Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: strandmark (at) google.com (Petter Strandmark)
     30 //
     31 // Class for loading the data required for descibing a Fields of Experts (FoE)
     32 // model. The Fields of Experts regularization consists of terms of the type
     33 //
     34 //   alpha * log(1 + (1/2)*sum(F .* X)^2),
     35 //
     36 // where F is a d-by-d image patch and alpha is a constant. This is implemented
     37 // by a FieldsOfExpertsSum object which represents the dot product between the
     38 // image patches and a FieldsOfExpertsLoss which implements the log(1 + (1/2)s)
     39 // part.
     40 //
     41 // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
     42 //     Computer Vision, 82(2):205--229, 2009.
     43 
     44 #ifndef CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
     45 #define CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
     46 
     47 #include <iostream>
     48 #include <vector>
     49 
     50 #include "ceres/loss_function.h"
     51 #include "ceres/cost_function.h"
     52 #include "ceres/sized_cost_function.h"
     53 
     54 #include "pgm_image.h"
     55 
     56 namespace ceres {
     57 namespace examples {
     58 
     59 // One sum in the FoE regularizer. This is a dot product between a filter and an
     60 // image patch. It simply calculates the dot product between the filter
     61 // coefficients given in the constructor and the scalar parameters passed to it.
     62 class FieldsOfExpertsCost : public ceres::CostFunction {
     63  public:
     64   explicit FieldsOfExpertsCost(const std::vector<double>& filter);
     65   // The number of scalar parameters passed to Evaluate must equal the number of
     66   // filter coefficients passed to the constructor.
     67   virtual bool Evaluate(double const* const* parameters,
     68                         double* residuals,
     69                         double** jacobians) const;
     70 
     71  private:
     72   const std::vector<double>& filter_;
     73 };
     74 
     75 // The loss function used to build the correct regularization. See above.
     76 //
     77 //   f(x) = alpha_i * log(1 + (1/2)s)
     78 //
     79 class FieldsOfExpertsLoss : public ceres::LossFunction {
     80  public:
     81   explicit FieldsOfExpertsLoss(double alpha) : alpha_(alpha) { }
     82   virtual void Evaluate(double, double*) const;
     83 
     84  private:
     85   const double alpha_;
     86 };
     87 
     88 // This class loads a set of filters and coefficients from file. Then the users
     89 // obtains the correct loss and cost functions through NewCostFunction and
     90 // NewLossFunction.
     91 class FieldsOfExperts {
     92  public:
     93   // Creates an empty object with size() == 0.
     94   FieldsOfExperts();
     95   // Attempts to load filters from a file. If unsuccessful it returns false and
     96   // sets size() == 0.
     97   bool LoadFromFile(const std::string& filename);
     98 
     99   // Side length of a square filter in this FoE. They are all of the same size.
    100   int Size() const {
    101     return size_;
    102   }
    103 
    104   // Total number of pixels the filter covers.
    105   int NumVariables() const {
    106     return size_ * size_;
    107   }
    108 
    109   // Number of filters used by the FoE.
    110   int NumFilters() const {
    111     return num_filters_;
    112   }
    113 
    114   // Creates a new cost function. The caller is responsible for deallocating the
    115   // memory. alpha_index specifies which filter is used in the cost function.
    116   ceres::CostFunction* NewCostFunction(int alpha_index) const;
    117   // Creates a new loss function. The caller is responsible for deallocating the
    118   // memory. alpha_index specifies which filter this loss function is for.
    119   ceres::LossFunction* NewLossFunction(int alpha_index) const;
    120 
    121   // Gets the delta pixel indices for all pixels in a patch.
    122   const std::vector<int>& GetXDeltaIndices() const {
    123     return x_delta_indices_;
    124   }
    125   const std::vector<int>& GetYDeltaIndices() const {
    126     return y_delta_indices_;
    127   }
    128 
    129  private:
    130   // The side length of a square filter.
    131   int size_;
    132   // The number of different filters used.
    133   int num_filters_;
    134   // Pixel offsets for all variables.
    135   std::vector<int> x_delta_indices_, y_delta_indices_;
    136   // The coefficients in front of each term.
    137   std::vector<double> alpha_;
    138   // The filters used for the dot product with image patches.
    139   std::vector<std::vector<double> > filters_;
    140 };
    141 
    142 }  // namespace examples
    143 }  // namespace ceres
    144 
    145 #endif  // CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
    146