Home | History | Annotate | Download | only in scene1
      1 # Copyright 2015 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import its.image
     16 import its.caps
     17 import its.device
     18 import its.objects
     19 import its.target
     20 import math
     21 import matplotlib
     22 import matplotlib.pyplot
     23 import numpy
     24 import os.path
     25 import pylab
     26 
     27 def main():
     28     """Test that the android.noiseReduction.mode param is applied when set for
     29        reprocessing requests.
     30 
     31     Capture reprocessed images with the camera dimly lit. Uses a high analog
     32     gain to ensure the captured image is noisy.
     33 
     34     Captures three reprocessed images, for NR off, "fast", and "high quality".
     35     Also captures a reprocessed image with low gain and NR off, and uses the
     36     variance of this as the baseline.
     37     """
     38 
     39     NAME = os.path.basename(__file__).split(".")[0]
     40 
     41     NUM_SAMPLES_PER_MODE = 4
     42     SNR_TOLERANCE = 3 # unit in db
     43 
     44     with its.device.ItsSession() as cam:
     45         props = cam.get_camera_properties()
     46 
     47         its.caps.skip_unless(its.caps.compute_target_exposure(props) and
     48                              its.caps.per_frame_control(props) and
     49                              its.caps.noise_reduction_mode(props, 0) and
     50                              (its.caps.yuv_reprocess(props) or
     51                               its.caps.private_reprocess(props)))
     52 
     53         # If reprocessing is supported, ZSL NR mode must be avaiable.
     54         assert(its.caps.noise_reduction_mode(props, 4))
     55 
     56         reprocess_formats = []
     57         if (its.caps.yuv_reprocess(props)):
     58             reprocess_formats.append("yuv")
     59         if (its.caps.private_reprocess(props)):
     60             reprocess_formats.append("private")
     61 
     62         for reprocess_format in reprocess_formats:
     63             # List of variances for R, G, B.
     64             snrs = [[], [], []]
     65             nr_modes_reported = []
     66 
     67             # NR mode 0 with low gain
     68             e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
     69             req = its.objects.manual_capture_request(s, e)
     70             req["android.noiseReduction.mode"] = 0
     71 
     72             # Test reprocess_format->JPEG reprocessing
     73             # TODO: Switch to reprocess_format->YUV when YUV reprocessing is
     74             #       supported.
     75             size = its.objects.get_available_output_sizes("jpg", props)[0]
     76             out_surface = {"width":size[0], "height":size[1], "format":"jpg"}
     77             cap = cam.do_capture(req, out_surface, reprocess_format)
     78             img = its.image.decompress_jpeg_to_rgb_image(cap["data"])
     79             its.image.write_image(img, "%s_low_gain_fmt=jpg.jpg" % (NAME))
     80             tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
     81             ref_snr = its.image.compute_image_snrs(tile)
     82             print "Ref SNRs:", ref_snr
     83 
     84             e, s = its.target.get_target_exposure_combos(cam)["maxSensitivity"]
     85             for nr_mode in range(5):
     86                 # Skip unavailable modes
     87                 if not its.caps.noise_reduction_mode(props, nr_mode):
     88                     nr_modes_reported.append(nr_mode)
     89                     for channel in range(3):
     90                         snrs[channel].append(0)
     91                     continue
     92 
     93                 rgb_snr_list = []
     94                 # Capture several images to account for per frame noise
     95                 # variations
     96                 for n in range(NUM_SAMPLES_PER_MODE):
     97                     req = its.objects.manual_capture_request(s, e)
     98                     req["android.noiseReduction.mode"] = nr_mode
     99                     cap = cam.do_capture(req, out_surface, reprocess_format)
    100 
    101                     img = its.image.decompress_jpeg_to_rgb_image(cap["data"])
    102                     if n == 0:
    103                         its.image.write_image(
    104                                 img,
    105                                 "%s_high_gain_nr=%d_fmt=jpg.jpg"
    106                                         %(NAME, nr_mode))
    107                         nr_modes_reported.append(
    108                                 cap["metadata"]["android.noiseReduction.mode"])
    109 
    110                     tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
    111                     # Get the variances for R, G, and B channels
    112                     rgb_snrs = its.image.compute_image_snrs(tile)
    113                     rgb_snr_list.append(rgb_snrs)
    114 
    115                 r_snrs = [rgb[0] for rgb in rgb_snr_list]
    116                 g_snrs = [rgb[1] for rgb in rgb_snr_list]
    117                 b_snrs = [rgb[2] for rgb in rgb_snr_list]
    118                 rgb_snrs = [numpy.mean(r_snrs),
    119                             numpy.mean(g_snrs),
    120                             numpy.mean(b_snrs)]
    121                 print "NR mode", nr_mode, "SNRs:"
    122                 print "    R SNR:", rgb_snrs[0],\
    123                         "Min:", min(r_snrs), "Max:", max(r_snrs)
    124                 print "    G SNR:", rgb_snrs[1],\
    125                         "Min:", min(g_snrs), "Max:", max(g_snrs)
    126                 print "    B SNR:", rgb_snrs[2],\
    127                         "Min:", min(b_snrs), "Max:", max(b_snrs)
    128 
    129                 for chan in range(3):
    130                     snrs[chan].append(rgb_snrs[chan])
    131 
    132             # Draw a plot.
    133             for channel in range(3):
    134                 pylab.plot(range(5), snrs[channel], "rgb"[channel])
    135 
    136             matplotlib.pyplot.savefig("%s_plot_%s_SNRs.png" %
    137                                       (NAME, reprocess_format))
    138 
    139             assert(nr_modes_reported == [0,1,2,3,4])
    140 
    141             for j in range(3):
    142                 # Larger is better
    143                 # Verify OFF(0) is not better than FAST(1)
    144                 assert(snrs[j][0] <
    145                        snrs[j][1] + SNR_TOLERANCE)
    146                 # Verify FAST(1) is not better than HQ(2)
    147                 assert(snrs[j][1] <
    148                        snrs[j][2] + SNR_TOLERANCE)
    149                 # Verify HQ(2) is better than OFF(0)
    150                 assert(snrs[j][0] < snrs[j][2])
    151                 if its.caps.noise_reduction_mode(props, 3):
    152                     # Verify OFF(0) is not better than MINIMAL(3)
    153                     assert(snrs[j][0] <
    154                            snrs[j][3] + SNR_TOLERANCE)
    155                     # Verify MINIMAL(3) is not better than HQ(2)
    156                     assert(snrs[j][3] <
    157                            snrs[j][2] + SNR_TOLERANCE)
    158                     # Verify ZSL(4) is close to MINIMAL(3)
    159                     assert(numpy.isclose(snrs[j][4], snrs[j][3],
    160                                          atol=SNR_TOLERANCE))
    161                 else:
    162                     # Verify ZSL(4) is close to OFF(0)
    163                     assert(numpy.isclose(snrs[j][4], snrs[j][0],
    164                                          atol=SNR_TOLERANCE))
    165 
    166 if __name__ == '__main__':
    167     main()
    168 
    169