Home | History | Annotate | Download | only in scene1
      1 # Copyright 2014 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import its.image
     16 import its.caps
     17 import its.device
     18 import its.objects
     19 import os.path
     20 import math
     21 
     22 def main():
     23     """Capture auto and manual shots that should look the same.
     24 
     25     Manual shots taken with just manual WB, and also with manual WB+tonemap.
     26 
     27     In all cases, the general color/look of the shots should be the same,
     28     however there can be variations in brightness/contrast due to different
     29     "auto" ISP blocks that may be disabled in the manual flows.
     30     """
     31     NAME = os.path.basename(__file__).split(".")[0]
     32 
     33     with its.device.ItsSession() as cam:
     34         props = cam.get_camera_properties()
     35         its.caps.skip_unless(its.caps.manual_sensor(props) and
     36                              its.caps.manual_post_proc(props) and
     37                              its.caps.per_frame_control(props))
     38 
     39         # Converge 3A and get the estimates.
     40         sens, exp, gains, xform, focus = cam.do_3a(get_results=True)
     41         xform_rat = its.objects.float_to_rational(xform)
     42         print "AE sensitivity %d, exposure %dms" % (sens, exp/1000000.0)
     43         print "AWB gains", gains
     44         print "AWB transform", xform
     45         print "AF distance", focus
     46 
     47         # Auto capture.
     48         req = its.objects.auto_capture_request()
     49         cap_auto = cam.do_capture(req)
     50         img_auto = its.image.convert_capture_to_rgb_image(cap_auto)
     51         its.image.write_image(img_auto, "%s_auto.jpg" % (NAME))
     52         xform_a = its.objects.rational_to_float(
     53                 cap_auto["metadata"]["android.colorCorrection.transform"])
     54         gains_a = cap_auto["metadata"]["android.colorCorrection.gains"]
     55         print "Auto gains:", gains_a
     56         print "Auto transform:", xform_a
     57 
     58         # Manual capture 1: WB
     59         req = its.objects.manual_capture_request(sens, exp, focus)
     60         req["android.colorCorrection.transform"] = xform_rat
     61         req["android.colorCorrection.gains"] = gains
     62         cap_man1 = cam.do_capture(req)
     63         img_man1 = its.image.convert_capture_to_rgb_image(cap_man1)
     64         its.image.write_image(img_man1, "%s_manual_wb.jpg" % (NAME))
     65         xform_m1 = its.objects.rational_to_float(
     66                 cap_man1["metadata"]["android.colorCorrection.transform"])
     67         gains_m1 = cap_man1["metadata"]["android.colorCorrection.gains"]
     68         print "Manual wb gains:", gains_m1
     69         print "Manual wb transform:", xform_m1
     70 
     71         # Manual capture 2: WB + tonemap
     72         gamma = sum([[i/63.0,math.pow(i/63.0,1/2.2)] for i in xrange(64)],[])
     73         req["android.tonemap.mode"] = 0
     74         req["android.tonemap.curveRed"] = gamma
     75         req["android.tonemap.curveGreen"] = gamma
     76         req["android.tonemap.curveBlue"] = gamma
     77         cap_man2 = cam.do_capture(req)
     78         img_man2 = its.image.convert_capture_to_rgb_image(cap_man2)
     79         its.image.write_image(img_man2, "%s_manual_wb_tm.jpg" % (NAME))
     80         xform_m2 = its.objects.rational_to_float(
     81                 cap_man2["metadata"]["android.colorCorrection.transform"])
     82         gains_m2 = cap_man2["metadata"]["android.colorCorrection.gains"]
     83         print "Manual wb+tm gains:", gains_m2
     84         print "Manual wb+tm transform:", xform_m2
     85 
     86         # Check that the WB gains and transform reported in each capture
     87         # result match with the original AWB estimate from do_3a.
     88         for g,x in [(gains_a,xform_a),(gains_m1,xform_m1),(gains_m2,xform_m2)]:
     89             assert(all([abs(xform[i] - x[i]) < 0.05 for i in range(9)]))
     90             assert(all([abs(gains[i] - g[i]) < 0.05 for i in range(4)]))
     91 
     92 if __name__ == '__main__':
     93     main()
     94 
     95