TMP, lhs, rhs); 2089 __ Slt(res, rhs, lhs); 2090 __ Subu(res, res, TMP); 2091 break; 2092 } 2093 case Primitive::kPrimLong: { 2094 MipsLabel done; 2095 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 2096 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); 2097 Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); 2098 Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>(); 2099 // TODO: more efficient (direct) comparison with a constant. 2100 __ Slt(TMP, lhs_high, rhs_high); 2101 __ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt. 2102 __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ]. 2103 __ Bnez(res, &done); // If we compared ==, check if lower bits are also equal. 2104 __ Sltu(TMP, lhs_low, rhs_low); 2105 __ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt. 2106 __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ]. 2107 __ Bind(&done); 2108 break; 2109 } 2110 2111 case Primitive::kPrimFloat: { 2112 bool gt_bias = instruction->IsGtBias(); 2113 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 2114 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 2115 MipsLabel done; 2116 if (isR6) { 2117 __ CmpEqS(FTMP, lhs, rhs); 2118 __ LoadConst32(res, 0); 2119 __ Bc1nez(FTMP, &done); 2120 if (gt_bias) { 2121 __ CmpLtS(FTMP, lhs, rhs); 2122 __ LoadConst32(res, -1); 2123 __ Bc1nez(FTMP, &done); 2124 __ LoadConst32(res, 1); 2125 } else { 2126 __ CmpLtS(FTMP, rhs, lhs); 2127 __ LoadConst32(res, 1); 2128 __ Bc1nez(FTMP, &done); 2129 __ LoadConst32(res, -1); 2130 } 2131 } else { 2132 if (gt_bias) { 2133 __ ColtS(0, lhs, rhs); 2134 __ LoadConst32(res, -1); 2135 __ Bc1t(0, &done); 2136 __ CeqS(0, lhs, rhs); 2137 __ LoadConst32(res, 1); 2138 __ Movt(res, ZERO, 0); 2139 } else { 2140 __ ColtS(0, rhs, lhs); 2141 __ LoadConst32(res, 1); 2142 __ Bc1t(0, &done); 2143 __ CeqS(0, lhs, rhs); 2144 __ LoadConst32(res, -1); 2145 __ Movt(res, ZERO, 0); 2146 } 2147 } 2148 __ Bind(&done); 2149 break; 2150 } 2151 case Primitive::kPrimDouble: { 2152 bool gt_bias = instruction->IsGtBias(); 2153 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 2154 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 2155 MipsLabel done; 2156 if (isR6) { 2157 __ CmpEqD(FTMP, lhs, rhs); 2158 __ LoadConst32(res, 0); 2159 __ Bc1nez(FTMP, &done); 2160 if (gt_bias) { 2161 __ CmpLtD(FTMP, lhs, rhs); 2162 __ LoadConst32(res, -1); 2163 __ Bc1nez(FTMP, &done); 2164 __ LoadConst32(res, 1); 2165 } else { 2166 __ CmpLtD(FTMP, rhs, lhs); 2167 __ LoadConst32(res, 1); 2168 __ Bc1nez(FTMP, &done); 2169 __ LoadConst32(res, -1); 2170 } 2171 } else { 2172 if (gt_bias) { 2173 __ ColtD(0, lhs, rhs); 2174 __ LoadConst32(res, -1); 2175 __ Bc1t(0, &done); 2176 __ CeqD(0, lhs, rhs); 2177 __ LoadConst32(res, 1); 2178 __ Movt(res, ZERO, 0); 2179 } else { 2180 __ ColtD(0, rhs, lhs); 2181 __ LoadConst32(res, 1); 2182 __ Bc1t(0, &done); 2183 __ CeqD(0, lhs, rhs); 2184 __ LoadConst32(res, -1); 2185 __ Movt(res, ZERO, 0); 2186 } 2187 } 2188 __ Bind(&done); 2189 break; 2190 } 2191 2192 default: 2193 LOG(FATAL) << "Unimplemented compare type " << in_type; 2194 } 2195 } 2196 2197 void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) { 2198 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 2199 switch (instruction->InputAt(0)->GetType()) { 2200 default: 2201 case Primitive::kPrimLong: 2202 locations->SetInAt(0, Location::RequiresRegister()); 2203 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); 2204 break; 2205 2206 case Primitive::kPrimFloat: 2207 case Primitive::kPrimDouble: 2208 locations->SetInAt(0, Location::RequiresFpuRegister()); 2209 locations->SetInAt(1, Location::RequiresFpuRegister()); 2210 break; 2211 } 2212 if (!instruction->IsEmittedAtUseSite()) { 2213 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 2214 } 2215 } 2216 2217 void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) { 2218 if (instruction->IsEmittedAtUseSite()) { 2219 return; 2220 } 2221 2222 Primitive::Type type = instruction->InputAt(0)->GetType(); 2223 LocationSummary* locations = instruction->GetLocations(); 2224 Register dst = locations->Out().AsRegister<Register>(); 2225 MipsLabel true_label; 2226 2227 switch (type) { 2228 default: 2229 // Integer case. 2230 GenerateIntCompare(instruction->GetCondition(), locations); 2231 return; 2232 2233 case Primitive::kPrimLong: 2234 // TODO: don't use branches. 2235 GenerateLongCompareAndBranch(instruction->GetCondition(), locations, &true_label); 2236 break; 2237 2238 case Primitive::kPrimFloat: 2239 case Primitive::kPrimDouble: 2240 // TODO: don't use branches. 2241 GenerateFpCompareAndBranch(instruction->GetCondition(), 2242 instruction->IsGtBias(), 2243 type, 2244 locations, 2245 &true_label); 2246 break; 2247 } 2248 2249 // Convert the branches into the result. 2250 MipsLabel done; 2251 2252 // False case: result = 0. 2253 __ LoadConst32(dst, 0); 2254 __ B(&done); 2255 2256 // True case: result = 1. 2257 __ Bind(&true_label); 2258 __ LoadConst32(dst, 1); 2259 __ Bind(&done); 2260 } 2261 2262 void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) { 2263 DCHECK(instruction->IsDiv() || instruction->IsRem()); 2264 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt); 2265 2266 LocationSummary* locations = instruction->GetLocations(); 2267 Location second = locations->InAt(1); 2268 DCHECK(second.IsConstant()); 2269 2270 Register out = locations->Out().AsRegister<Register>(); 2271 Register dividend = locations->InAt(0).AsRegister<Register>(); 2272 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); 2273 DCHECK(imm == 1 || imm == -1); 2274 2275 if (instruction->IsRem()) { 2276 __ Move(out, ZERO); 2277 } else { 2278 if (imm == -1) { 2279 __ Subu(out, ZERO, dividend); 2280 } else if (out != dividend) { 2281 __ Move(out, dividend); 2282 } 2283 } 2284 } 2285 2286 void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) { 2287 DCHECK(instruction->IsDiv() || instruction->IsRem()); 2288 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt); 2289 2290 LocationSummary* locations = instruction->GetLocations(); 2291 Location second = locations->InAt(1); 2292 DCHECK(second.IsConstant()); 2293 2294 Register out = locations->Out().AsRegister<Register>(); 2295 Register dividend = locations->InAt(0).AsRegister<Register>(); 2296 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); 2297 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); 2298 int ctz_imm = CTZ(abs_imm); 2299 2300 if (instruction->IsDiv()) { 2301 if (ctz_imm == 1) { 2302 // Fast path for division by +/-2, which is very common. 2303 __ Srl(TMP, dividend, 31); 2304 } else { 2305 __ Sra(TMP, dividend, 31); 2306 __ Srl(TMP, TMP, 32 - ctz_imm); 2307 } 2308 __ Addu(out, dividend, TMP); 2309 __ Sra(out, out, ctz_imm); 2310 if (imm < 0) { 2311 __ Subu(out, ZERO, out); 2312 } 2313 } else { 2314 if (ctz_imm == 1) { 2315 // Fast path for modulo +/-2, which is very common. 2316 __ Sra(TMP, dividend, 31); 2317 __ Subu(out, dividend, TMP); 2318 __ Andi(out, out, 1); 2319 __ Addu(out, out, TMP); 2320 } else { 2321 __ Sra(TMP, dividend, 31); 2322 __ Srl(TMP, TMP, 32 - ctz_imm); 2323 __ Addu(out, dividend, TMP); 2324 if (IsUint<16>(abs_imm - 1)) { 2325 __ Andi(out, out, abs_imm - 1); 2326 } else { 2327 __ Sll(out, out, 32 - ctz_imm); 2328 __ Srl(out, out, 32 - ctz_imm); 2329 } 2330 __ Subu(out, out, TMP); 2331 } 2332 } 2333 } 2334 2335 void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { 2336 DCHECK(instruction->IsDiv() || instruction->IsRem()); 2337 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt); 2338 2339 LocationSummary* locations = instruction->GetLocations(); 2340 Location second = locations->InAt(1); 2341 DCHECK(second.IsConstant()); 2342 2343 Register out = locations->Out().AsRegister<Register>(); 2344 Register dividend = locations->InAt(0).AsRegister<Register>(); 2345 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); 2346 2347 int64_t magic; 2348 int shift; 2349 CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); 2350 2351 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 2352 2353 __ LoadConst32(TMP, magic); 2354 if (isR6) { 2355 __ MuhR6(TMP, dividend, TMP); 2356 } else { 2357 __ MultR2(dividend, TMP); 2358 __ Mfhi(TMP); 2359 } 2360 if (imm > 0 && magic < 0) { 2361 __ Addu(TMP, TMP, dividend); 2362 } else if (imm < 0 && magic > 0) { 2363 __ Subu(TMP, TMP, dividend); 2364 } 2365 2366 if (shift != 0) { 2367 __ Sra(TMP, TMP, shift); 2368 } 2369 2370 if (instruction->IsDiv()) { 2371 __ Sra(out, TMP, 31); 2372 __ Subu(out, TMP, out); 2373 } else { 2374 __ Sra(AT, TMP, 31); 2375 __ Subu(AT, TMP, AT); 2376 __ LoadConst32(TMP, imm); 2377 if (isR6) { 2378 __ MulR6(TMP, AT, TMP); 2379 } else { 2380 __ MulR2(TMP, AT, TMP); 2381 } 2382 __ Subu(out, dividend, TMP); 2383 } 2384 } 2385 2386 void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) { 2387 DCHECK(instruction->IsDiv() || instruction->IsRem()); 2388 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt); 2389 2390 LocationSummary* locations = instruction->GetLocations(); 2391 Register out = locations->Out().AsRegister<Register>(); 2392 Location second = locations->InAt(1); 2393 2394 if (second.IsConstant()) { 2395 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); 2396 if (imm == 0) { 2397 // Do not generate anything. DivZeroCheck would prevent any code to be executed. 2398 } else if (imm == 1 || imm == -1) { 2399 DivRemOneOrMinusOne(instruction); 2400 } else if (IsPowerOfTwo(AbsOrMin(imm))) { 2401 DivRemByPowerOfTwo(instruction); 2402 } else { 2403 DCHECK(imm <= -2 || imm >= 2); 2404 GenerateDivRemWithAnyConstant(instruction); 2405 } 2406 } else { 2407 Register dividend = locations->InAt(0).AsRegister<Register>(); 2408 Register divisor = second.AsRegister<Register>(); 2409 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 2410 if (instruction->IsDiv()) { 2411 if (isR6) { 2412 __ DivR6(out, dividend, divisor); 2413 } else { 2414 __ DivR2(out, dividend, divisor); 2415 } 2416 } else { 2417 if (isR6) { 2418 __ ModR6(out, dividend, divisor); 2419 } else { 2420 __ ModR2(out, dividend, divisor); 2421 } 2422 } 2423 } 2424 } 2425 2426 void LocationsBuilderMIPS::VisitDiv(HDiv* div) { 2427 Primitive::Type type = div->GetResultType(); 2428 LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong) 2429 ? LocationSummary::kCall 2430 : LocationSummary::kNoCall; 2431 2432 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); 2433 2434 switch (type) { 2435 case Primitive::kPrimInt: 2436 locations->SetInAt(0, Location::RequiresRegister()); 2437 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); 2438 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 2439 break; 2440 2441 case Primitive::kPrimLong: { 2442 InvokeRuntimeCallingConvention calling_convention; 2443 locations->SetInAt(0, Location::RegisterPairLocation( 2444 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); 2445 locations->SetInAt(1, Location::RegisterPairLocation( 2446 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); 2447 locations->SetOut(calling_convention.GetReturnLocation(type)); 2448 break; 2449 } 2450 2451 case Primitive::kPrimFloat: 2452 case Primitive::kPrimDouble: 2453 locations->SetInAt(0, Location::RequiresFpuRegister()); 2454 locations->SetInAt(1, Location::RequiresFpuRegister()); 2455 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 2456 break; 2457 2458 default: 2459 LOG(FATAL) << "Unexpected div type " << type; 2460 } 2461 } 2462 2463 void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) { 2464 Primitive::Type type = instruction->GetType(); 2465 LocationSummary* locations = instruction->GetLocations(); 2466 2467 switch (type) { 2468 case Primitive::kPrimInt: 2469 GenerateDivRemIntegral(instruction); 2470 break; 2471 case Primitive::kPrimLong: { 2472 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), 2473 instruction, 2474 instruction->GetDexPc(), 2475 nullptr, 2476 IsDirectEntrypoint(kQuickLdiv)); 2477 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); 2478 break; 2479 } 2480 case Primitive::kPrimFloat: 2481 case Primitive::kPrimDouble: { 2482 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 2483 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 2484 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 2485 if (type == Primitive::kPrimFloat) { 2486 __ DivS(dst, lhs, rhs); 2487 } else { 2488 __ DivD(dst, lhs, rhs); 2489 } 2490 break; 2491 } 2492 default: 2493 LOG(FATAL) << "Unexpected div type " << type; 2494 } 2495 } 2496 2497 void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { 2498 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() 2499 ? LocationSummary::kCallOnSlowPath 2500 : LocationSummary::kNoCall; 2501 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); 2502 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); 2503 if (instruction->HasUses()) { 2504 locations->SetOut(Location::SameAsFirstInput()); 2505 } 2506 } 2507 2508 void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { 2509 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction); 2510 codegen_->AddSlowPath(slow_path); 2511 Location value = instruction->GetLocations()->InAt(0); 2512 Primitive::Type type = instruction->GetType(); 2513 2514 switch (type) { 2515 case Primitive::kPrimBoolean: 2516 case Primitive::kPrimByte: 2517 case Primitive::kPrimChar: 2518 case Primitive::kPrimShort: 2519 case Primitive::kPrimInt: { 2520 if (value.IsConstant()) { 2521 if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { 2522 __ B(slow_path->GetEntryLabel()); 2523 } else { 2524 // A division by a non-null constant is valid. We don't need to perform 2525 // any check, so simply fall through. 