Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  Rat42             (Rat42.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 43)
      6                Certified Values  (lines 41 to 48)
      7                Data              (lines 61 to 69)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   This model and data are an example of fitting
     12                sigmoidal growth curves taken from Ratkowsky (1983).
     13                The response variable is pasture yield, and the
     14                predictor variable is growing time.
     15 
     16 
     17 Reference:     Ratkowsky, D.A. (1983).  
     18                Nonlinear Regression Modeling.
     19                New York, NY:  Marcel Dekker, pp. 61 and 88.
     20 
     21 
     22 
     23 
     24 
     25 Data:          1 Response  (y = pasture yield)
     26                1 Predictor (x = growing time)
     27                9 Observations
     28                Higher Level of Difficulty
     29                Observed Data
     30 
     31 Model:         Exponential Class
     32                3 Parameters (b1 to b3)
     33 
     34                y = b1 / (1+exp[b2-b3*x])  +  e
     35 
     36 
     37 
     38           Starting Values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   100         75            7.2462237576E+01  1.7340283401E+00
     42   b2 =     1          2.5          2.6180768402E+00  8.8295217536E-02
     43   b3 =     0.1        0.07         6.7359200066E-02  3.4465663377E-03
     44 
     45 Residual Sum of Squares:                    8.0565229338E+00
     46 Residual Standard Deviation:                1.1587725499E+00
     47 Degrees of Freedom:                                6
     48 Number of Observations:                            9 
     49 
     50 
     51 
     52 
     53 
     54 
     55 
     56 
     57 
     58 
     59 
     60 Data:   y              x
     61        8.930E0        9.000E0
     62       10.800E0       14.000E0
     63       18.590E0       21.000E0
     64       22.330E0       28.000E0
     65       39.350E0       42.000E0
     66       56.110E0       57.000E0
     67       61.730E0       63.000E0
     68       64.620E0       70.000E0
     69       67.080E0       79.000E0
     70