Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Interface for and implementation of various Line search algorithms.
     32 
     33 #ifndef CERES_INTERNAL_LINE_SEARCH_H_
     34 #define CERES_INTERNAL_LINE_SEARCH_H_
     35 
     36 #include <string>
     37 #include <vector>
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/internal/port.h"
     40 #include "ceres/types.h"
     41 
     42 namespace ceres {
     43 namespace internal {
     44 
     45 class Evaluator;
     46 struct FunctionSample;
     47 
     48 // Line search is another name for a one dimensional optimization
     49 // algorithm. The name "line search" comes from the fact one
     50 // dimensional optimization problems that arise as subproblems of
     51 // general multidimensional optimization problems.
     52 //
     53 // While finding the exact minimum of a one dimensionl function is
     54 // hard, instances of LineSearch find a point that satisfies a
     55 // sufficient decrease condition. Depending on the particular
     56 // condition used, we get a variety of different line search
     57 // algorithms, e.g., Armijo, Wolfe etc.
     58 class LineSearch {
     59  public:
     60   class Function;
     61 
     62   struct Options {
     63     Options()
     64         : interpolation_type(CUBIC),
     65           sufficient_decrease(1e-4),
     66           max_step_contraction(1e-3),
     67           min_step_contraction(0.9),
     68           min_step_size(1e-9),
     69           max_num_iterations(20),
     70           sufficient_curvature_decrease(0.9),
     71           max_step_expansion(10.0),
     72           is_silent(false),
     73           function(NULL) {}
     74 
     75     // Degree of the polynomial used to approximate the objective
     76     // function.
     77     LineSearchInterpolationType interpolation_type;
     78 
     79     // Armijo and Wolfe line search parameters.
     80 
     81     // Solving the line search problem exactly is computationally
     82     // prohibitive. Fortunately, line search based optimization
     83     // algorithms can still guarantee convergence if instead of an
     84     // exact solution, the line search algorithm returns a solution
     85     // which decreases the value of the objective function
     86     // sufficiently. More precisely, we are looking for a step_size
     87     // s.t.
     88     //
     89     //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
     90     double sufficient_decrease;
     91 
     92     // In each iteration of the Armijo / Wolfe line search,
     93     //
     94     // new_step_size >= max_step_contraction * step_size
     95     //
     96     // Note that by definition, for contraction:
     97     //
     98     //  0 < max_step_contraction < min_step_contraction < 1
     99     //
    100     double max_step_contraction;
    101 
    102     // In each iteration of the Armijo / Wolfe line search,
    103     //
    104     // new_step_size <= min_step_contraction * step_size
    105     // Note that by definition, for contraction:
    106     //
    107     //  0 < max_step_contraction < min_step_contraction < 1
    108     //
    109     double min_step_contraction;
    110 
    111     // If during the line search, the step_size falls below this
    112     // value, it is truncated to zero.
    113     double min_step_size;
    114 
    115     // Maximum number of trial step size iterations during each line search,
    116     // if a step size satisfying the search conditions cannot be found within
    117     // this number of trials, the line search will terminate.
    118     int max_num_iterations;
    119 
    120     // Wolfe-specific line search parameters.
    121 
    122     // The strong Wolfe conditions consist of the Armijo sufficient
    123     // decrease condition, and an additional requirement that the
    124     // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
    125     // conditions) of the gradient along the search direction
    126     // decreases sufficiently. Precisely, this second condition
    127     // is that we seek a step_size s.t.
    128     //
    129     //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
    130     //
    131     // Where f() is the line search objective and f'() is the derivative
    132     // of f w.r.t step_size (d f / d step_size).
    133     double sufficient_curvature_decrease;
    134 
    135     // During the bracketing phase of the Wolfe search, the step size is
    136     // increased until either a point satisfying the Wolfe conditions is
    137     // found, or an upper bound for a bracket containing a point satisfying
    138     // the conditions is found.  Precisely, at each iteration of the
    139     // expansion:
    140     //
    141     //   new_step_size <= max_step_expansion * step_size.
    142     //
    143     // By definition for expansion, max_step_expansion > 1.0.
    144     double max_step_expansion;
    145 
    146     bool is_silent;
    147 
    148     // The one dimensional function that the line search algorithm
    149     // minimizes.
    150     Function* function;
    151   };
    152 
    153   // An object used by the line search to access the function values
    154   // and gradient of the one dimensional function being optimized.
    155   //
    156   // In practice, this object will provide access to the objective
    157   // function value and the directional derivative of the underlying
    158   // optimization problem along a specific search direction.
    159   //
    160   // See LineSearchFunction for an example implementation.
    161   class Function {
    162    public:
    163     virtual ~Function() {}
    164     // Evaluate the line search objective
    165     //
    166     //   f(x) = p(position + x * direction)
    167     //
    168     // Where, p is the objective function of the general optimization
    169     // problem.