2526 } 2527 } else { 2528 DCHECK(value.IsRegister()) << value; 2529 __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel()); 2530 } 2531 break; 2532 } 2533 case Primitive::kPrimLong: { 2534 if (value.IsConstant()) { 2535 if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { 2536 __ B(slow_path->GetEntryLabel()); 2537 } else { 2538 // A division by a non-null constant is valid. We don't need to perform 2539 // any check, so simply fall through. 2540 } 2541 } else { 2542 DCHECK(value.IsRegisterPair()) << value; 2543 __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>()); 2544 __ Beqz(TMP, slow_path->GetEntryLabel()); 2545 } 2546 break; 2547 } 2548 default: 2549 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; 2550 } 2551 } 2552 2553 void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) { 2554 LocationSummary* locations = 2555 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); 2556 locations->SetOut(Location::ConstantLocation(constant)); 2557 } 2558 2559 void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) { 2560 // Will be generated at use site. 2561 } 2562 2563 void LocationsBuilderMIPS::VisitExit(HExit* exit) { 2564 exit->SetLocations(nullptr); 2565 } 2566 2567 void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { 2568 } 2569 2570 void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) { 2571 LocationSummary* locations = 2572 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); 2573 locations->SetOut(Location::ConstantLocation(constant)); 2574 } 2575 2576 void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { 2577 // Will be generated at use site. 2578 } 2579 2580 void LocationsBuilderMIPS::VisitGoto(HGoto* got) { 2581 got->SetLocations(nullptr); 2582 } 2583 2584 void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) { 2585 DCHECK(!successor->IsExitBlock()); 2586 HBasicBlock* block = got->GetBlock(); 2587 HInstruction* previous = got->GetPrevious(); 2588 HLoopInformation* info = block->GetLoopInformation(); 2589 2590 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { 2591 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); 2592 GenerateSuspendCheck(info->GetSuspendCheck(), successor); 2593 return; 2594 } 2595 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { 2596 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); 2597 } 2598 if (!codegen_->GoesToNextBlock(block, successor)) { 2599 __ B(codegen_->GetLabelOf(successor)); 2600 } 2601 } 2602 2603 void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) { 2604 HandleGoto(got, got->GetSuccessor()); 2605 } 2606 2607 void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { 2608 try_boundary->SetLocations(nullptr); 2609 } 2610 2611 void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { 2612 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); 2613 if (!successor->IsExitBlock()) { 2614 HandleGoto(try_boundary, successor); 2615 } 2616 } 2617 2618 void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond, 2619 LocationSummary* locations) { 2620 Register dst = locations->Out().AsRegister<Register>(); 2621 Register lhs = locations->InAt(0).AsRegister<Register>(); 2622 Location rhs_location = locations->InAt(1); 2623 Register rhs_reg = ZERO; 2624 int64_t rhs_imm = 0; 2625 bool use_imm = rhs_location.IsConstant(); 2626 if (use_imm) { 2627 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); 2628 } else { 2629 rhs_reg = rhs_location.AsRegister<Register>(); 2630 } 2631 2632 switch (cond) { 2633 case kCondEQ: 2634 case kCondNE: 2635 if (use_imm && IsUint<16>(rhs_imm)) { 2636 __ Xori(dst, lhs, rhs_imm); 2637 } else { 2638 if (use_imm) { 2639 rhs_reg = TMP; 2640 __ LoadConst32(rhs_reg, rhs_imm); 2641 } 2642 __ Xor(dst, lhs, rhs_reg); 2643 } 2644 if (cond == kCondEQ) { 2645 __ Sltiu(dst, dst, 1); 2646 } else { 2647 __ Sltu(dst, ZERO, dst); 2648 } 2649 break; 2650 2651 case kCondLT: 2652 case kCondGE: 2653 if (use_imm && IsInt<16>(rhs_imm)) { 2654 __ Slti(dst, lhs, rhs_imm); 2655 } else { 2656 if (use_imm) { 2657 rhs_reg = TMP; 2658 __ LoadConst32(rhs_reg, rhs_imm); 2659 } 2660 __ Slt(dst, lhs, rhs_reg); 2661 } 2662 if (cond == kCondGE) { 2663 // Simulate lhs >= rhs via !(lhs < rhs) since there's 2664 // only the slt instruction but no sge. 2665 __ Xori(dst, dst, 1); 2666 } 2667 break; 2668 2669 case kCondLE: 2670 case kCondGT: 2671 if (use_imm && IsInt<16>(rhs_imm + 1)) { 2672 // Simulate lhs <= rhs via lhs < rhs + 1. 2673 __ Slti(dst, lhs, rhs_imm + 1); 2674 if (cond == kCondGT) { 2675 // Simulate lhs > rhs via !(lhs <= rhs) since there's 2676 // only the slti instruction but no sgti. 2677 __ Xori(dst, dst, 1); 2678 } 2679 } else { 2680 if (use_imm) { 2681 rhs_reg = TMP; 2682 __ LoadConst32(rhs_reg, rhs_imm); 2683 } 2684 __ Slt(dst, rhs_reg, lhs); 2685 if (cond == kCondLE) { 2686 // Simulate lhs <= rhs via !(rhs < lhs) since there's 2687 // only the slt instruction but no sle. 2688 __ Xori(dst, dst, 1); 2689 } 2690 } 2691 break; 2692 2693 case kCondB: 2694 case kCondAE: 2695 if (use_imm && IsInt<16>(rhs_imm)) { 2696 // Sltiu sign-extends its 16-bit immediate operand before 2697 // the comparison and thus lets us compare directly with 2698 // unsigned values in the ranges [0, 0x7fff] and 2699 // [0xffff8000, 0xffffffff]. 2700 __ Sltiu(dst, lhs, rhs_imm); 2701 } else { 2702 if (use_imm) { 2703 rhs_reg = TMP; 2704 __ LoadConst32(rhs_reg, rhs_imm); 2705 } 2706 __ Sltu(dst, lhs, rhs_reg); 2707 } 2708 if (cond == kCondAE) { 2709 // Simulate lhs >= rhs via !(lhs < rhs) since there's 2710 // only the sltu instruction but no sgeu. 2711 __ Xori(dst, dst, 1); 2712 } 2713 break; 2714 2715 case kCondBE: 2716 case kCondA: 2717 if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { 2718 // Simulate lhs <= rhs via lhs < rhs + 1. 2719 // Note that this only works if rhs + 1 does not overflow 2720 // to 0, hence the check above. 2721 // Sltiu sign-extends its 16-bit immediate operand before 2722 // the comparison and thus lets us compare directly with 2723 // unsigned values in the ranges [0, 0x7fff] and 2724 // [0xffff8000, 0xffffffff]. 2725 __ Sltiu(dst, lhs, rhs_imm + 1); 2726 if (cond == kCondA) { 2727 // Simulate lhs > rhs via !(lhs <= rhs) since there's 2728 // only the sltiu instruction but no sgtiu. 2729 __ Xori(dst, dst, 1); 2730 } 2731 } else { 2732 if (use_imm) { 2733 rhs_reg = TMP; 2734 __ LoadConst32(rhs_reg, rhs_imm); 2735 } 2736 __ Sltu(dst, rhs_reg, lhs); 2737 if (cond == kCondBE) { 2738 // Simulate lhs <= rhs via !(rhs < lhs) since there's 2739 // only the sltu instruction but no sleu. 2740 __ Xori(dst, dst, 1); 2741 } 2742 } 2743 break; 2744 } 2745 } 2746 2747 void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond, 2748 LocationSummary* locations, 2749 MipsLabel* label) { 2750 Register lhs = locations->InAt(0).AsRegister<Register>(); 2751 Location rhs_location = locations->InAt(1); 2752 Register rhs_reg = ZERO; 2753 int32_t rhs_imm = 0; 2754 bool use_imm = rhs_location.IsConstant(); 2755 if (use_imm) { 2756 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); 2757 } else { 2758 rhs_reg = rhs_location.AsRegister<Register>(); 2759 } 2760 2761 if (use_imm && rhs_imm == 0) { 2762 switch (cond) { 2763 case kCondEQ: 2764 case kCondBE: // <= 0 if zero 2765 __ Beqz(lhs, label); 2766 break; 2767 case kCondNE: 2768 case kCondA: // > 0 if non-zero 2769 __ Bnez(lhs, label); 2770 break; 2771 case kCondLT: 2772 __ Bltz(lhs, label); 2773 break; 2774 case kCondGE: 2775 __ Bgez(lhs, label); 2776 break; 2777 case kCondLE: 2778 __ Blez(lhs, label); 2779 break; 2780 case kCondGT: 2781 __ Bgtz(lhs, label); 2782 break; 2783 case kCondB: // always false 2784 break; 2785 case kCondAE: // always true 2786 __ B(label); 2787 break; 2788 } 2789 } else { 2790 if (use_imm) { 2791 // TODO: more efficient comparison with 16-bit constants without loading them into TMP. 2792 rhs_reg = TMP; 2793 __ LoadConst32(rhs_reg, rhs_imm); 2794 } 2795 switch (cond) { 2796 case kCondEQ: 2797 __ Beq(lhs, rhs_reg, label); 2798 break; 2799 case kCondNE: 2800 __ Bne(lhs, rhs_reg, label); 2801 break; 2802 case kCondLT: 2803 __ Blt(lhs, rhs_reg, label); 2804 break; 2805 case kCondGE: 2806 __ Bge(lhs, rhs_reg, label); 2807 break; 2808 case kCondLE: 2809 __ Bge(rhs_reg, lhs, label); 2810 break; 2811 case kCondGT: 2812 __ Blt(rhs_reg, lhs, label); 2813 break; 2814 case kCondB: 2815 __ Bltu(lhs, rhs_reg, label); 2816 break; 2817 case kCondAE: 2818 __ Bgeu(lhs, rhs_reg, label); 2819 break; 2820 case kCondBE: 2821 __ Bgeu(rhs_reg, lhs, label); 2822 break; 2823 case kCondA: 2824 __ Bltu(rhs_reg, lhs, label); 2825 break; 2826 } 2827 } 2828 } 2829 2830 void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond, 2831 LocationSummary* locations, 2832 MipsLabel* label) { 2833 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 2834 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); 2835 Location rhs_location = locations->InAt(1); 2836 Register rhs_high = ZERO; 2837 Register rhs_low = ZERO; 2838 int64_t imm = 0; 2839 uint32_t imm_high = 0; 2840 uint32_t imm_low = 0; 2841 bool use_imm = rhs_location.IsConstant(); 2842 if (use_imm) { 2843 imm = rhs_location.GetConstant()->AsLongConstant()->GetValue(); 2844 imm_high = High32Bits(imm); 2845 imm_low = Low32Bits(imm); 2846 } else { 2847 rhs_high = rhs_location.AsRegisterPairHigh<Register>(); 2848 rhs_low = rhs_location.AsRegisterPairLow<Register>(); 2849 } 2850 2851 if (use_imm && imm == 0) { 2852 switch (cond) { 2853 case kCondEQ: 2854 case kCondBE: // <= 0 if zero 2855 __ Or(TMP, lhs_high, lhs_low); 2856 __ Beqz(TMP, label); 2857 break; 2858 case kCondNE: 2859 case kCondA: // > 0 if non-zero 2860 __ Or(TMP, lhs_high, lhs_low); 2861 __ Bnez(TMP, label); 2862 break; 2863 case kCondLT: 2864 __ Bltz(lhs_high, label); 2865 break; 2866 case kCondGE: 2867 __ Bgez(lhs_high, label); 2868 break; 2869 case kCondLE: 2870 __ Or(TMP, lhs_high, lhs_low); 2871 __ Sra(AT, lhs_high, 31); 2872 __ Bgeu(AT, TMP, label); 2873 break; 2874 case kCondGT: 2875 __ Or(TMP, lhs_high, lhs_low); 2876 __ Sra(AT, lhs_high, 31); 2877 __ Bltu(AT, TMP, label); 2878 break; 2879 case kCondB: // always false 2880 break; 2881 case kCondAE: // always true 2882 __ B(label); 2883 break; 2884 } 2885 } else if (use_imm) { 2886 // TODO: more efficient comparison with constants without loading them into TMP/AT. 2887 switch (cond) { 2888 case kCondEQ: 2889 __ LoadConst32(TMP, imm_high); 2890 __ Xor(TMP, TMP, lhs_high); 2891 __ LoadConst32(AT, imm_low); 2892 __ Xor(AT, AT, lhs_low); 2893 __ Or(TMP, TMP, AT); 2894 __ Beqz(TMP, label); 2895 break; 2896 case kCondNE: 2897 __ LoadConst32(TMP, imm_high); 2898 __ Xor(TMP, TMP, lhs_high); 2899 __ LoadConst32(AT, imm_low); 2900 __ Xor(AT, AT, lhs_low); 2901 __ Or(TMP, TMP, AT); 2902 __ Bnez(TMP, label); 2903 break; 2904 case kCondLT: 2905 __ LoadConst32(TMP, imm_high); 2906 __ Blt(lhs_high, TMP, label); 2907 __ Slt(TMP, TMP, lhs_high); 2908 __ LoadConst32(AT, imm_low); 2909 __ Sltu(AT, lhs_low, AT); 2910 __ Blt(TMP, AT, label); 2911 break; 2912 case kCondGE: 2913 __ LoadConst32(TMP, imm_high); 2914 __ Blt(TMP, lhs_high, label); 2915 __ Slt(TMP, lhs_high, TMP); 2916 __ LoadConst32(AT, imm_low); 2917 __ Sltu(AT, lhs_low, AT); 2918 __ Or(TMP, TMP, AT); 2919 __ Beqz(TMP, label); 2920 break; 2921 case kCondLE: 2922 __ LoadConst32(TMP, imm_high); 2923 __ Blt(lhs_high, TMP, label); 2924 __ Slt(TMP, TMP, lhs_high); 2925 __ LoadConst32(AT, imm_low); 2926 __ Sltu(AT, AT, lhs_low); 2927 __ Or(TMP, TMP, AT); 2928 __ Beqz(TMP, label); 2929 break; 2930 case kCondGT: 2931 __ LoadConst32(TMP, imm_high); 2932 __ Blt(TMP, lhs_high, label); 2933 __ Slt(TMP, lhs_high, TMP); 2934 __ LoadConst32(AT, imm_low); 2935 __ Sltu(AT, AT, lhs_low); 2936 __ Blt(TMP, AT, label); 2937 break; 2938 case kCondB: 2939 __ LoadConst32(TMP, imm_high); 2940 __ Bltu(lhs_high, TMP, label); 2941 __ Sltu(TMP, TMP, lhs_high); 2942 __ LoadConst32(AT, imm_low); 2943 __ Sltu(AT, lhs_low, AT); 2944 __ Blt(TMP, AT, label); 2945 break; 2946 case kCondAE: 2947 __ LoadConst32(TMP, imm_high); 2948 __ Bltu(TMP, lhs_high, label); 2949 __ Sltu(TMP, lhs_high, TMP); 2950 __ LoadConst32(AT, imm_low); 2951 __ Sltu(AT, lhs_low, AT); 2952 __ Or(TMP, TMP, AT); 2953 __ Beqz(TMP, label); 2954 break; 2955 case kCondBE: 2956 __ LoadConst32(TMP, imm_high); 2957 __ Bltu(lhs_high, TMP, label); 2958 __ Sltu(TMP, TMP, lhs_high); 2959 __ LoadConst32(AT, imm_low); 2960 __ Sltu(AT, AT, lhs_low); 2961 __ Or(TMP, TMP, AT); 2962 __ Beqz(TMP, label); 2963 