Home | History | Annotate | Download | only in scene1
      1 # Copyright 2013 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import its.image
     16 import its.caps
     17 import its.device
     18 import its.objects
     19 import its.target
     20 import pylab
     21 import numpy
     22 import os.path
     23 import matplotlib
     24 import matplotlib.pyplot
     25 
     26 def main():
     27     """Test that a constant exposure is seen as ISO and exposure time vary.
     28 
     29     Take a series of shots that have ISO and exposure time chosen to balance
     30     each other; result should be the same brightness, but over the sequence
     31     the images should get noisier.
     32     """
     33     NAME = os.path.basename(__file__).split(".")[0]
     34 
     35     THRESHOLD_MAX_OUTLIER_DIFF = 0.1
     36     THRESHOLD_MIN_LEVEL = 0.1
     37     THRESHOLD_MAX_LEVEL = 0.9
     38     THRESHOLD_MAX_LEVEL_DIFF = 0.045
     39     THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE = 0.06
     40     THRESHOLD_ROUND_DOWN_GAIN = 0.1
     41     THRESHOLD_ROUND_DOWN_EXP = 0.05
     42 
     43     mults = []
     44     r_means = []
     45     g_means = []
     46     b_means = []
     47     threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF
     48 
     49     with its.device.ItsSession() as cam:
     50         props = cam.get_camera_properties()
     51         its.caps.skip_unless(its.caps.compute_target_exposure(props) and
     52                              its.caps.per_frame_control(props))
     53 
     54         e,s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
     55         s_e_product = s*e
     56         expt_range = props['android.sensor.info.exposureTimeRange']
     57         sens_range = props['android.sensor.info.sensitivityRange']
     58 
     59         m = 1.0
     60         while s*m < sens_range[1] and e/m > expt_range[0]:
     61             mults.append(m)
     62             s_test = round(s*m)
     63             e_test = s_e_product / s_test
     64             print "Testing s:", s_test, "e:", e_test
     65             req = its.objects.manual_capture_request(
     66                     s_test, e_test, 0.0, True, props)
     67             cap = cam.do_capture(req)
     68             s_res = cap["metadata"]["android.sensor.sensitivity"]
     69             e_res = cap["metadata"]["android.sensor.exposureTime"]
     70             assert(0 <= s_test - s_res < s_test * THRESHOLD_ROUND_DOWN_GAIN)
     71             assert(0 <= e_test - e_res < e_test * THRESHOLD_ROUND_DOWN_EXP)
     72             s_e_product_res = s_res * e_res
     73             request_result_ratio = s_e_product / s_e_product_res
     74             print "Capture result s:", s_test, "e:", e_test
     75             img = its.image.convert_capture_to_rgb_image(cap)
     76             its.image.write_image(img, "%s_mult=%3.2f.jpg" % (NAME, m))
     77             tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
     78             rgb_means = its.image.compute_image_means(tile)
     79             # Adjust for the difference between request and result
     80             r_means.append(rgb_means[0] * request_result_ratio)
     81             g_means.append(rgb_means[1] * request_result_ratio)
     82             b_means.append(rgb_means[2] * request_result_ratio)
     83             # Test 3 steps per 2x gain
     84             m = m * pow(2, 1.0 / 3)
     85 
     86         # Allow more threshold for devices with wider exposure range
     87         if m >= 64.0:
     88             threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE
     89 
     90     # Draw a plot.
     91     pylab.plot(mults, r_means, 'r.-')
     92     pylab.plot(mults, g_means, 'g.-')
     93     pylab.plot(mults, b_means, 'b.-')
     94     pylab.ylim([0,1])
     95     matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME))
     96 
     97     # Check for linearity. Verify sample pixel mean values are close to each
     98     # other. Also ensure that the images aren't clamped to 0 or 1
     99     # (which would make them look like flat lines).
    100     for chan in xrange(3):
    101         values = [r_means, g_means, b_means][chan]
    102         m, b = numpy.polyfit(mults, values, 1).tolist()
    103         max_val = max(values)
    104         min_val = min(values)
    105         max_diff = max_val - min_val
    106         print "Channel %d line fit (y = mx+b): m = %f, b = %f" % (chan, m, b)
    107         print "Channel max %f min %f diff %f" % (max_val, min_val, max_diff)
    108         assert(max_diff < threshold_max_level_diff)
    109         assert(b > THRESHOLD_MIN_LEVEL and b < THRESHOLD_MAX_LEVEL)
    110         for v in values:
    111             assert(v > THRESHOLD_MIN_LEVEL and v < THRESHOLD_MAX_LEVEL)
    112             assert(abs(v - b) < THRESHOLD_MAX_OUTLIER_DIFF)
    113 
    114 if __name__ == '__main__':
    115     main()
    116