Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <assert.h>
     60 #include <ctype.h>
     61 #include <limits.h>
     62 #include <stdio.h>
     63 #include <string.h>
     64 
     65 #include <openssl/bio.h>
     66 #include <openssl/bytestring.h>
     67 #include <openssl/err.h>
     68 #include <openssl/mem.h>
     69 
     70 #include "internal.h"
     71 
     72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
     73   size_t num_words;
     74   unsigned m;
     75   BN_ULONG word = 0;
     76   BIGNUM *bn = NULL;
     77 
     78   if (ret == NULL) {
     79     ret = bn = BN_new();
     80   }
     81 
     82   if (ret == NULL) {
     83     return NULL;
     84   }
     85 
     86   if (len == 0) {
     87     ret->top = 0;
     88     return ret;
     89   }
     90 
     91   num_words = ((len - 1) / BN_BYTES) + 1;
     92   m = (len - 1) % BN_BYTES;
     93   if (bn_wexpand(ret, num_words) == NULL) {
     94     if (bn) {
     95       BN_free(bn);
     96     }
     97     return NULL;
     98   }
     99 
    100   /* |bn_wexpand| must check bounds on |num_words| to write it into
    101    * |ret->dmax|. */
    102   assert(num_words <= INT_MAX);
    103   ret->top = (int)num_words;
    104   ret->neg = 0;
    105 
    106   while (len--) {
    107     word = (word << 8) | *(in++);
    108     if (m-- == 0) {
    109       ret->d[--num_words] = word;
    110       word = 0;
    111       m = BN_BYTES - 1;
    112     }
    113   }
    114 
    115   /* need to call this due to clear byte at top if avoiding having the top bit
    116    * set (-ve number) */
    117   bn_correct_top(ret);
    118   return ret;
    119 }
    120 
    121 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
    122   size_t n, i;
    123   BN_ULONG l;
    124 
    125   n = i = BN_num_bytes(in);
    126   while (i--) {
    127     l = in->d[i / BN_BYTES];
    128     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
    129   }
    130   return n;
    131 }
    132 
    133 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
    134  * behavior is undefined if |v| takes any other value. */
    135 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
    136   BN_ULONG mask = v;
    137   mask--;
    138 
    139   return (~mask & x) | (mask & y);
    140 }
    141 
    142 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
    143  * must not have their MSBs set. */
    144 static int constant_time_le_size_t(size_t x, size_t y) {
    145   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
    146 }
    147 
    148 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
    149  * bounds. Otherwise, it returns 0. It does so without branches on the size of
    150  * |in|, however it necessarily does not have the same memory access pattern. If
    151  * the access would be out of bounds, it reads the last word of |in|. |in| must
    152  * not be zero. */
    153 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
    154   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
    155   BN_ULONG l = in->d[constant_time_select_ulong(
    156       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
    157 
    158   /* Clamp to zero if above |d->top|. */
    159   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
    160 }
    161 
    162 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
    163   size_t i;
    164   BN_ULONG l;
    165 
    166   /* Special case for |in| = 0. Just branch as the probability is negligible. */
    167   if (BN_is_zero(in)) {
    168     memset(out, 0, len);
    169     return 1;
    170   }
    171 
    172   /* Check if the integer is too big. This case can exit early in non-constant
    173    * time. */
    174   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
    175     return 0;
    176   }
    177   if ((len % BN_BYTES) != 0) {
    178     l = read_word_padded(in, len / BN_BYTES);
    179     if (l >> (8 * (len % BN_BYTES)) != 0) {
    180       return 0;
    181     }
    182   }
    183 
    184   /* Write the bytes out one by one. Serialization is done without branching on
    185    * the bits of |in| or on |in->top|, but if the routine would otherwise read
    186    * out of bounds, the memory access pattern can't be fixed. However, for an
    187    * RSA key of size a multiple of the word size, the probability of BN_BYTES
    188    * leading zero octets is low.