break; 2964 case kCondA: 2965 __ LoadConst32(TMP, imm_high); 2966 __ Bltu(TMP, lhs_high, label); 2967 __ Sltu(TMP, lhs_high, TMP); 2968 __ LoadConst32(AT, imm_low); 2969 __ Sltu(AT, AT, lhs_low); 2970 __ Blt(TMP, AT, label); 2971 break; 2972 } 2973 } else { 2974 switch (cond) { 2975 case kCondEQ: 2976 __ Xor(TMP, lhs_high, rhs_high); 2977 __ Xor(AT, lhs_low, rhs_low); 2978 __ Or(TMP, TMP, AT); 2979 __ Beqz(TMP, label); 2980 break; 2981 case kCondNE: 2982 __ Xor(TMP, lhs_high, rhs_high); 2983 __ Xor(AT, lhs_low, rhs_low); 2984 __ Or(TMP, TMP, AT); 2985 __ Bnez(TMP, label); 2986 break; 2987 case kCondLT: 2988 __ Blt(lhs_high, rhs_high, label); 2989 __ Slt(TMP, rhs_high, lhs_high); 2990 __ Sltu(AT, lhs_low, rhs_low); 2991 __ Blt(TMP, AT, label); 2992 break; 2993 case kCondGE: 2994 __ Blt(rhs_high, lhs_high, label); 2995 __ Slt(TMP, lhs_high, rhs_high); 2996 __ Sltu(AT, lhs_low, rhs_low); 2997 __ Or(TMP, TMP, AT); 2998 __ Beqz(TMP, label); 2999 break; 3000 case kCondLE: 3001 __ Blt(lhs_high, rhs_high, label); 3002 __ Slt(TMP, rhs_high, lhs_high); 3003 __ Sltu(AT, rhs_low, lhs_low); 3004 __ Or(TMP, TMP, AT); 3005 __ Beqz(TMP, label); 3006 break; 3007 case kCondGT: 3008 __ Blt(rhs_high, lhs_high, label); 3009 __ Slt(TMP, lhs_high, rhs_high); 3010 __ Sltu(AT, rhs_low, lhs_low); 3011 __ Blt(TMP, AT, label); 3012 break; 3013 case kCondB: 3014 __ Bltu(lhs_high, rhs_high, label); 3015 __ Sltu(TMP, rhs_high, lhs_high); 3016 __ Sltu(AT, lhs_low, rhs_low); 3017 __ Blt(TMP, AT, label); 3018 break; 3019 case kCondAE: 3020 __ Bltu(rhs_high, lhs_high, label); 3021 __ Sltu(TMP, lhs_high, rhs_high); 3022 __ Sltu(AT, lhs_low, rhs_low); 3023 __ Or(TMP, TMP, AT); 3024 __ Beqz(TMP, label); 3025 break; 3026 case kCondBE: 3027 __ Bltu(lhs_high, rhs_high, label); 3028 __ Sltu(TMP, rhs_high, lhs_high); 3029 __ Sltu(AT, rhs_low, lhs_low); 3030 __ Or(TMP, TMP, AT); 3031 __ Beqz(TMP, label); 3032 break; 3033 case kCondA: 3034 __ Bltu(rhs_high, lhs_high, label); 3035 __ Sltu(TMP, lhs_high, rhs_high); 3036 __ Sltu(AT, rhs_low, lhs_low); 3037 __ Blt(TMP, AT, label); 3038 break; 3039 } 3040 } 3041 } 3042 3043 void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond, 3044 bool gt_bias, 3045 Primitive::Type type, 3046 LocationSummary* locations, 3047 MipsLabel* label) { 3048 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 3049 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 3050 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 3051 if (type == Primitive::kPrimFloat) { 3052 if (isR6) { 3053 switch (cond) { 3054 case kCondEQ: 3055 __ CmpEqS(FTMP, lhs, rhs); 3056 __ Bc1nez(FTMP, label); 3057 break; 3058 case kCondNE: 3059 __ CmpEqS(FTMP, lhs, rhs); 3060 __ Bc1eqz(FTMP, label); 3061 break; 3062 case kCondLT: 3063 if (gt_bias) { 3064 __ CmpLtS(FTMP, lhs, rhs); 3065 } else { 3066 __ CmpUltS(FTMP, lhs, rhs); 3067 } 3068 __ Bc1nez(FTMP, label); 3069 break; 3070 case kCondLE: 3071 if (gt_bias) { 3072 __ CmpLeS(FTMP, lhs, rhs); 3073 } else { 3074 __ CmpUleS(FTMP, lhs, rhs); 3075 } 3076 __ Bc1nez(FTMP, label); 3077 break; 3078 case kCondGT: 3079 if (gt_bias) { 3080 __ CmpUltS(FTMP, rhs, lhs); 3081 } else { 3082 __ CmpLtS(FTMP, rhs, lhs); 3083 } 3084 __ Bc1nez(FTMP, label); 3085 break; 3086 case kCondGE: 3087 if (gt_bias) { 3088 __ CmpUleS(FTMP, rhs, lhs); 3089 } else { 3090 __ CmpLeS(FTMP, rhs, lhs); 3091 } 3092 __ Bc1nez(FTMP, label); 3093 break; 3094 default: 3095 LOG(FATAL) << "Unexpected non-floating-point condition"; 3096 } 3097 } else { 3098 switch (cond) { 3099 case kCondEQ: 3100 __ CeqS(0, lhs, rhs); 3101 __ Bc1t(0, label); 3102 break; 3103 case kCondNE: 3104 __ CeqS(0, lhs, rhs); 3105 __ Bc1f(0, label); 3106 break; 3107 case kCondLT: 3108 if (gt_bias) { 3109 __ ColtS(0, lhs, rhs); 3110 } else { 3111 __ CultS(0, lhs, rhs); 3112 } 3113 __ Bc1t(0, label); 3114 break; 3115 case kCondLE: 3116 if (gt_bias) { 3117 __ ColeS(0, lhs, rhs); 3118 } else { 3119 __ CuleS(0, lhs, rhs); 3120 } 3121 __ Bc1t(0, label); 3122 break; 3123 case kCondGT: 3124 if (gt_bias) { 3125 __ CultS(0, rhs, lhs); 3126 } else { 3127 __ ColtS(0, rhs, lhs); 3128 } 3129 __ Bc1t(0, label); 3130 break; 3131 case kCondGE: 3132 if (gt_bias) { 3133 __ CuleS(0, rhs, lhs); 3134 } else { 3135 __ ColeS(0, rhs, lhs); 3136 } 3137 __ Bc1t(0, label); 3138 break; 3139 default: 3140 LOG(FATAL) << "Unexpected non-floating-point condition"; 3141 } 3142 } 3143 } else { 3144 DCHECK_EQ(type, Primitive::kPrimDouble); 3145 if (isR6) { 3146 switch (cond) { 3147 case kCondEQ: 3148 __ CmpEqD(FTMP, lhs, rhs); 3149 __ Bc1nez(FTMP, label); 3150 break; 3151 case kCondNE: 3152 __ CmpEqD(FTMP, lhs, rhs); 3153 __ Bc1eqz(FTMP, label); 3154 break; 3155 case kCondLT: 3156 if (gt_bias) { 3157 __ CmpLtD(FTMP, lhs, rhs); 3158 } else { 3159 __ CmpUltD(FTMP, lhs, rhs); 3160 } 3161 __ Bc1nez(FTMP, label); 3162 break; 3163 case kCondLE: 3164 if (gt_bias) { 3165 __ CmpLeD(FTMP, lhs, rhs); 3166 } else { 3167 __ CmpUleD(FTMP, lhs, rhs); 3168 } 3169 __ Bc1nez(FTMP, label); 3170 break; 3171 case kCondGT: 3172 if (gt_bias) { 3173 __ CmpUltD(FTMP, rhs, lhs); 3174 } else { 3175 __ CmpLtD(FTMP, rhs, lhs); 3176 } 3177 __ Bc1nez(FTMP, label); 3178 break; 3179 case kCondGE: 3180 if (gt_bias) { 3181 __ CmpUleD(FTMP, rhs, lhs); 3182 } else { 3183 __ CmpLeD(FTMP, rhs, lhs); 3184 } 3185 __ Bc1nez(FTMP, label); 3186 break; 3187 default: 3188 LOG(FATAL) << "Unexpected non-floating-point condition"; 3189 } 3190 } else { 3191 switch (cond) { 3192 case kCondEQ: 3193 __ CeqD(0, lhs, rhs); 3194 __ Bc1t(0, label); 3195 break; 3196 case kCondNE: 3197 __ CeqD(0, lhs, rhs); 3198 __ Bc1f(0, label); 3199 break; 3200 case kCondLT: 3201 if (gt_bias) { 3202 __ ColtD(0, lhs, rhs); 3203 } else { 3204 __ CultD(0, lhs, rhs); 3205 } 3206 __ Bc1t(0, label); 3207 break; 3208 case kCondLE: 3209 if (gt_bias) { 3210 __ ColeD(0, lhs, rhs); 3211 } else { 3212 __ CuleD(0, lhs, rhs); 3213 } 3214 __ Bc1t(0, label); 3215 break; 3216 case kCondGT: 3217 if (gt_bias) { 3218 __ CultD(0, rhs, lhs); 3219 } else { 3220 __ ColtD(0, rhs, lhs); 3221 } 3222 __ Bc1t(0, label); 3223 break; 3224 case kCondGE: 3225 if (gt_bias) { 3226 __ CuleD(0, rhs, lhs); 3227 } else { 3228 __ ColeD(0, rhs, lhs); 3229 } 3230 __ Bc1t(0, label); 3231 break; 3232 default: 3233 LOG(FATAL) << "Unexpected non-floating-point condition"; 3234 } 3235 } 3236 } 3237 } 3238 3239 void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction, 3240 size_t condition_input_index, 3241 MipsLabel* true_target, 3242 MipsLabel* false_target) { 3243 HInstruction* cond = instruction->InputAt(condition_input_index); 3244 3245 if (true_target == nullptr && false_target == nullptr) { 3246 // Nothing to do. The code always falls through. 3247 return; 3248 } else if (cond->IsIntConstant()) { 3249 // Constant condition, statically compared against "true" (integer value 1). 3250 if (cond->AsIntConstant()->IsTrue()) { 3251 if (true_target != nullptr) { 3252 __ B(true_target); 3253 } 3254 } else { 3255 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); 3256 if (false_target != nullptr) { 3257 __ B(false_target); 3258 } 3259 } 3260 return; 3261 } 3262 3263 // The following code generates these patterns: 3264 // (1) true_target == nullptr && false_target != nullptr 3265 // - opposite condition true => branch to false_target 3266 // (2) true_target != nullptr && false_target == nullptr 3267 // - condition true => branch to true_target 3268 // (3) true_target != nullptr && false_target != nullptr 3269 // - condition true => branch to true_target 3270 // - branch to false_target 3271 if (IsBooleanValueOrMaterializedCondition(cond)) { 3272 // The condition instruction has been materialized, compare the output to 0. 3273 Location cond_val = instruction->GetLocations()->InAt(condition_input_index); 3274 DCHECK(cond_val.IsRegister()); 3275 if (true_target == nullptr) { 3276 __ Beqz(cond_val.AsRegister<Register>(), false_target); 3277 } else { 3278 __ Bnez(cond_val.AsRegister<Register>(), true_target); 3279 } 3280 } else { 3281 // The condition instruction has not been materialized, use its inputs as 3282 // the comparison and its condition as the branch condition. 3283 HCondition* condition = cond->AsCondition(); 3284 Primitive::Type type = condition->InputAt(0)->GetType(); 3285 LocationSummary* locations = cond->GetLocations(); 3286 IfCondition if_cond = condition->GetCondition(); 3287 MipsLabel* branch_target = true_target; 3288 3289 if (true_target == nullptr) { 3290 if_cond = condition->GetOppositeCondition(); 3291 branch_target = false_target; 3292 } 3293 3294 switch (type) { 3295 default: 3296 GenerateIntCompareAndBranch(if_cond, locations, branch_target); 3297 break; 3298 case Primitive::kPrimLong: 3299 GenerateLongCompareAndBranch(if_cond, locations, branch_target); 3300 break; 3301 case Primitive::kPrimFloat: 3302 case Primitive::kPrimDouble: 3303 GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target); 3304 break; 3305 } 3306 } 3307 3308 // If neither branch falls through (case 3), the conditional branch to `true_target` 3309 // was already emitted (case 2) and we need to emit a jump to `false_target`. 3310 if (true_target != nullptr && false_target != nullptr) { 3311 __ B(false_target); 3312 } 3313 } 3314 3315 void LocationsBuilderMIPS::VisitIf(HIf* if_instr) { 3316 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); 3317 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { 3318 locations->SetInAt(0, Location::RequiresRegister()); 3319 } 3320 } 3321 3322 void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) { 3323 HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); 3324 HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); 3325 MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? 3326 nullptr : codegen_->GetLabelOf(true_successor); 3327 MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? 3328 nullptr : codegen_->GetLabelOf(false_successor); 3329 GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); 3330 } 3331 3332 void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { 3333 LocationSummary* locations = new (GetGraph()->GetArena()) 3334 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); 3335 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { 3336 locations->SetInAt(0, Location::RequiresRegister()); 3337 } 3338 } 3339 3340 void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { 3341 SlowPathCodeMIPS* slow_path = 3342 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize); 3343 GenerateTestAndBranch(deoptimize, 3344 /* condition_input_index */ 0, 3345 slow_path->GetEntryLabel(), 3346 /* false_target */ nullptr); 3347 } 3348 3349 void LocationsBuilderMIPS::VisitSelect(HSelect* select) { 3350 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); 3351 if (Primitive::IsFloatingPointType(select->GetType())) { 3352 locations->SetInAt(0, Location::RequiresFpuRegister()); 3353 locations->SetInAt(1, Location::RequiresFpuRegister()); 3354 } else { 3355 locations->SetInAt(0, Location::RequiresRegister()); 3356 locations->SetInAt(1, Location::RequiresRegister()); 3357 } 3358 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { 3359 locations->SetInAt(2, Location::RequiresRegister()); 3360 } 3361 locations->SetOut(Location::SameAsFirstInput()); 3362 } 3363 3364 void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) { 3365 LocationSummary* locations = select->GetLocations(); 3366 MipsLabel false_target; 3367 GenerateTestAndBranch(select, 3368 /* condition_input_index */ 2, 3369 /* true_target */ nullptr, 3370 &false_target); 3371 codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); 3372 __ Bind(&false_target); 3373 } 3374 3375 void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) { 3376 new (GetGraph()->GetArena()) LocationSummary(info); 3377 } 3378 3379 void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) { 3380 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. 