1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 // 31 // Interface for and implementation of various Line search algorithms. 32 33 #ifndef CERES_INTERNAL_LINE_SEARCH_H_ 34 #define CERES_INTERNAL_LINE_SEARCH_H_ 35 36 #include <string> 37 #include <vector> 38 #include "ceres/internal/eigen.h" 39 #include "ceres/internal/port.h" 40 #include "ceres/types.h" 41 42 namespace ceres { 43 namespace internal { 44 45 class Evaluator; 46 struct FunctionSample; 47 48 // Line search is another name for a one dimensional optimization 49 // algorithm. The name "line search" comes from the fact one 50 // dimensional optimization problems that arise as subproblems of 51 // general multidimensional optimization problems. 52 // 53 // While finding the exact minimum of a one dimensionl function is 54 // hard, instances of LineSearch find a point that satisfies a 55 // sufficient decrease condition. Depending on the particular 56 // condition used, we get a variety of different line search 57 // algorithms, e.g., Armijo, Wolfe etc. 58 class LineSearch { 59 public: 60 class Function; 61 62 struct Options { 63 Options() 64 : interpolation_type(CUBIC), 65 sufficient_decrease(1e-4), 66 max_step_contraction(1e-3), 67 min_step_contraction(0.9), 68 min_step_size(1e-9), 69 max_num_iterations(20), 70 sufficient_curvature_decrease(0.9), 71 max_step_expansion(10.0), 72 is_silent(false), 73 function(NULL) {} 74 75 // Degree of the polynomial used to approximate the objective 76 // function. 77 LineSearchInterpolationType interpolation_type; 78 79 // Armijo and Wolfe line search parameters. 80 81 // Solving the line search problem exactly is computationally 82 // prohibitive. Fortunately, line search based optimization 83 // algorithms can still guarantee convergence if instead of an 84 // exact solution, the line search algorithm returns a solution 85 // which decreases the value of the objective function 86 // sufficiently. More precisely, we are looking for a step_size 87 // s.t. 88 // 89 // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size 90 double sufficient_decrease; 91 92 // In each iteration of the Armijo / Wolfe line search, 93 // 94 // new_step_size >= max_step_contraction * step_size 95 // 96 // Note that by definition, for contraction: 97 // 98 // 0 < max_step_contraction < min_step_contraction < 1 99 // 100 double max_step_contraction; 101 102 // In each iteration of the Armijo / Wolfe line search, 103 // 104 // new_step_size <= min_step_contraction * step_size 105 // Note that by definition, for contraction: 106 // 107 // 0 < max_step_contraction < min_step_contraction < 1 108 // 109 double min_step_contraction; 110 111 // If during the line search, the step_size falls below this 112 // value, it is truncated to zero. 113 double min_step_size; 114 115 // Maximum number of trial step size iterations during each line search, 116 // if a step size satisfying the search conditions cannot be found within 117 // this number of trials, the line search will terminate. 118 int max_num_iterations; 119 120 // Wolfe-specific line search parameters. 121 122 // The strong Wolfe conditions consist of the Armijo sufficient 123 // decrease condition, and an additional requirement that the 124 // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe 125 // conditions) of the gradient along the search direction 126 // decreases sufficiently. Precisely, this second condition 127 // is that we seek a step_size s.t. 128 // 129 // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| 130 // 131 // Where f() is the line search objective and f'() is the derivative 132 // of f w.r.t step_size (d f / d step_size). 133 double sufficient_curvature_decrease; 134 135 // During the bracketing phase of the Wolfe search, the step size is 136 // increased until either a point satisfying the Wolfe conditions is 137 // found, or an upper bound for a bracket containing a point satisfying 138 // the conditions is found. Precisely, at each iteration of the 139 // expansion: 140 // 141 // new_step_size <= max_step_expansion * step_size. 142 // 143 // By definition for expansion, max_step_expansion > 1.0. 144 double max_step_expansion; 145 146 bool is_silent; 147 148 // The one dimensional function that the line search algorithm 149 // minimizes. 150 Function* function; 151 }; 152 153 // An object used by the line search to access the function values 154 // and gradient of the one dimensional function being optimized. 155 // 156 // In practice, this object will provide access to the objective 157 // function value and the directional derivative of the underlying 158 // optimization problem along a specific search direction. 