1 # Copyright 2015 The Android Open Source Project 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 import its.image 16 import its.caps 17 import its.device 18 import its.objects 19 import its.target 20 import math 21 import matplotlib 22 import matplotlib.pyplot 23 import numpy 24 import os.path 25 import pylab 26 27 def main(): 28 """Test that the android.noiseReduction.mode param is applied when set for 29 reprocessing requests. 30 31 Capture reprocessed images with the camera dimly lit. Uses a high analog 32 gain to ensure the captured image is noisy. 33 34 Captures three reprocessed images, for NR off, "fast", and "high quality". 35 Also captures a reprocessed image with low gain and NR off, and uses the 36 variance of this as the baseline. 37 """ 38 39 NAME = os.path.basename(__file__).split(".")[0] 40 41 NUM_SAMPLES_PER_MODE = 4 42 SNR_TOLERANCE = 3 # unit in db 43 44 with its.device.ItsSession() as cam: 45 props = cam.get_camera_properties() 46 47 its.caps.skip_unless(its.caps.compute_target_exposure(props) and 48 its.caps.per_frame_control(props) and 49 its.caps.noise_reduction_mode(props, 0) and 50 (its.caps.yuv_reprocess(props) or 51 its.caps.private_reprocess(props))) 52 53 # If reprocessing is supported, ZSL NR mode must be avaiable. 54 assert(its.caps.noise_reduction_mode(props, 4)) 55 56 reprocess_formats = [] 57 if (its.caps.yuv_reprocess(props)): 58 reprocess_formats.append("yuv") 59 if (its.caps.private_reprocess(props)): 60 reprocess_formats.append("private") 61 62 for reprocess_format in reprocess_formats: 63 # List of variances for R, G, B. 64 snrs = [[], [], []] 65 nr_modes_reported = [] 66 67 # NR mode 0 with low gain 68 e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"] 69 req = its.objects.manual_capture_request(s, e) 70 req["android.noiseReduction.mode"] = 0 71 72 # Test reprocess_format->JPEG reprocessing 73 # TODO: Switch to reprocess_format->YUV when YUV reprocessing is 74 # supported. 75 size = its.objects.get_available_output_sizes("jpg", props)[0] 76 out_surface = {"width":size[0], "height":size[1], "format":"jpg"} 77 cap = cam.do_capture(req, out_surface, reprocess_format) 78 img = its.image.decompress_jpeg_to_rgb_image(cap["data"]) 79 its.image.write_image(img, "%s_low_gain_fmt=jpg.jpg" % (NAME)) 80 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 81 ref_snr = its.image.compute_image_snrs(tile) 82 print "Ref SNRs:", ref_snr 83 84 e, s = its.target.get_target_exposure_combos(cam)["maxSensitivity"] 85 for nr_mode in range(5): 86 # Skip unavailable modes 87 if not its.caps.noise_reduction_mode(props, nr_mode): 88 nr_modes_reported.append(nr_mode) 89 for channel in range(3): 90 snrs[channel].append(0) 91 continue 92 93 rgb_snr_list = [] 94 # Capture several images to account for per frame noise 95 # variations 96 for n in range(NUM_SAMPLES_PER_MODE): 97 req = its.objects.manual_capture_request(s, e) 98 req["android.noiseReduction.mode"] = nr_mode 99 cap = cam.do_capture(req, out_surface, reprocess_format) 100 101 img = its.image.decompress_jpeg_to_rgb_image(cap["data"]) 102 if n == 0: 103 its.image.write_image( 104 img, 105 "%s_high_gain_nr=%d_fmt=jpg.jpg" 106 %(NAME, nr_mode)) 107 nr_modes_reported.append( 108 cap["metadata"]["android.noiseReduction.mode"]) 109 110 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 111 # Get the variances for R, G, and B channels 112 rgb_snrs = its.image.compute_image_snrs(tile) 113 rgb_snr_list.append(rgb_snrs) 114 115 r_snrs = [rgb[0] for rgb in rgb_snr_list] 116 g_snrs = [rgb[1] for rgb in rgb_snr_list] 117 b_snrs = [rgb[2] for rgb in rgb_snr_list] 118 rgb_snrs = [numpy.mean(r_snrs), 119 numpy.mean(g_snrs), 120 numpy.mean(b_snrs)] 121 print "NR mode", nr_mode, "SNRs:" 122 print " R SNR:", rgb_snrs[0],\ 123 "Min:", min(r_snrs), "Max:", max(r_snrs) 124 print " G SNR:", rgb_snrs[1],\ 125 "Min:", min(g_snrs), "Max:", max(g_snrs) 126 print " B SNR:", rgb_snrs[2],\ 127 "Min:", min(b_snrs), "Max:", max(b_snrs) 128 129 for chan in range(3): 130 snrs[chan].append(rgb_snrs[chan]) 131 132 # Draw a plot. 133 for channel in range(3): 134 pylab.plot(range(5), snrs[channel], "rgb"[channel]) 135 136 matplotlib.pyplot.savefig("%s_plot_%s_SNRs.png" % 137 (NAME, reprocess_format)) 138 139 assert(nr_modes_reported == [0,1,2,3,4]) 140 141 for j in range(3): 142 # Larger is better 143 # Verify OFF(0) is not better than FAST(1) 144 assert(snrs[j][0] < 145 snrs[j][1] + SNR_TOLERANCE) 146 # Verify FAST(1) is not better than HQ(2) 147 assert(snrs[j][1] < 148 snrs[j][2] + SNR_TOLERANCE) 149 # Verify HQ(2) is better than OFF(0) 150 assert(snrs[j][0] < snrs[j][2]) 151 if its.caps.noise_reduction_mode(props, 3): 152 # Verify OFF(0) is not better than MINIMAL(3) 153 assert(snrs[j][0] < 154 snrs[j][3] + SNR_TOLERANCE) 155 # Verify MINIMAL(3) is not better than HQ(2) 156 assert(snrs[j][3] < 157 snrs[j][2] + SNR_TOLERANCE) 158 # Verify ZSL(4) is close to MINIMAL(3) 159 assert(numpy.isclose(snrs[j][4], snrs[j][3], 160 atol=SNR_TOLERANCE)) 161 else: 162 # Verify ZSL(4) is close to OFF(0) 163 assert(numpy.isclose(snrs[j][4], snrs[j][0], 164 atol=SNR_TOLERANCE)) 165 166 if __name__ == '__main__': 167 main() 168 169