3381 } 3382 3383 void CodeGeneratorMIPS::GenerateNop() { 3384 __ Nop(); 3385 } 3386 3387 void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { 3388 Primitive::Type field_type = field_info.GetFieldType(); 3389 bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble); 3390 bool generate_volatile = field_info.IsVolatile() && is_wide; 3391 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( 3392 instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall); 3393 3394 locations->SetInAt(0, Location::RequiresRegister()); 3395 if (generate_volatile) { 3396 InvokeRuntimeCallingConvention calling_convention; 3397 // need A0 to hold base + offset 3398 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 3399 if (field_type == Primitive::kPrimLong) { 3400 locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong)); 3401 } else { 3402 locations->SetOut(Location::RequiresFpuRegister()); 3403 // Need some temp core regs since FP results are returned in core registers 3404 Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong); 3405 locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>())); 3406 locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>())); 3407 } 3408 } else { 3409 if (Primitive::IsFloatingPointType(instruction->GetType())) { 3410 locations->SetOut(Location::RequiresFpuRegister()); 3411 } else { 3412 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 3413 } 3414 } 3415 } 3416 3417 void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction, 3418 const FieldInfo& field_info, 3419 uint32_t dex_pc) { 3420 Primitive::Type type = field_info.GetFieldType(); 3421 LocationSummary* locations = instruction->GetLocations(); 3422 Register obj = locations->InAt(0).AsRegister<Register>(); 3423 LoadOperandType load_type = kLoadUnsignedByte; 3424 bool is_volatile = field_info.IsVolatile(); 3425 uint32_t offset = field_info.GetFieldOffset().Uint32Value(); 3426 3427 switch (type) { 3428 case Primitive::kPrimBoolean: 3429 load_type = kLoadUnsignedByte; 3430 break; 3431 case Primitive::kPrimByte: 3432 load_type = kLoadSignedByte; 3433 break; 3434 case Primitive::kPrimShort: 3435 load_type = kLoadSignedHalfword; 3436 break; 3437 case Primitive::kPrimChar: 3438 load_type = kLoadUnsignedHalfword; 3439 break; 3440 case Primitive::kPrimInt: 3441 case Primitive::kPrimFloat: 3442 case Primitive::kPrimNot: 3443 load_type = kLoadWord; 3444 break; 3445 case Primitive::kPrimLong: 3446 case Primitive::kPrimDouble: 3447 load_type = kLoadDoubleword; 3448 break; 3449 case Primitive::kPrimVoid: 3450 LOG(FATAL) << "Unreachable type " << type; 3451 UNREACHABLE(); 3452 } 3453 3454 if (is_volatile && load_type == kLoadDoubleword) { 3455 InvokeRuntimeCallingConvention calling_convention; 3456 __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); 3457 // Do implicit Null check 3458 __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0); 3459 codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); 3460 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Load), 3461 instruction, 3462 dex_pc, 3463 nullptr, 3464 IsDirectEntrypoint(kQuickA64Load)); 3465 CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>(); 3466 if (type == Primitive::kPrimDouble) { 3467 // Need to move to FP regs since FP results are returned in core registers. 3468 __ Mtc1(locations->GetTemp(1).AsRegister<Register>(), 3469 locations->Out().AsFpuRegister<FRegister>()); 3470 __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(), 3471 locations->Out().AsFpuRegister<FRegister>()); 3472 } 3473 } else { 3474 if (!Primitive::IsFloatingPointType(type)) { 3475 Register dst; 3476 if (type == Primitive::kPrimLong) { 3477 DCHECK(locations->Out().IsRegisterPair()); 3478 dst = locations->Out().AsRegisterPairLow<Register>(); 3479 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 3480 if (obj == dst) { 3481 __ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize); 3482 codegen_->MaybeRecordImplicitNullCheck(instruction); 3483 __ LoadFromOffset(kLoadWord, dst, obj, offset); 3484 } else { 3485 __ LoadFromOffset(kLoadWord, dst, obj, offset); 3486 codegen_->MaybeRecordImplicitNullCheck(instruction); 3487 __ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize); 3488 } 3489 } else { 3490 DCHECK(locations->Out().IsRegister()); 3491 dst = locations->Out().AsRegister<Register>(); 3492 __ LoadFromOffset(load_type, dst, obj, offset); 3493 } 3494 } else { 3495 DCHECK(locations->Out().IsFpuRegister()); 3496 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 3497 if (type == Primitive::kPrimFloat) { 3498 __ LoadSFromOffset(dst, obj, offset); 3499 } else { 3500 __ LoadDFromOffset(dst, obj, offset); 3501 } 3502 } 3503 // Longs are handled earlier. 3504 if (type != Primitive::kPrimLong) { 3505 codegen_->MaybeRecordImplicitNullCheck(instruction); 3506 } 3507 } 3508 3509 if (is_volatile) { 3510 GenerateMemoryBarrier(MemBarrierKind::kLoadAny); 3511 } 3512 } 3513 3514 void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { 3515 Primitive::Type field_type = field_info.GetFieldType(); 3516 bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble); 3517 bool generate_volatile = field_info.IsVolatile() && is_wide; 3518 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( 3519 instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall); 3520 3521 locations->SetInAt(0, Location::RequiresRegister()); 3522 if (generate_volatile) { 3523 InvokeRuntimeCallingConvention calling_convention; 3524 // need A0 to hold base + offset 3525 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 3526 if (field_type == Primitive::kPrimLong) { 3527 locations->SetInAt(1, Location::RegisterPairLocation( 3528 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); 3529 } else { 3530 locations->SetInAt(1, Location::RequiresFpuRegister()); 3531 // Pass FP parameters in core registers. 3532 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); 3533 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3))); 3534 } 3535 } else { 3536 if (Primitive::IsFloatingPointType(field_type)) { 3537 locations->SetInAt(1, Location::RequiresFpuRegister()); 3538 } else { 3539 locations->SetInAt(1, Location::RequiresRegister()); 3540 } 3541 } 3542 } 3543 3544 void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction, 3545 const FieldInfo& field_info, 3546 uint32_t dex_pc) { 3547 Primitive::Type type = field_info.GetFieldType(); 3548 LocationSummary* locations = instruction->GetLocations(); 3549 Register obj = locations->InAt(0).AsRegister<Register>(); 3550 StoreOperandType store_type = kStoreByte; 3551 bool is_volatile = field_info.IsVolatile(); 3552 uint32_t offset = field_info.GetFieldOffset().Uint32Value(); 3553 3554 switch (type) { 3555 case Primitive::kPrimBoolean: 3556 case Primitive::kPrimByte: 3557 store_type = kStoreByte; 3558 break; 3559 case Primitive::kPrimShort: 3560 case Primitive::kPrimChar: 3561 store_type = kStoreHalfword; 3562 break; 3563 case Primitive::kPrimInt: 3564 case Primitive::kPrimFloat: 3565 case Primitive::kPrimNot: 3566 store_type = kStoreWord; 3567 break; 3568 case Primitive::kPrimLong: 3569 case Primitive::kPrimDouble: 3570 store_type = kStoreDoubleword; 3571 break; 3572 case Primitive::kPrimVoid: 3573 LOG(FATAL) << "Unreachable type " << type; 3574 UNREACHABLE(); 3575 } 3576 3577 if (is_volatile) { 3578 GenerateMemoryBarrier(MemBarrierKind::kAnyStore); 3579 } 3580 3581 if (is_volatile && store_type == kStoreDoubleword) { 3582 InvokeRuntimeCallingConvention calling_convention; 3583 __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); 3584 // Do implicit Null check. 3585 __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0); 3586 codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); 3587 if (type == Primitive::kPrimDouble) { 3588 // Pass FP parameters in core registers. 3589 __ Mfc1(locations->GetTemp(1).AsRegister<Register>(), 3590 locations->InAt(1).AsFpuRegister<FRegister>()); 3591 __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(), 3592 locations->InAt(1).AsFpuRegister<FRegister>()); 3593 } 3594 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Store), 3595 instruction, 3596 dex_pc, 3597 nullptr, 3598 IsDirectEntrypoint(kQuickA64Store)); 3599 CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>(); 3600 } else { 3601 if (!Primitive::IsFloatingPointType(type)) { 3602 Register src; 3603 if (type == Primitive::kPrimLong) { 3604 DCHECK(locations->InAt(1).IsRegisterPair()); 3605 src = locations->InAt(1).AsRegisterPairLow<Register>(); 3606 Register src_high = locations->InAt(1).AsRegisterPairHigh<Register>(); 3607 __ StoreToOffset(kStoreWord, src, obj, offset); 3608 codegen_->MaybeRecordImplicitNullCheck(instruction); 3609 __ StoreToOffset(kStoreWord, src_high, obj, offset + kMipsWordSize); 3610 } else { 3611 DCHECK(locations->InAt(1).IsRegister()); 3612 src = locations->InAt(1).AsRegister<Register>(); 3613 __ StoreToOffset(store_type, src, obj, offset); 3614 } 3615 } else { 3616 DCHECK(locations->InAt(1).IsFpuRegister()); 3617 FRegister src = locations->InAt(1).AsFpuRegister<FRegister>(); 3618 if (type == Primitive::kPrimFloat) { 3619 __ StoreSToOffset(src, obj, offset); 3620 } else { 3621 __ StoreDToOffset(src, obj, offset); 3622 } 3623 } 3624 // Longs are handled earlier. 3625 if (type != Primitive::kPrimLong) { 3626 codegen_->MaybeRecordImplicitNullCheck(instruction); 3627 } 3628 } 3629 3630 // TODO: memory barriers? 3631 if (CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1))) { 3632 DCHECK(locations->InAt(1).IsRegister()); 3633 Register src = locations->InAt(1).AsRegister<Register>(); 3634 codegen_->MarkGCCard(obj, src); 3635 } 3636 3637 if (is_volatile) { 3638 GenerateMemoryBarrier(MemBarrierKind::kAnyAny); 3639 } 3640 } 3641 3642 void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { 3643 HandleFieldGet(instruction, instruction->GetFieldInfo()); 3644 } 3645 3646 void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { 3647 HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); 3648 } 3649 3650 void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { 3651 HandleFieldSet(instruction, instruction->GetFieldInfo()); 3652 } 3653 3654 void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { 3655 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); 3656 } 3657 3658 void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) { 3659 LocationSummary::CallKind call_kind = 3660 instruction->IsExactCheck() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath; 3661 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); 3662 locations->SetInAt(0, Location::RequiresRegister()); 3663 locations->SetInAt(1, Location::RequiresRegister()); 3664 // The output does overlap inputs. 3665 // Note that TypeCheckSlowPathMIPS uses this register too. 3666 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); 3667 } 3668 3669 void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) { 3670 LocationSummary* locations = instruction->GetLocations(); 3671 Register obj = locations->InAt(0).AsRegister<Register>(); 3672 Register cls = locations->InAt(1).AsRegister<Register>(); 3673 Register out = locations->Out().AsRegister<Register>(); 3674 3675 MipsLabel done; 3676 3677 // Return 0 if `obj` is null. 3678 // TODO: Avoid this check if we know `obj` is not null. 3679 __ Move(out, ZERO); 3680 __ Beqz(obj, &done); 3681 3682 // Compare the class of `obj` with `cls`. 3683 __ LoadFromOffset(kLoadWord, out, obj, mirror::Object::ClassOffset().Int32Value()); 3684 if (instruction->IsExactCheck()) { 3685 // Classes must be equal for the instanceof to succeed. 3686 __ Xor(out, out, cls); 3687 __ Sltiu(out, out, 1); 3688 } else { 3689 // If the classes are not equal, we go into a slow path. 3690 DCHECK(locations->OnlyCallsOnSlowPath()); 3691 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction); 3692 codegen_->AddSlowPath(slow_path); 3693 __ Bne(out, cls, slow_path->GetEntryLabel()); 3694 __ LoadConst32(out, 1); 3695 __ Bind(slow_path->GetExitLabel()); 3696 } 3697 3698 __ Bind(&done); 3699 } 3700 3701 void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) { 3702 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); 3703 locations->SetOut(Location::ConstantLocation(constant)); 3704 } 3705 3706 void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { 3707 // Will be generated at use site. 3708 } 3709 3710 void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) { 3711 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); 3712 locations->SetOut(Location::ConstantLocation(constant)); 3713 } 3714 3715 void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { 3716 // Will be generated at use site. 3717 } 3718 3719 void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) { 3720 InvokeDexCallingConventionVisitorMIPS calling_convention_visitor; 3721 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); 3722 } 3723 3724 void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { 3725 HandleInvoke(invoke); 3726 // The register T0 is required to be used for the hidden argument in 3727 // art_quick_imt_conflict_trampoline, so add the hidden argument. 3728 invoke->GetLocations()->AddTemp(Location::RegisterLocation(T0)); 3729 } 3730 3731 void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { 3732 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. 3733 Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>(); 3734 Location receiver = invoke->GetLocations()->InAt(0); 3735 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); 3736 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize); 3737 3738 // Set the hidden argument. 