    189    *
    190    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
    191   i = len;
    192   while (i--) {
    193     l = read_word_padded(in, i / BN_BYTES);
    194     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
    195   }
    196   return 1;
    197 }
    198 
    199 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
    200   uint8_t *ptr;
    201   return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
    202 }
    203 
    204 static const char hextable[] = "0123456789abcdef";
    205 
    206 char *BN_bn2hex(const BIGNUM *bn) {
    207   int i, j, v, z = 0;
    208   char *buf;
    209   char *p;
    210 
    211   buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
    212   if (buf == NULL) {
    213     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    214     return NULL;
    215   }
    216 
    217   p = buf;
    218   if (bn->neg) {
    219     *(p++) = '-';
    220   }
    221 
    222   if (BN_is_zero(bn)) {
    223     *(p++) = '0';
    224   }
    225 
    226   for (i = bn->top - 1; i >= 0; i--) {
    227     for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
    228       /* strip leading zeros */
    229       v = ((int)(bn->d[i] >> (long)j)) & 0xff;
    230       if (z || v != 0) {
    231         *(p++) = hextable[v >> 4];
    232         *(p++) = hextable[v & 0x0f];
    233         z = 1;
    234       }
    235     }
    236   }
    237   *p = '\0';
    238 
    239   return buf;
    240 }
    241 
    242 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
    243 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
    244   if (in_len > INT_MAX/4) {
    245     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
    246     return 0;
    247   }
    248   /* |in_len| is the number of hex digits. */
    249   if (bn_expand(bn, in_len * 4) == NULL) {
    250     return 0;
    251   }
    252 
    253   int i = 0;
    254   while (in_len > 0) {
    255     /* Decode one |BN_ULONG| at a time. */
    256     int todo = BN_BYTES * 2;
    257     if (todo > in_len) {
    258       todo = in_len;
    259     }
    260 
    261     BN_ULONG word = 0;
    262     int j;
    263     for (j = todo; j > 0; j--) {
    264       char c = in[in_len - j];
    265 
    266       BN_ULONG hex;
    267       if (c >= '0' && c <= '9') {
    268         hex = c - '0';
    269       } else if (c >= 'a' && c <= 'f') {
    270         hex = c - 'a' + 10;
    271       } else if (c >= 'A' && c <= 'F') {
    272         hex = c - 'A' + 10;
    273       } else {
    274         hex = 0;
    275         /* This shouldn't happen. The caller checks |isxdigit|. */
    276         assert(0);
    277       }
    278       word = (word << 4) | hex;
    279     }
    280 
    281     bn->d[i++] = word;
    282     in_len -= todo;
    283   }
    284   assert(i <= bn->dmax);
    285   bn->top = i;
    286   return 1;
    287 }
    288 
    289 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
    290 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
    291   int i, j;
    292   BN_ULONG l = 0;
    293 
    294   /* Decode |BN_DEC_NUM| digits at a time. */
    295   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
    296   if (j == BN_DEC_NUM) {
    297     j = 0;
    298   }
    299   l = 0;
    300   for (i = 0; i < in_len; i++) {
    301     l *= 10;
    302     l += in[i] - '0';
    303     if (++j == BN_DEC_NUM) {
    304       if (!BN_mul_word(bn, BN_DEC_CONV) ||
    305           !BN_add_word(bn, l)) {
    306         return 0;
    307       }
    308       l = 0;
    309       j = 0;
    310     }
    311   }
    312   return 1;
    313 }
    314 
    315 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
    316 typedef int (*char_test_func) (int c);
    317 
    318 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
    319   BIGNUM *ret = NULL;
    320   int neg = 0, i;
    321   int num;
    322 
    323   if (in == NULL || *in == 0) {
    324     return 0;
    325   }
    326 
    327   if (*in == '-') {
    328     neg = 1;
    329     in++;
    330   }
    331 
    332   for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
    333 
    334   num = i + neg;
    335   if (outp == NULL) {
    336     return num;
    337   }
    338 
    339   /* in is the start of the hex digits, and it is 'i' long */
    340   if (*outp == NULL) {
    341     ret = BN_new();
    342     if (ret == NULL) {
    343       return 0;
    344     }
    345   } else {
    346     ret = *outp;
    347     BN_zero(ret);
    348   }
    349 
    350   if (!decode(ret, in, i)) {
    351     goto err;
    352   }
    353 
    354   bn_correct_top(ret);
    355   if (!BN_is_zero(ret)) {
    356     ret->neg = neg;
    357   }
    358 
    359   *outp = ret;
    360   return num;
    361 
    362 err:
    363   if (*outp == NULL) {
    364     BN_free(ret);
    365   }
    366 
    367   return 0;
    368 }
    369 
    370 int BN_hex2bn(BIGNUM **outp, const char *in) {
    371   return bn_x2bn(outp, in, decode_hex, isxdigit);
    372 }
    373 
    374 char *BN_bn2dec(const BIGNUM *a) {
    375   int i = 0, num, ok = 0;
    376   char *buf = NULL;
    377   char *p;
    378   BIGNUM *t = NULL;
    379   BN_ULONG *bn_data = NULL, *lp;
    380 
    381   /* get an upper bound for the length of the decimal integer
    382    * num <= (BN_num_bits(a) + 1) * log(2)
    383    *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
    384    *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
    385    */
    386   i = BN_num_bits(a) * 3;
    387   num = i / 10 + i / 1000 + 1 + 1;
    388   bn_data =
    389       (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
    390   buf = (char *)OPENSSL_malloc(num + 3);
    391   if ((buf == NULL) || (bn_data == NULL)) {
    392     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    393     goto err;
    394   }
    395   t = BN_dup(a);
    396   if (t == NULL) {
    397     goto err;
    398   }
    399 
    400 #define BUF_REMAIN (num + 3 - (size_t)(p - buf))
    401   p = buf;
    402   lp = bn_data;
    403   if (BN_is_zero(t)) {
    404     *(p++) = '0';
    405     *(p++) = '\0';
    406   } else {
    407     if (BN_is_negative(t)) {
    408       *p++ = '-';
    409     }
    410 
    411     while (!BN_is_zero(t)) {
    412       *lp = BN_div_word(t, BN_DEC_CONV);
    413       lp++;
    414     }
    415     lp--;
    416     /* We now have a series of blocks, BN_DEC_NUM chars
    417      * in length, where the last one needs truncation.
