Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  Rat43             (Rat43.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 44)
      6                Certified Values  (lines 41 to 49)
      7                Data              (lines 61 to 75)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   This model and data are an example of fitting  
     12                sigmoidal growth curves taken from Ratkowsky (1983).  
     13                The response variable is the dry weight of onion bulbs 
     14                and tops, and the predictor variable is growing time. 
     15 
     16 
     17 Reference:     Ratkowsky, D.A. (1983).  
     18                Nonlinear Regression Modeling.
     19                New York, NY:  Marcel Dekker, pp. 62 and 88.
     20 
     21 
     22 
     23 
     24 
     25 Data:          1 Response  (y = onion bulb dry weight)
     26                1 Predictor (x = growing time)
     27                15 Observations
     28                Higher Level of Difficulty
     29                Observed Data
     30 
     31 Model:         Exponential Class
     32                4 Parameters (b1 to b4)
     33 
     34                y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  e
     35 
     36 
     37 
     38           Starting Values                  Certified Values
     39  
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   100         700           6.9964151270E+02  1.6302297817E+01
     42   b2 =    10           5           5.2771253025E+00  2.0828735829E+00
     43   b3 =     1           0.75        7.5962938329E-01  1.9566123451E-01
     44   b4 =     1           1.3         1.2792483859E+00  6.8761936385E-01
     45  
     46 Residual Sum of Squares:                    8.7864049080E+03
     47 Residual Standard Deviation:                2.8262414662E+01
     48 Degrees of Freedom:                                9
     49 Number of Observations:                           15 
     50  
     51  
     52  
     53  
     54  
     55  
     56  
     57  
     58  
     59  
     60 Data:   y          x
     61       16.08E0     1.0E0
     62       33.83E0     2.0E0
     63       65.80E0     3.0E0
     64       97.20E0     4.0E0
     65      191.55E0     5.0E0
     66      326.20E0     6.0E0
     67      386.87E0     7.0E0
     68      520.53E0     8.0E0
     69      590.03E0     9.0E0
     70      651.92E0    10.0E0
     71      724.93E0    11.0E0
     72      699.56E0    12.0E0
     73      689.96E0    13.0E0
     74      637.56E0    14.0E0
     75      717.41E0    15.0E0
     76