3739 __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(), 3740 invoke->GetDexMethodIndex()); 3741 3742 // temp = object->GetClass(); 3743 if (receiver.IsStackSlot()) { 3744 __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); 3745 __ LoadFromOffset(kLoadWord, temp, temp, class_offset); 3746 } else { 3747 __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); 3748 } 3749 codegen_->MaybeRecordImplicitNullCheck(invoke); 3750 __ LoadFromOffset(kLoadWord, temp, temp, 3751 mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); 3752 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( 3753 invoke->GetImtIndex() % ImTable::kSize, kMipsPointerSize)); 3754 // temp = temp->GetImtEntryAt(method_offset); 3755 __ LoadFromOffset(kLoadWord, temp, temp, method_offset); 3756 // T9 = temp->GetEntryPoint(); 3757 __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); 3758 // T9(); 3759 __ Jalr(T9); 3760 __ Nop(); 3761 DCHECK(!codegen_->IsLeafMethod()); 3762 codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); 3763 } 3764 3765 void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { 3766 IntrinsicLocationsBuilderMIPS intrinsic(codegen_); 3767 if (intrinsic.TryDispatch(invoke)) { 3768 return; 3769 } 3770 3771 HandleInvoke(invoke); 3772 } 3773 3774 void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { 3775 // Explicit clinit checks triggered by static invokes must have been pruned by 3776 // art::PrepareForRegisterAllocation. 3777 DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); 3778 3779 IntrinsicLocationsBuilderMIPS intrinsic(codegen_); 3780 if (intrinsic.TryDispatch(invoke)) { 3781 return; 3782 } 3783 3784 HandleInvoke(invoke); 3785 } 3786 3787 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) { 3788 if (invoke->GetLocations()->Intrinsified()) { 3789 IntrinsicCodeGeneratorMIPS intrinsic(codegen); 3790 intrinsic.Dispatch(invoke); 3791 return true; 3792 } 3793 return false; 3794 } 3795 3796 HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind( 3797 HLoadString::LoadKind desired_string_load_kind ATTRIBUTE_UNUSED) { 3798 // TODO: Implement other kinds. 3799 return HLoadString::LoadKind::kDexCacheViaMethod; 3800 } 3801 3802 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch( 3803 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, 3804 MethodReference target_method ATTRIBUTE_UNUSED) { 3805 switch (desired_dispatch_info.method_load_kind) { 3806 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: 3807 case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: 3808 // TODO: Implement these types. For the moment, we fall back to kDexCacheViaMethod. 3809 return HInvokeStaticOrDirect::DispatchInfo { 3810 HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, 3811 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 3812 0u, 3813 0u 3814 }; 3815 default: 3816 break; 3817 } 3818 switch (desired_dispatch_info.code_ptr_location) { 3819 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: 3820 case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: 3821 // TODO: Implement these types. For the moment, we fall back to kCallArtMethod. 3822 return HInvokeStaticOrDirect::DispatchInfo { 3823 desired_dispatch_info.method_load_kind, 3824 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 3825 desired_dispatch_info.method_load_data, 3826 0u 3827 }; 3828 default: 3829 return desired_dispatch_info; 3830 } 3831 } 3832 3833 void CodeGeneratorMIPS::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { 3834 // All registers are assumed to be correctly set up per the calling convention. 3835 3836 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. 3837 switch (invoke->GetMethodLoadKind()) { 3838 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: 3839 // temp = thread->string_init_entrypoint 3840 __ LoadFromOffset(kLoadWord, 3841 temp.AsRegister<Register>(), 3842 TR, 3843 invoke->GetStringInitOffset()); 3844 break; 3845 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: 3846 callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); 3847 break; 3848 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: 3849 __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress()); 3850 break; 3851 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: 3852 case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: 3853 // TODO: Implement these types. 3854 // Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch(). 3855 LOG(FATAL) << "Unsupported"; 3856 UNREACHABLE(); 3857 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { 3858 Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); 3859 Register reg = temp.AsRegister<Register>(); 3860 Register method_reg; 3861 if (current_method.IsRegister()) { 3862 method_reg = current_method.AsRegister<Register>(); 3863 } else { 3864 // TODO: use the appropriate DCHECK() here if possible. 3865 // DCHECK(invoke->GetLocations()->Intrinsified()); 3866 DCHECK(!current_method.IsValid()); 3867 method_reg = reg; 3868 __ Lw(reg, SP, kCurrentMethodStackOffset); 3869 } 3870 3871 // temp = temp->dex_cache_resolved_methods_; 3872 __ LoadFromOffset(kLoadWord, 3873 reg, 3874 method_reg, 3875 ArtMethod::DexCacheResolvedMethodsOffset(kMipsPointerSize).Int32Value()); 3876 // temp = temp[index_in_cache]; 3877 // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. 3878 uint32_t index_in_cache = invoke->GetDexMethodIndex(); 3879 __ LoadFromOffset(kLoadWord, 3880 reg, 3881 reg, 3882 CodeGenerator::GetCachePointerOffset(index_in_cache)); 3883 break; 3884 } 3885 } 3886 3887 switch (invoke->GetCodePtrLocation()) { 3888 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: 3889 __ Jalr(&frame_entry_label_, T9); 3890 break; 3891 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: 3892 // LR = invoke->GetDirectCodePtr(); 3893 __ LoadConst32(T9, invoke->GetDirectCodePtr()); 3894 // LR() 3895 __ Jalr(T9); 3896 __ Nop(); 3897 break; 3898 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: 3899 case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: 3900 // TODO: Implement these types. 3901 // Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch(). 3902 LOG(FATAL) << "Unsupported"; 3903 UNREACHABLE(); 3904 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: 3905 // T9 = callee_method->entry_point_from_quick_compiled_code_; 3906 __ LoadFromOffset(kLoadWord, 3907 T9, 3908 callee_method.AsRegister<Register>(), 3909 ArtMethod::EntryPointFromQuickCompiledCodeOffset( 3910 kMipsWordSize).Int32Value()); 3911 // T9() 3912 __ Jalr(T9); 3913 __ Nop(); 3914 break; 3915 } 3916 DCHECK(!IsLeafMethod()); 3917 } 3918 3919 void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { 3920 // Explicit clinit checks triggered by static invokes must have been pruned by 3921 // art::PrepareForRegisterAllocation. 3922 DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); 3923 3924 if (TryGenerateIntrinsicCode(invoke, codegen_)) { 3925 return; 3926 } 3927 3928 LocationSummary* locations = invoke->GetLocations(); 3929 codegen_->GenerateStaticOrDirectCall(invoke, 3930 locations->HasTemps() 3931 ? locations->GetTemp(0) 3932 : Location::NoLocation()); 3933 codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); 3934 } 3935 3936 void CodeGeneratorMIPS::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) { 3937 LocationSummary* locations = invoke->GetLocations(); 3938 Location receiver = locations->InAt(0); 3939 Register temp = temp_location.AsRegister<Register>(); 3940 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( 3941 invoke->GetVTableIndex(), kMipsPointerSize).SizeValue(); 3942 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); 3943 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize); 3944 3945 // temp = object->GetClass(); 3946 DCHECK(receiver.IsRegister()); 3947 __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); 3948 MaybeRecordImplicitNullCheck(invoke); 3949 // temp = temp->GetMethodAt(method_offset); 3950 __ LoadFromOffset(kLoadWord, temp, temp, method_offset); 3951 // T9 = temp->GetEntryPoint(); 3952 __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); 3953 // T9(); 3954 __ Jalr(T9); 3955 __ Nop(); 3956 } 3957 3958 void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { 3959 if (TryGenerateIntrinsicCode(invoke, codegen_)) { 3960 return; 3961 } 3962 3963 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); 3964 DCHECK(!codegen_->IsLeafMethod()); 3965 codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); 3966 } 3967 3968 void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) { 3969 InvokeRuntimeCallingConvention calling_convention; 3970 CodeGenerator::CreateLoadClassLocationSummary( 3971 cls, 3972 Location::RegisterLocation(calling_convention.GetRegisterAt(0)), 3973 Location::RegisterLocation(V0)); 3974 } 3975 3976 void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) { 3977 LocationSummary* locations = cls->GetLocations(); 3978 if (cls->NeedsAccessCheck()) { 3979 codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex()); 3980 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess), 3981 cls, 3982 cls->GetDexPc(), 3983 nullptr, 3984 IsDirectEntrypoint(kQuickInitializeTypeAndVerifyAccess)); 3985 CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); 3986 return; 3987 } 3988 3989 Register out = locations->Out().AsRegister<Register>(); 3990 Register current_method = locations->InAt(0).AsRegister<Register>(); 3991 if (cls->IsReferrersClass()) { 3992 DCHECK(!cls->CanCallRuntime()); 3993 DCHECK(!cls->MustGenerateClinitCheck()); 3994 __ LoadFromOffset(kLoadWord, out, current_method, 3995 ArtMethod::DeclaringClassOffset().Int32Value()); 3996 } else { 3997 __ LoadFromOffset(kLoadWord, out, current_method, 3998 ArtMethod::DexCacheResolvedTypesOffset(kMipsPointerSize).Int32Value()); 3999 __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())); 4000 4001 if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) { 4002 DCHECK(cls->CanCallRuntime()); 4003 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS( 4004 cls, 4005 cls, 4006 cls->GetDexPc(), 4007 cls->MustGenerateClinitCheck()); 4008 codegen_->AddSlowPath(slow_path); 4009 if (!cls->IsInDexCache()) { 4010 __ Beqz(out, slow_path->GetEntryLabel()); 4011 } 4012 if (cls->MustGenerateClinitCheck()) { 4013 GenerateClassInitializationCheck(slow_path, out); 4014 } else { 4015 __ Bind(slow_path->GetExitLabel()); 4016 } 4017 } 4018 } 4019 } 4020 4021 static int32_t GetExceptionTlsOffset() { 4022 return Thread::ExceptionOffset<kMipsWordSize>().Int32Value(); 4023 } 4024 4025 void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) { 4026 LocationSummary* locations = 4027 new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); 4028 locations->SetOut(Location::RequiresRegister()); 4029 } 4030 4031 void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) { 4032 Register out = load->GetLocations()->Out().AsRegister<Register>(); 4033 __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); 4034 } 4035 4036 void LocationsBuilderMIPS::VisitClearException(HClearException* clear) { 4037 new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); 4038 } 4039 4040 void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { 4041 __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset()); 4042 } 4043 4044 void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) { 4045 LocationSummary::CallKind call_kind = load->NeedsEnvironment() 4046 ? LocationSummary::kCallOnSlowPath 4047 : LocationSummary::kNoCall; 4048 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); 4049 locations->SetInAt(0, Location::RequiresRegister()); 4050 locations->SetOut(Location::RequiresRegister()); 4051 } 4052 4053 void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) { 4054 LocationSummary* locations = load->GetLocations(); 4055 Register out = locations->Out().AsRegister<Register>(); 4056 Register current_method = locations->InAt(0).AsRegister<Register>(); 4057 __ LoadFromOffset(kLoadWord, out, current_method, ArtMethod::DeclaringClassOffset().Int32Value()); 4058 __ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value()); 4059 __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(load->GetStringIndex())); 4060 4061 if (!load->IsInDexCache()) { 4062 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load); 4063 codegen_->AddSlowPath(slow_path); 4064 __ Beqz(out, slow_path->GetEntryLabel()); 4065 __ Bind(slow_path->GetExitLabel()); 4066 } 4067 } 4068 4069 void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) { 4070 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); 4071 locations->SetOut(Location::ConstantLocation(constant)); 4072 } 4073 4074 void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { 4075 // Will be generated at use site. 4076 } 4077 4078 void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { 4079 LocationSummary* locations = 4080 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); 4081 InvokeRuntimeCallingConvention calling_convention; 4082 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 4083 } 4084 4085 void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { 4086 if (instruction->IsEnter()) { 4087 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLockObject), 4088 instruction, 4089 instruction->GetDexPc(), 4090 nullptr, 4091 IsDirectEntrypoint(kQuickLockObject)); 4092 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); 4093 } else { 4094 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pUnlockObject), 4095 instruction, 4096 instruction->GetDexPc(), 4097 nullptr, 4098 IsDirectEntrypoint(kQuickUnlockObject)); 4099 } 4100 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); 4101 } 4102 4103 void LocationsBuilderMIPS::VisitMul(HMul* mul) { 4104 LocationSummary* locations = 4105 new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); 4106 switch (mul->GetResultType()) { 4107 case Primitive::kPrimInt: 4108 case Primitive::kPrimLong: 4109 locations->SetInAt(0, Location::RequiresRegister()); 4110 locations->SetInAt(1, Location::RequiresRegister()); 4111 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4112 break; 4113 4114 case Primitive::kPrimFloat: 4115 case Primitive::kPrimDouble: 4116 locations->SetInAt(0, Location::RequiresFpuRegister()); 4117 locations->SetInAt(1, Location::RequiresFpuRegister()); 4118 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 4119 break; 4120 4121 default: 4122 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); 4123 } 4124 } 4125 4126 void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) { 4127 Primitive::Type type = instruction->GetType(); 4128 LocationSummary* locations = instruction->GetLocations(); 4129 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 4130 4131 switch (type) { 4132 case Primitive::kPrimInt: { 4133 Register dst = locations->Out().AsRegister<Register>(); 4134 Register lhs = locations->InAt(0).AsRegister<Register>(); 4135 Register rhs = locations->InAt(1).AsRegister<Register>(); 4136 4137 if (isR6) { 4138 __ MulR6(dst, lhs, rhs); 4139 } else { 4140 __ MulR2(dst, lhs, rhs); 4141 } 4142 break; 4143 } 4144 case Primitive::kPrimLong: { 4145 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 4146 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 4147 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 4148 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); 4149 Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); 4150 Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>(); 4151 4152 // Extra checks to protect caused by the existance of A1_A2. 