159 // 160 // See LineSearchFunction for an example implementation. 161 class Function { 162 public: 163 virtual ~Function() {} 164 // Evaluate the line search objective 165 // 166 // f(x) = p(position + x * direction) 167 // 168 // Where, p is the objective function of the general optimization 169 // problem. 170 // 171 // g is the gradient f'(x) at x. 172 // 173 // f must not be null. The gradient is computed only if g is not null. 174 virtual bool Evaluate(double x, double* f, double* g) = 0; 175 }; 176 177 // Result of the line search. 178 struct Summary { 179 Summary() 180 : success(false), 181 optimal_step_size(0.0), 182 num_function_evaluations(0), 183 num_gradient_evaluations(0), 184 num_iterations(0) {} 185 186 bool success; 187 double optimal_step_size; 188 int num_function_evaluations; 189 int num_gradient_evaluations; 190 int num_iterations; 191 string error; 192 }; 193 194 explicit LineSearch(const LineSearch::Options& options); 195 virtual ~LineSearch() {} 196 197 static LineSearch* Create(const LineSearchType line_search_type, 198 const LineSearch::Options& options, 199 string* error); 200 201 // Perform the line search. 202 // 203 // step_size_estimate must be a positive number. 204 // 205 // initial_cost and initial_gradient are the values and gradient of 206 // the function at zero. 207 // summary must not be null and will contain the result of the line 208 // search. 209 // 210 // Summary::success is true if a non-zero step size is found. 211 virtual void Search(double step_size_estimate, 212 double initial_cost, 213 double initial_gradient, 214 Summary* summary) = 0; 215 double InterpolatingPolynomialMinimizingStepSize( 216 const LineSearchInterpolationType& interpolation_type, 217 const FunctionSample& lowerbound_sample, 218 const FunctionSample& previous_sample, 219 const FunctionSample& current_sample, 220 const double min_step_size, 221 const double max_step_size) const; 222 223 protected: 224 const LineSearch::Options& options() const { return options_; } 225 226 private: 227 LineSearch::Options options_; 228 }; 229 230 class LineSearchFunction : public LineSearch::Function { 231 public: 232 explicit LineSearchFunction(Evaluator* evaluator); 233 virtual ~LineSearchFunction() {} 234 void Init(const Vector& position, const Vector& direction); 235 virtual bool Evaluate(double x, double* f, double* g); 236 double DirectionInfinityNorm() const; 237 238 private: 239 Evaluator* evaluator_; 240 Vector position_; 241 Vector direction_; 242 243 // evaluation_point = Evaluator::Plus(position_, x * direction_); 244 Vector evaluation_point_; 245 246 // scaled_direction = x * direction_; 247 Vector scaled_direction_; 248 Vector gradient_; 249 }; 250 251 // Backtracking and interpolation based Armijo line search. This 252 // implementation is based on the Armijo line search that ships in the 253 // minFunc package by Mark Schmidt. 254 // 255 // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html 256 class ArmijoLineSearch : public LineSearch { 257 public: 258 explicit ArmijoLineSearch(const LineSearch::Options& options); 259 virtual ~ArmijoLineSearch() {} 260 virtual void Search(double step_size_estimate, 261 double initial_cost, 262 double initial_gradient, 263 Summary* summary); 264 }; 265 266 // Bracketing / Zoom Strong Wolfe condition line search. This implementation 267 // is based on the pseudo-code algorithm presented in Nocedal & Wright [1] 268 // (p60-61) with inspiration from the WolfeLineSearch which ships with the 269 // minFunc package by Mark Schmidt [2]. 270 // 271 // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999. 272 // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html. 273 class WolfeLineSearch : public LineSearch { 274 public: 275 explicit WolfeLineSearch(const LineSearch::Options& options); 276 virtual ~WolfeLineSearch() {} 277 virtual void Search(double step_size_estimate, 278 double initial_cost, 279 double initial_gradient, 280 Summary* summary); 281 // Returns true iff either a valid point, or valid bracket are found. 282 bool BracketingPhase(const FunctionSample& initial_position, 283 const double step_size_estimate, 284 FunctionSample* bracket_low, 285 FunctionSample* bracket_high, 286 bool* perform_zoom_search, 287 Summary* summary); 288 // Returns true iff final_line_sample satisfies strong Wolfe conditions. 289 bool ZoomPhase(const FunctionSample& initial_position, 290 FunctionSample bracket_low, 291 FunctionSample bracket_high, 292 FunctionSample* solution, 293 Summary* summary); 294 }; 295 296 } // namespace internal 297 } // namespace ceres 298 299 #endif // CERES_INTERNAL_LINE_SEARCH_H_ 300