    170     //
    171     // g is the gradient f'(x) at x.
    172     //
    173     // f must not be null. The gradient is computed only if g is not null.
    174     virtual bool Evaluate(double x, double* f, double* g) = 0;
    175   };
    176 
    177   // Result of the line search.
    178   struct Summary {
    179     Summary()
    180         : success(false),
    181           optimal_step_size(0.0),
    182           num_function_evaluations(0),
    183           num_gradient_evaluations(0),
    184           num_iterations(0) {}
    185 
    186     bool success;
    187     double optimal_step_size;
    188     int num_function_evaluations;
    189     int num_gradient_evaluations;
    190     int num_iterations;
    191     string error;
    192   };
    193 
    194   explicit LineSearch(const LineSearch::Options& options);
    195   virtual ~LineSearch() {}
    196 
    197   static LineSearch* Create(const LineSearchType line_search_type,
    198                             const LineSearch::Options& options,
    199                             string* error);
    200 
    201   // Perform the line search.
    202   //
    203   // step_size_estimate must be a positive number.
    204   //
    205   // initial_cost and initial_gradient are the values and gradient of
    206   // the function at zero.
    207   // summary must not be null and will contain the result of the line
    208   // search.
    209   //
    210   // Summary::success is true if a non-zero step size is found.
    211   virtual void Search(double step_size_estimate,
    212                       double initial_cost,
    213                       double initial_gradient,
    214                       Summary* summary) = 0;
    215   double InterpolatingPolynomialMinimizingStepSize(
    216       const LineSearchInterpolationType& interpolation_type,
    217       const FunctionSample& lowerbound_sample,
    218       const FunctionSample& previous_sample,
    219       const FunctionSample& current_sample,
    220       const double min_step_size,
    221       const double max_step_size) const;
    222 
    223  protected:
    224   const LineSearch::Options& options() const { return options_; }
    225 
    226  private:
    227   LineSearch::Options options_;
    228 };
    229 
    230 class LineSearchFunction : public LineSearch::Function {
    231  public:
    232   explicit LineSearchFunction(Evaluator* evaluator);
    233   virtual ~LineSearchFunction() {}
    234   void Init(const Vector& position, const Vector& direction);
    235   virtual bool Evaluate(double x, double* f, double* g);
    236   double DirectionInfinityNorm() const;
    237 
    238  private:
    239   Evaluator* evaluator_;
    240   Vector position_;
    241   Vector direction_;
    242 
    243   // evaluation_point = Evaluator::Plus(position_,  x * direction_);
    244   Vector evaluation_point_;
    245 
    246   // scaled_direction = x * direction_;
    247   Vector scaled_direction_;
    248   Vector gradient_;
    249 };
    250 
    251 // Backtracking and interpolation based Armijo line search. This
    252 // implementation is based on the Armijo line search that ships in the
    253 // minFunc package by Mark Schmidt.
    254 //
    255 // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
    256 class ArmijoLineSearch : public LineSearch {
    257  public:
    258   explicit ArmijoLineSearch(const LineSearch::Options& options);
    259   virtual ~ArmijoLineSearch() {}
    260   virtual void Search(double step_size_estimate,
    261                       double initial_cost,
    262                       double initial_gradient,
    263                       Summary* summary);
    264 };
    265 
    266 // Bracketing / Zoom Strong Wolfe condition line search.  This implementation
    267 // is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
    268 // (p60-61) with inspiration from the WolfeLineSearch which ships with the
    269 // minFunc package by Mark Schmidt [2].
    270 //
    271 // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
    272 // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
    273 class WolfeLineSearch : public LineSearch {
    274  public:
    275   explicit WolfeLineSearch(const LineSearch::Options& options);
    276   virtual ~WolfeLineSearch() {}
    277   virtual void Search(double step_size_estimate,
    278                       double initial_cost,
    279                       double initial_gradient,
    280                       Summary* summary);
    281   // Returns true iff either a valid point, or valid bracket are found.
    282   bool BracketingPhase(const FunctionSample& initial_position,
    283                        const double step_size_estimate,
    284                        FunctionSample* bracket_low,
    285                        FunctionSample* bracket_high,
    286                        bool* perform_zoom_search,
    287                        Summary* summary);
    288   // Returns true iff final_line_sample satisfies strong Wolfe conditions.
    289   bool ZoomPhase(const FunctionSample& initial_position,
    290                  FunctionSample bracket_low,
    291                  FunctionSample bracket_high,
    292                  FunctionSample* solution,
    293                  Summary* summary);
    294 };
    295 
    296 }  // namespace internal
    297 }  // namespace ceres
    298 
    299 #endif  // CERES_INTERNAL_LINE_SEARCH_H_
    300