4153 // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo: 4154 // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2). 4155 DCHECK_NE(dst_high, lhs_low); 4156 DCHECK_NE(dst_high, rhs_low); 4157 4158 // A_B * C_D 4159 // dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ] 4160 // dst_lo: [ low(B*D) ] 4161 // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result. 4162 4163 if (isR6) { 4164 __ MulR6(TMP, lhs_high, rhs_low); 4165 __ MulR6(dst_high, lhs_low, rhs_high); 4166 __ Addu(dst_high, dst_high, TMP); 4167 __ MuhuR6(TMP, lhs_low, rhs_low); 4168 __ Addu(dst_high, dst_high, TMP); 4169 __ MulR6(dst_low, lhs_low, rhs_low); 4170 } else { 4171 __ MulR2(TMP, lhs_high, rhs_low); 4172 __ MulR2(dst_high, lhs_low, rhs_high); 4173 __ Addu(dst_high, dst_high, TMP); 4174 __ MultuR2(lhs_low, rhs_low); 4175 __ Mfhi(TMP); 4176 __ Addu(dst_high, dst_high, TMP); 4177 __ Mflo(dst_low); 4178 } 4179 break; 4180 } 4181 case Primitive::kPrimFloat: 4182 case Primitive::kPrimDouble: { 4183 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 4184 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); 4185 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); 4186 if (type == Primitive::kPrimFloat) { 4187 __ MulS(dst, lhs, rhs); 4188 } else { 4189 __ MulD(dst, lhs, rhs); 4190 } 4191 break; 4192 } 4193 default: 4194 LOG(FATAL) << "Unexpected mul type " << type; 4195 } 4196 } 4197 4198 void LocationsBuilderMIPS::VisitNeg(HNeg* neg) { 4199 LocationSummary* locations = 4200 new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); 4201 switch (neg->GetResultType()) { 4202 case Primitive::kPrimInt: 4203 case Primitive::kPrimLong: 4204 locations->SetInAt(0, Location::RequiresRegister()); 4205 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4206 break; 4207 4208 case Primitive::kPrimFloat: 4209 case Primitive::kPrimDouble: 4210 locations->SetInAt(0, Location::RequiresFpuRegister()); 4211 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 4212 break; 4213 4214 default: 4215 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); 4216 } 4217 } 4218 4219 void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) { 4220 Primitive::Type type = instruction->GetType(); 4221 LocationSummary* locations = instruction->GetLocations(); 4222 4223 switch (type) { 4224 case Primitive::kPrimInt: { 4225 Register dst = locations->Out().AsRegister<Register>(); 4226 Register src = locations->InAt(0).AsRegister<Register>(); 4227 __ Subu(dst, ZERO, src); 4228 break; 4229 } 4230 case Primitive::kPrimLong: { 4231 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 4232 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 4233 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 4234 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); 4235 __ Subu(dst_low, ZERO, src_low); 4236 __ Sltu(TMP, ZERO, dst_low); 4237 __ Subu(dst_high, ZERO, src_high); 4238 __ Subu(dst_high, dst_high, TMP); 4239 break; 4240 } 4241 case Primitive::kPrimFloat: 4242 case Primitive::kPrimDouble: { 4243 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 4244 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); 4245 if (type == Primitive::kPrimFloat) { 4246 __ NegS(dst, src); 4247 } else { 4248 __ NegD(dst, src); 4249 } 4250 break; 4251 } 4252 default: 4253 LOG(FATAL) << "Unexpected neg type " << type; 4254 } 4255 } 4256 4257 void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) { 4258 LocationSummary* locations = 4259 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); 4260 InvokeRuntimeCallingConvention calling_convention; 4261 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 4262 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); 4263 locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot)); 4264 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); 4265 } 4266 4267 void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) { 4268 InvokeRuntimeCallingConvention calling_convention; 4269 Register current_method_register = calling_convention.GetRegisterAt(2); 4270 __ Lw(current_method_register, SP, kCurrentMethodStackOffset); 4271 // Move an uint16_t value to a register. 4272 __ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex()); 4273 codegen_->InvokeRuntime( 4274 GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(), 4275 instruction, 4276 instruction->GetDexPc(), 4277 nullptr, 4278 IsDirectEntrypoint(kQuickAllocArrayWithAccessCheck)); 4279 CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, 4280 void*, uint32_t, int32_t, ArtMethod*>(); 4281 } 4282 4283 void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) { 4284 LocationSummary* locations = 4285 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); 4286 InvokeRuntimeCallingConvention calling_convention; 4287 if (instruction->IsStringAlloc()) { 4288 locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); 4289 } else { 4290 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 4291 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); 4292 } 4293 locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot)); 4294 } 4295 4296 void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) { 4297 if (instruction->IsStringAlloc()) { 4298 // String is allocated through StringFactory. Call NewEmptyString entry point. 4299 Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); 4300 MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize); 4301 __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString)); 4302 __ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value()); 4303 __ Jalr(T9); 4304 __ Nop(); 4305 codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); 4306 } else { 4307 codegen_->InvokeRuntime( 4308 GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(), 4309 instruction, 4310 instruction->GetDexPc(), 4311 nullptr, 4312 IsDirectEntrypoint(kQuickAllocObjectWithAccessCheck)); 4313 CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); 4314 } 4315 } 4316 4317 void LocationsBuilderMIPS::VisitNot(HNot* instruction) { 4318 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 4319 locations->SetInAt(0, Location::RequiresRegister()); 4320 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4321 } 4322 4323 void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) { 4324 Primitive::Type type = instruction->GetType(); 4325 LocationSummary* locations = instruction->GetLocations(); 4326 4327 switch (type) { 4328 case Primitive::kPrimInt: { 4329 Register dst = locations->Out().AsRegister<Register>(); 4330 Register src = locations->InAt(0).AsRegister<Register>(); 4331 __ Nor(dst, src, ZERO); 4332 break; 4333 } 4334 4335 case Primitive::kPrimLong: { 4336 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 4337 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 4338 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 4339 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); 4340 __ Nor(dst_high, src_high, ZERO); 4341 __ Nor(dst_low, src_low, ZERO); 4342 break; 4343 } 4344 4345 default: 4346 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); 4347 } 4348 } 4349 4350 void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) { 4351 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 4352 locations->SetInAt(0, Location::RequiresRegister()); 4353 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4354 } 4355 4356 void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) { 4357 LocationSummary* locations = instruction->GetLocations(); 4358 __ Xori(locations->Out().AsRegister<Register>(), 4359 locations->InAt(0).AsRegister<Register>(), 4360 1); 4361 } 4362 4363 void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) { 4364 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() 4365 ? LocationSummary::kCallOnSlowPath 4366 : LocationSummary::kNoCall; 4367 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); 4368 locations->SetInAt(0, Location::RequiresRegister()); 4369 if (instruction->HasUses()) { 4370 locations->SetOut(Location::SameAsFirstInput()); 4371 } 4372 } 4373 4374 void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) { 4375 if (CanMoveNullCheckToUser(instruction)) { 4376 return; 4377 } 4378 Location obj = instruction->GetLocations()->InAt(0); 4379 4380 __ Lw(ZERO, obj.AsRegister<Register>(), 0); 4381 RecordPcInfo(instruction, instruction->GetDexPc()); 4382 } 4383 4384 void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) { 4385 SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction); 4386 AddSlowPath(slow_path); 4387 4388 Location obj = instruction->GetLocations()->InAt(0); 4389 4390 __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel()); 4391 } 4392 4393 void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) { 4394 codegen_->GenerateNullCheck(instruction); 4395 } 4396 4397 void LocationsBuilderMIPS::VisitOr(HOr* instruction) { 4398 HandleBinaryOp(instruction); 4399 } 4400 4401 void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) { 4402 HandleBinaryOp(instruction); 4403 } 4404 4405 void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { 4406 LOG(FATAL) << "Unreachable"; 4407 } 4408 4409 void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) { 4410 codegen_->GetMoveResolver()->EmitNativeCode(instruction); 4411 } 4412 4413 void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) { 4414 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 4415 Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); 4416 if (location.IsStackSlot()) { 4417 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); 4418 } else if (location.IsDoubleStackSlot()) { 4419 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); 4420 } 4421 locations->SetOut(location); 4422 } 4423 4424 void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction 4425 ATTRIBUTE_UNUSED) { 4426 // Nothing to do, the parameter is already at its location. 4427 } 4428 4429 void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) { 4430 LocationSummary* locations = 4431 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); 4432 locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); 4433 } 4434 4435 void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction 4436 ATTRIBUTE_UNUSED) { 4437 // Nothing to do, the method is already at its location. 