    418      * The blocks need to be reversed in order. */
    419     BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
    420     while (*p) {
    421       p++;
    422     }
    423     while (lp != bn_data) {
    424       lp--;
    425       BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
    426       while (*p) {
    427         p++;
    428       }
    429     }
    430   }
    431   ok = 1;
    432 
    433 err:
    434   OPENSSL_free(bn_data);
    435   BN_free(t);
    436   if (!ok) {
    437     OPENSSL_free(buf);
    438     buf = NULL;
    439   }
    440 
    441   return buf;
    442 }
    443 
    444 int BN_dec2bn(BIGNUM **outp, const char *in) {
    445   return bn_x2bn(outp, in, decode_dec, isdigit);
    446 }
    447 
    448 int BN_asc2bn(BIGNUM **outp, const char *in) {
    449   const char *const orig_in = in;
    450   if (*in == '-') {
    451     in++;
    452   }
    453 
    454   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
    455     if (!BN_hex2bn(outp, in+2)) {
    456       return 0;
    457     }
    458   } else {
    459     if (!BN_dec2bn(outp, in)) {
    460       return 0;
    461     }
    462   }
    463 
    464   if (*orig_in == '-' && !BN_is_zero(*outp)) {
    465     (*outp)->neg = 1;
    466   }
    467 
    468   return 1;
    469 }
    470 
    471 int BN_print(BIO *bp, const BIGNUM *a) {
    472   int i, j, v, z = 0;
    473   int ret = 0;
    474 
    475   if (a->neg && BIO_write(bp, "-", 1) != 1) {
    476     goto end;
    477   }
    478 
    479   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
    480     goto end;
    481   }
    482 
    483   for (i = a->top - 1; i >= 0; i--) {
    484     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
    485       /* strip leading zeros */
    486       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
    487       if (z || v != 0) {
    488         if (BIO_write(bp, &hextable[v], 1) != 1) {
    489           goto end;
    490         }
    491         z = 1;
    492       }
    493     }
    494   }
    495   ret = 1;
    496 
    497 end:
    498   return ret;
    499 }
    500 
    501 int BN_print_fp(FILE *fp, const BIGNUM *a) {
    502   BIO *b;
    503   int ret;
    504 
    505   b = BIO_new(BIO_s_file());
    506   if (b == NULL) {
    507     return 0;
    508   }
    509   BIO_set_fp(b, fp, BIO_NOCLOSE);
    510   ret = BN_print(b, a);
    511   BIO_free(b);
    512 
    513   return ret;
    514 }
    515 
    516 BN_ULONG BN_get_word(const BIGNUM *bn) {
    517   switch (bn->top) {
    518     case 0:
    519       return 0;
    520     case 1:
    521       return bn->d[0];
    522     default:
    523       return BN_MASK2;
    524   }
    525 }
    526 
    527 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
    528   const size_t bits = BN_num_bits(in);
    529   const size_t bytes = (bits + 7) / 8;
    530   /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
    531    * prefix with a zero byte. */
    532   int extend = 0;
    533   if (bytes != 0 && (bits & 0x07) == 0) {
    534     extend = 1;
    535   }
    536 
    537   const size_t len = bytes + extend;
    538   if (len < bytes ||
    539       4 + len < len ||
    540       (len & 0xffffffff) != len) {
    541     /* If we cannot represent the number then we emit zero as the interface
    542      * doesn't allow an error to be signalled. */
    543     if (out) {
    544       memset(out, 0, 4);
    545     }
    546     return 4;
    547   }
    548 
    549   if (out == NULL) {
    550     return 4 + len;
    551   }
    552 
    553   out[0] = len >> 24;
    554   out[1] = len >> 16;
    555   out[2] = len >> 8;
    556   out[3] = len;
    557   if (extend) {
    558     out[4] = 0;
    559   }
    560   BN_bn2bin(in, out + 4 + extend);
    561   if (in->neg && len > 0) {
    562     out[4] |= 0x80;
    563   }
    564   return len + 4;
    565 }
    566 
    567 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
    568   if (len < 4) {
    569     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
    570     return NULL;
    571   }
    572   const size_t in_len = ((size_t)in[0] << 24) |
    573                         ((size_t)in[1] << 16) |
    574                         ((size_t)in[2] << 8) |
    575                         ((size_t)in[3]);
    576   if (in_len != len - 4) {
    577     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
    578     return NULL;
    579   }
    580 
    581   if (out == NULL) {
    582     out = BN_new();
    583   }
    584   if (out == NULL) {
    585     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    586     return NULL;
    587   }
    588 
    589   if (in_len == 0) {
    590     BN_zero(out);
    591     return out;
    592   }
    593 
    594   in += 4;
    595   if (BN_bin2bn(in, in_len, out) == NULL) {
    596     return NULL;
    597   }
    598   out->neg = ((*in) & 0x80) != 0;
    599   if (out->neg) {
    600     BN_clear_bit(out, BN_num_bits(out) - 1);
    601   }
    602   return out;
    603 }
    604