4438 } 4439 4440 void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) { 4441 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); 4442 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { 4443 locations->SetInAt(i, Location::Any()); 4444 } 4445 locations->SetOut(Location::Any()); 4446 } 4447 4448 void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { 4449 LOG(FATAL) << "Unreachable"; 4450 } 4451 4452 void LocationsBuilderMIPS::VisitRem(HRem* rem) { 4453 Primitive::Type type = rem->GetResultType(); 4454 LocationSummary::CallKind call_kind = 4455 (type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCall; 4456 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); 4457 4458 switch (type) { 4459 case Primitive::kPrimInt: 4460 locations->SetInAt(0, Location::RequiresRegister()); 4461 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); 4462 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4463 break; 4464 4465 case Primitive::kPrimLong: { 4466 InvokeRuntimeCallingConvention calling_convention; 4467 locations->SetInAt(0, Location::RegisterPairLocation( 4468 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); 4469 locations->SetInAt(1, Location::RegisterPairLocation( 4470 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); 4471 locations->SetOut(calling_convention.GetReturnLocation(type)); 4472 break; 4473 } 4474 4475 case Primitive::kPrimFloat: 4476 case Primitive::kPrimDouble: { 4477 InvokeRuntimeCallingConvention calling_convention; 4478 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); 4479 locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); 4480 locations->SetOut(calling_convention.GetReturnLocation(type)); 4481 break; 4482 } 4483 4484 default: 4485 LOG(FATAL) << "Unexpected rem type " << type; 4486 } 4487 } 4488 4489 void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) { 4490 Primitive::Type type = instruction->GetType(); 4491 4492 switch (type) { 4493 case Primitive::kPrimInt: 4494 GenerateDivRemIntegral(instruction); 4495 break; 4496 case Primitive::kPrimLong: { 4497 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), 4498 instruction, 4499 instruction->GetDexPc(), 4500 nullptr, 4501 IsDirectEntrypoint(kQuickLmod)); 4502 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); 4503 break; 4504 } 4505 case Primitive::kPrimFloat: { 4506 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf), 4507 instruction, instruction->GetDexPc(), 4508 nullptr, 4509 IsDirectEntrypoint(kQuickFmodf)); 4510 CheckEntrypointTypes<kQuickFmodf, float, float, float>(); 4511 break; 4512 } 4513 case Primitive::kPrimDouble: { 4514 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod), 4515 instruction, instruction->GetDexPc(), 4516 nullptr, 4517 IsDirectEntrypoint(kQuickFmod)); 4518 CheckEntrypointTypes<kQuickFmod, double, double, double>(); 4519 break; 4520 } 4521 default: 4522 LOG(FATAL) << "Unexpected rem type " << type; 4523 } 4524 } 4525 4526 void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { 4527 memory_barrier->SetLocations(nullptr); 4528 } 4529 4530 void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { 4531 GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); 4532 } 4533 4534 void LocationsBuilderMIPS::VisitReturn(HReturn* ret) { 4535 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret); 4536 Primitive::Type return_type = ret->InputAt(0)->GetType(); 4537 locations->SetInAt(0, MipsReturnLocation(return_type)); 4538 } 4539 4540 void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { 4541 codegen_->GenerateFrameExit(); 4542 } 4543 4544 void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) { 4545 ret->SetLocations(nullptr); 4546 } 4547 4548 void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { 4549 codegen_->GenerateFrameExit(); 4550 } 4551 4552 void LocationsBuilderMIPS::VisitRor(HRor* ror) { 4553 HandleShift(ror); 4554 } 4555 4556 void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) { 4557 HandleShift(ror); 4558 } 4559 4560 void LocationsBuilderMIPS::VisitShl(HShl* shl) { 4561 HandleShift(shl); 4562 } 4563 4564 void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) { 4565 HandleShift(shl); 4566 } 4567 4568 void LocationsBuilderMIPS::VisitShr(HShr* shr) { 4569 HandleShift(shr); 4570 } 4571 4572 void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) { 4573 HandleShift(shr); 4574 } 4575 4576 void LocationsBuilderMIPS::VisitSub(HSub* instruction) { 4577 HandleBinaryOp(instruction); 4578 } 4579 4580 void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) { 4581 HandleBinaryOp(instruction); 4582 } 4583 4584 void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { 4585 HandleFieldGet(instruction, instruction->GetFieldInfo()); 4586 } 4587 4588 void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { 4589 HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); 4590 } 4591 4592 void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { 4593 HandleFieldSet(instruction, instruction->GetFieldInfo()); 4594 } 4595 4596 void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { 4597 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); 4598 } 4599 4600 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet( 4601 HUnresolvedInstanceFieldGet* instruction) { 4602 FieldAccessCallingConventionMIPS calling_convention; 4603 codegen_->CreateUnresolvedFieldLocationSummary(instruction, 4604 instruction->GetFieldType(), 4605 calling_convention); 4606 } 4607 4608 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet( 4609 HUnresolvedInstanceFieldGet* instruction) { 4610 FieldAccessCallingConventionMIPS calling_convention; 4611 codegen_->GenerateUnresolvedFieldAccess(instruction, 4612 instruction->GetFieldType(), 4613 instruction->GetFieldIndex(), 4614 instruction->GetDexPc(), 4615 calling_convention); 4616 } 4617 4618 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet( 4619 HUnresolvedInstanceFieldSet* instruction) { 4620 FieldAccessCallingConventionMIPS calling_convention; 4621 codegen_->CreateUnresolvedFieldLocationSummary(instruction, 4622 instruction->GetFieldType(), 4623 calling_convention); 4624 } 4625 4626 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet( 4627 HUnresolvedInstanceFieldSet* instruction) { 4628 FieldAccessCallingConventionMIPS calling_convention; 4629 codegen_->GenerateUnresolvedFieldAccess(instruction, 4630 instruction->GetFieldType(), 4631 instruction->GetFieldIndex(), 4632 instruction->GetDexPc(), 4633 calling_convention); 4634 } 4635 4636 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet( 4637 HUnresolvedStaticFieldGet* instruction) { 4638 FieldAccessCallingConventionMIPS calling_convention; 4639 codegen_->CreateUnresolvedFieldLocationSummary(instruction, 4640 instruction->GetFieldType(), 4641 calling_convention); 4642 } 4643 4644 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet( 4645 HUnresolvedStaticFieldGet* instruction) { 4646 FieldAccessCallingConventionMIPS calling_convention; 4647 codegen_->GenerateUnresolvedFieldAccess(instruction, 4648 instruction->GetFieldType(), 4649 instruction->GetFieldIndex(), 4650 instruction->GetDexPc(), 4651 calling_convention); 4652 } 4653 4654 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet( 4655 HUnresolvedStaticFieldSet* instruction) { 4656 FieldAccessCallingConventionMIPS calling_convention; 4657 codegen_->CreateUnresolvedFieldLocationSummary(instruction, 4658 instruction->GetFieldType(), 4659 calling_convention); 4660 } 4661 4662 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet( 4663 HUnresolvedStaticFieldSet* instruction) { 4664 FieldAccessCallingConventionMIPS calling_convention; 4665 codegen_->GenerateUnresolvedFieldAccess(instruction, 4666 instruction->GetFieldType(), 4667 instruction->GetFieldIndex(), 4668 instruction->GetDexPc(), 4669 calling_convention); 4670 } 4671 4672 void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { 4673 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); 4674 } 4675 4676 void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { 4677 HBasicBlock* block = instruction->GetBlock(); 4678 if (block->GetLoopInformation() != nullptr) { 4679 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); 4680 // The back edge will generate the suspend check. 4681 return; 4682 } 4683 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { 4684 // The goto will generate the suspend check. 4685 return; 4686 } 4687 GenerateSuspendCheck(instruction, nullptr); 4688 } 4689 4690 void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) { 4691 LocationSummary* locations = 4692 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); 4693 InvokeRuntimeCallingConvention calling_convention; 4694 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); 4695 } 4696 4697 void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) { 4698 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException), 4699 instruction, 4700 instruction->GetDexPc(), 4701 nullptr, 4702 IsDirectEntrypoint(kQuickDeliverException)); 4703 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); 4704 } 4705 4706 void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) { 4707 Primitive::Type input_type = conversion->GetInputType(); 4708 Primitive::Type result_type = conversion->GetResultType(); 4709 DCHECK_NE(input_type, result_type); 4710 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 4711 4712 if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) || 4713 (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) { 4714 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; 4715 } 4716 4717 LocationSummary::CallKind call_kind = LocationSummary::kNoCall; 4718 if (!isR6 && 4719 ((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) || 4720 (result_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(input_type)))) { 4721 call_kind = LocationSummary::kCall; 4722 } 4723 4724 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); 4725 4726 if (call_kind == LocationSummary::kNoCall) { 4727 if (Primitive::IsFloatingPointType(input_type)) { 4728 locations->SetInAt(0, Location::RequiresFpuRegister()); 4729 } else { 4730 locations->SetInAt(0, Location::RequiresRegister()); 4731 } 4732 4733 if (Primitive::IsFloatingPointType(result_type)) { 4734 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); 4735 } else { 4736 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); 4737 } 4738 } else { 4739 InvokeRuntimeCallingConvention calling_convention; 4740 4741 if (Primitive::IsFloatingPointType(input_type)) { 4742 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); 4743 } else { 4744 DCHECK_EQ(input_type, Primitive::kPrimLong); 4745 locations->SetInAt(0, Location::RegisterPairLocation( 4746 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); 4747 } 4748 4749 locations->SetOut(calling_convention.GetReturnLocation(result_type)); 4750 } 4751 } 4752 4753 void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) { 4754 LocationSummary* locations = conversion->GetLocations(); 4755 Primitive::Type result_type = conversion->GetResultType(); 4756 Primitive::Type input_type = conversion->GetInputType(); 4757 bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); 4758 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); 4759 bool fpu_32bit = codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint(); 4760 4761 DCHECK_NE(input_type, result_type); 4762 4763 if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) { 4764 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 4765 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 4766 Register src = locations->InAt(0).AsRegister<Register>(); 4767 4768 __ Move(dst_low, src); 4769 __ Sra(dst_high, src, 31); 4770 } else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) { 4771 Register dst = locations->Out().AsRegister<Register>(); 4772 Register src = (input_type == Primitive::kPrimLong) 4773 ? locations->InAt(0).AsRegisterPairLow<Register>() 4774 : locations->InAt(0).AsRegister<Register>(); 4775 4776 switch (result_type) { 4777 case Primitive::kPrimChar: 4778 __ Andi(dst, src, 0xFFFF); 4779 break; 4780 case Primitive::kPrimByte: 4781 if (has_sign_extension) { 4782 __ Seb(dst, src); 4783 } else { 4784 __ Sll(dst, src, 24); 4785 __ Sra(dst, dst, 24); 4786 } 4787 break; 4788 case Primitive::kPrimShort: 4789 if (has_sign_extension) { 4790 __ Seh(dst, src); 4791 } else { 4792 __ Sll(dst, src, 16); 4793 __ Sra(dst, dst, 16); 4794 } 4795 break; 4796 case Primitive::kPrimInt: 4797 __ Move(dst, src); 4798 break; 4799 4800 default: 4801 LOG(FATAL) << "Unexpected type conversion from " << input_type 4802 << " to " << result_type; 4803 } 4804 } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) { 4805 if (input_type == Primitive::kPrimLong) { 4806 if (isR6) { 4807 // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary 4808 // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. 4809 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); 4810 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); 4811 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 4812 __ Mtc1(src_low, FTMP); 4813 __ Mthc1(src_high, FTMP); 4814 if (result_type == Primitive::kPrimFloat) { 4815 __ Cvtsl(dst, FTMP); 4816 } else { 4817 __ Cvtdl(dst, FTMP); 4818 } 4819 } else { 4820 int32_t entry_offset = (result_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pL2f) 4821 : QUICK_ENTRY_POINT(pL2d); 4822 bool direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickL2f) 4823 : IsDirectEntrypoint(kQuickL2d); 4824 codegen_->InvokeRuntime(entry_offset, 4825 conversion, 4826 conversion->GetDexPc(), 4827 nullptr, 4828 direct); 4829 if (result_type == Primitive::kPrimFloat) { 4830 CheckEntrypointTypes<kQuickL2f, float, int64_t>(); 4831 } else { 4832 CheckEntrypointTypes<kQuickL2d, double, int64_t>(); 4833 } 4834 } 4835 } else { 4836 Register src = locations->InAt(0).AsRegister<Register>(); 4837 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 4838 __ Mtc1(src, FTMP); 4839 if (result_type == Primitive::kPrimFloat) { 4840 __ Cvtsw(dst, FTMP); 4841 } else { 4842 __ Cvtdw(dst, FTMP); 4843 } 4844 } 4845 } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) { 4846 CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong); 4847 if (result_type == Primitive::kPrimLong) { 4848 if (isR6) { 4849 // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary 4850 // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. 4851 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); 4852 Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); 4853 Register dst_low = locations->Out().AsRegisterPairLow<Register>(); 4854 MipsLabel truncate; 4855 MipsLabel done; 4856 4857 // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive 4858 // value when the input is either a NaN or is outside of the range of the output type 4859 // after the truncation. IOW, the three special cases (NaN, too small, too big) produce 4860 // the same result. 4861 // 4862 // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum 4863 // value of the output type if the input is outside of the range after the truncation or 4864 // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct 4865 // results. This matches the desired float/double-to-int/long conversion exactly. 4866 // 4867 // So, NAN2008 affects handling of negative values and NaNs by the truncate instruction. 4868 // 4869 // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate 4870 // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6, 4871 // even though it must be NAN2008=1 on R6. 4872 // 4873 // The code takes care of the different behaviors by first comparing the input to the 4874 // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int). 4875 // If the input is greater than or equal to the minimum, it procedes to the truncate 4876 // instruction, which will handle such an input the same way irrespective of NAN2008. 4877 // Otherwise the input is compared to itself to determine whether it is a NaN or not 4878 // in order to return either zero or the minimum value. 4879 // 4880 // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the 4881 // truncate instruction for MIPS64R6. 4882 if (input_type == Primitive::kPrimFloat) { 4883 uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int64_t>::min()); 4884 __ LoadConst32(TMP, min_val); 4885 __ Mtc1(TMP, FTMP); 4886 __ CmpLeS(FTMP, FTMP, src); 4887 } else { 4888 uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int64_t>::min()); 4889 __ LoadConst32(TMP, High32Bits(min_val)); 4890 __ Mtc1(ZERO, FTMP); 4891 __ Mthc1(TMP, FTMP); 4892 __ CmpLeD(FTMP, FTMP, src); 4893 } 4894 4895 __ Bc1nez(FTMP, &truncate); 4896 4897 if (input_type == Primitive::kPrimFloat) { 4898 __ CmpEqS(FTMP, src, src); 4899 } else { 4900 __ CmpEqD(FTMP, src, src); 4901 } 4902 __ Move(dst_low, ZERO); 4903 __ LoadConst32(dst_high, std::numeric_limits<int32_t>::min()); 4904 __ Mfc1(TMP, FTMP); 4905 __ And(dst_high, dst_high, TMP); 4906 4907 __ B(&done); 4908 4909 __ Bind(&truncate); 4910 4911 if (input_type == Primitive::kPrimFloat) { 4912 __ TruncLS(FTMP, src); 4913 } else { 4914 __ TruncLD(FTMP, src); 4915 } 4916 __ Mfc1(dst_low, FTMP); 4917 __ Mfhc1(dst_high, FTMP); 4918 4919 __ Bind(&done); 4920 } else { 4921 int32_t entry_offset = (input_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pF2l) 4922 : QUICK_ENTRY_POINT(pD2l); 4923 bool direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickF2l) 4924 : IsDirectEntrypoint(kQuickD2l); 4925 codegen_->InvokeRuntime(entry_offset, conversion, conversion->GetDexPc(), nullptr, direct); 4926 if (input_type == Primitive::kPrimFloat) { 4927 CheckEntrypointTypes<kQuickF2l, int64_t, float>(); 4928 } else { 4929 CheckEntrypointTypes<kQuickD2l, int64_t, double>(); 4930 } 4931 } 4932 } else { 4933 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); 4934 Register dst = locations->Out().AsRegister<Register>(); 4935 MipsLabel truncate; 4936 MipsLabel done; 4937 4938 // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate 4939 // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6, 4940 // even though it must be NAN2008=1 on R6. 4941 // 4942 // For details see the large comment above for the truncation of float/double to long on R6. 4943 // 4944 // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the 4945 // truncate instruction for MIPS64R6. 4946 if (input_type == Primitive::kPrimFloat) { 4947 uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min()); 4948 __ LoadConst32(TMP, min_val); 4949 __ Mtc1(TMP, FTMP); 4950 } else { 4951 uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min()); 4952 __ LoadConst32(TMP, High32Bits(min_val)); 4953 __ Mtc1(ZERO, FTMP); 4954 if (fpu_32bit) { 4955 __ Mtc1(TMP, static_cast<FRegister>(FTMP + 1)); 4956 } else { 4957 __ Mthc1(TMP, FTMP); 4958 } 4959 } 4960 4961 if (isR6) { 4962 if (input_type == Primitive::kPrimFloat) { 4963 __ CmpLeS(FTMP, FTMP, src); 4964 } else { 4965 __ CmpLeD(FTMP, FTMP, src); 4966 } 4967 __ Bc1nez(FTMP, &truncate); 4968 4969 if (input_type == Primitive::kPrimFloat) { 4970 __ CmpEqS(FTMP, src, src); 4971 } else { 4972 __ CmpEqD(FTMP, src, src); 4973 } 4974 __ LoadConst32(dst, std::numeric_limits<int32_t>::min()); 4975 __ Mfc1(TMP, FTMP); 4976 __ And(dst, dst, TMP); 4977 } else { 4978 if (input_type == Primitive::kPrimFloat) { 4979 __ ColeS(0, FTMP, src); 4980 } else { 4981 __ ColeD(0, FTMP, src); 4982 } 4983 __ Bc1t(0, &truncate); 4984 4985 if (input_type == Primitive::kPrimFloat) { 4986 __ CeqS(0, src, src); 4987 } else { 4988 __ CeqD(0, src, src); 4989 } 4990 __ LoadConst32(dst, std::numeric_limits<int32_t>::min()); 4991 __ Movf(dst, ZERO, 0); 4992 } 4993 4994 __ B(&done); 4995 4996 __ Bind(&truncate); 4997 4998 if (input_type == Primitive::kPrimFloat) { 4999 __ TruncWS(FTMP, src); 5000 } else { 5001 __ TruncWD(FTMP, src); 5002 } 5003 __ Mfc1(dst, FTMP); 5004 5005 __ Bind(&done); 5006 } 5007 } else if (Primitive::IsFloatingPointType(result_type) && 5008 Primitive::IsFloatingPointType(input_type)) { 5009 FRegister dst = locations->Out().AsFpuRegister<FRegister>(); 5010 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); 5011 if (result_type == Primitive::kPrimFloat) { 5012 __ Cvtsd(dst, src); 5013 } else { 5014 __ Cvtds(dst, src); 5015 } 5016 } else { 5017 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type 5018 << " to " << result_type; 5019 } 5020 } 5021 5022 void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) { 5023 HandleShift(ushr); 5024 } 5025 5026 void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) { 5027 HandleShift(ushr); 5028 } 5029 5030 void LocationsBuilderMIPS::VisitXor(HXor* instruction) { 5031 HandleBinaryOp(instruction); 5032 } 5033 5034 void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) { 5035 HandleBinaryOp(instruction); 5036 } 5037 5038 void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { 5039 // Nothing to do, this should be removed during prepare for register allocator. 5040 LOG(FATAL) << "Unreachable"; 5041 } 5042 5043 void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { 5044 // Nothing to do, this should be removed during prepare for register allocator. 5045 LOG(FATAL) << "Unreachable"; 5046 } 5047 5048 void LocationsBuilderMIPS::VisitEqual(HEqual* comp) { 5049 HandleCondition(comp); 5050 } 5051 5052 void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) { 5053 HandleCondition(comp); 5054 } 5055 5056 void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) { 5057 HandleCondition(comp); 5058 } 5059 5060 void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) { 5061 HandleCondition(comp); 5062 } 5063 5064 void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) { 5065 HandleCondition(comp); 5066 } 5067 5068 void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) { 5069 HandleCondition(comp); 5070 } 5071 5072 void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { 5073 HandleCondition(comp); 5074 } 5075 5076 void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { 5077 HandleCondition(comp); 5078 } 5079 5080 void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) { 5081 HandleCondition(comp); 5082 } 5083 5084 void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) { 5085 HandleCondition(comp); 5086 } 5087 5088 void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { 5089 HandleCondition(comp); 5090 } 5091 5092 void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { 5093 HandleCondition(comp); 5094 } 5095 5096 void LocationsBuilderMIPS::VisitBelow(HBelow* comp) { 5097 HandleCondition(comp); 5098 } 5099 5100 void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) { 5101 HandleCondition(comp); 5102 } 5103 5104 void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { 5105 HandleCondition(comp); 5106 } 5107 5108 void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { 5109 HandleCondition(comp); 5110 } 5111 5112 void LocationsBuilderMIPS::VisitAbove(HAbove* comp) { 5113 HandleCondition(comp); 5114 } 5115 5116 void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) { 5117 HandleCondition(comp); 5118 } 5119 5120 void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { 5121 HandleCondition(comp); 5122 } 5123 5124 void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { 5125 HandleCondition(comp); 5126 } 5127 5128 void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { 5129 LocationSummary* locations = 5130 new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); 5131 locations->SetInAt(0, Location::RequiresRegister()); 5132 } 5133 5134 void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { 5135 int32_t lower_bound = switch_instr->GetStartValue(); 5136 int32_t num_entries = switch_instr->GetNumEntries(); 5137 LocationSummary* locations = switch_instr->GetLocations(); 5138 Register value_reg = locations->InAt(0).AsRegister<Register>(); 5139 HBasicBlock* default_block = switch_instr->GetDefaultBlock(); 5140 5141 // Create a set of compare/jumps. 5142 Register temp_reg = TMP; 5143 __ Addiu32(temp_reg, value_reg, -lower_bound); 5144 // Jump to default if index is negative 5145 // Note: We don't check the case that index is positive while value < lower_bound, because in 5146 // this case, index >= num_entries must be true. So that we can save one branch instruction. 5147 __ Bltz(temp_reg, codegen_->GetLabelOf(default_block)); 5148 5149 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); 5150 // Jump to successors[0] if value == lower_bound. 5151 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0])); 5152 int32_t last_index = 0; 5153 for (; num_entries - last_index > 2; last_index += 2) { 5154 __ Addiu(temp_reg, temp_reg, -2); 5155 // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. 5156 __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); 5157 // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. 5158 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2])); 5159 } 5160 if (num_entries - last_index == 2) { 5161 // The last missing case_value. 5162 __ Addiu(temp_reg, temp_reg, -1); 5163 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); 5164 } 5165 5166 // And the default for any other value. 5167 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { 5168 __ B(codegen_->GetLabelOf(default_block)); 5169 } 5170 } 5171 5172 void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { 5173 // The trampoline uses the same calling convention as dex calling conventions, 5174 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain 5175 // the method_idx. 5176 HandleInvoke(invoke); 5177 } 5178 5179 void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { 5180 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); 5181 } 5182 5183 void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) { 5184 LocationSummary* locations = 5185 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); 5186 locations->SetInAt(0, Location::RequiresRegister()); 5187 locations->SetOut(Location::RequiresRegister()); 5188 } 5189 5190 void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) { 5191 LocationSummary* locations = instruction->GetLocations(); 5192 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { 5193 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( 5194 instruction->GetIndex(), kMipsPointerSize).SizeValue(); 5195 __ LoadFromOffset(kLoadWord, 5196 locations->Out().AsRegister<Register>(), 5197 locations->InAt(0).AsRegister<Register>(), 5198 method_offset); 5199 } else { 5200 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( 5201 instruction->GetIndex() % ImTable::kSize, kMipsPointerSize)); 5202 __ LoadFromOffset(kLoadWord, 5203 locations->Out().AsRegister<Register>(), 5204 locations->InAt(0).AsRegister<Register>(), 5205 mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); 5206 __ LoadFromOffset(kLoadWord, 5207 locations->Out().AsRegister<Register>(), 5208 locations->Out().AsRegister<Register>(), 5209 method_offset); 5210 } 5211 } 5212 5213 #undef __ 5214 #undef QUICK_ENTRY_POINT 5215 5216 } // namespace mips 5217 } // namespace art 5218