1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2014 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #include "ceres/internal/port.h" 32 33 #include <algorithm> 34 #include <ctime> 35 #include <set> 36 #include <vector> 37 38 #include "ceres/block_random_access_dense_matrix.h" 39 #include "ceres/block_random_access_matrix.h" 40 #include "ceres/block_random_access_sparse_matrix.h" 41 #include "ceres/block_sparse_matrix.h" 42 #include "ceres/block_structure.h" 43 #include "ceres/cxsparse.h" 44 #include "ceres/detect_structure.h" 45 #include "ceres/internal/eigen.h" 46 #include "ceres/internal/scoped_ptr.h" 47 #include "ceres/lapack.h" 48 #include "ceres/linear_solver.h" 49 #include "ceres/schur_complement_solver.h" 50 #include "ceres/suitesparse.h" 51 #include "ceres/triplet_sparse_matrix.h" 52 #include "ceres/types.h" 53 #include "ceres/wall_time.h" 54 #include "Eigen/Dense" 55 #include "Eigen/SparseCore" 56 57 namespace ceres { 58 namespace internal { 59 60 LinearSolver::Summary SchurComplementSolver::SolveImpl( 61 BlockSparseMatrix* A, 62 const double* b, 63 const LinearSolver::PerSolveOptions& per_solve_options, 64 double* x) { 65 EventLogger event_logger("SchurComplementSolver::Solve"); 66 67 if (eliminator_.get() == NULL) { 68 InitStorage(A->block_structure()); 69 DetectStructure(*A->block_structure(), 70 options_.elimination_groups[0], 71 &options_.row_block_size, 72 &options_.e_block_size, 73 &options_.f_block_size); 74 eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_))); 75 eliminator_->Init(options_.elimination_groups[0], A->block_structure()); 76 }; 77 fill(x, x + A->num_cols(), 0.0); 78 event_logger.AddEvent("Setup"); 79 80 eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get()); 81 event_logger.AddEvent("Eliminate"); 82 83 double* reduced_solution = x + A->num_cols() - lhs_->num_cols(); 84 const LinearSolver::Summary summary = 85 SolveReducedLinearSystem(reduced_solution); 86 event_logger.AddEvent("ReducedSolve"); 87 88 if (summary.termination_type == LINEAR_SOLVER_SUCCESS) { 89 eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x); 90 event_logger.AddEvent("BackSubstitute"); 91 } 92 93 return summary; 94 } 95 96 // Initialize a BlockRandomAccessDenseMatrix to store the Schur 97 // complement. 98 void DenseSchurComplementSolver::InitStorage( 99 const CompressedRowBlockStructure* bs) { 100 const int num_eliminate_blocks = options().elimination_groups[0]; 101 const int num_col_blocks = bs->cols.size(); 102 103 vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0); 104 for (int i = num_eliminate_blocks, j = 0; 105 i < num_col_blocks; 106 ++i, ++j) { 107 blocks[j] = bs->cols[i].size; 108 } 109 110 set_lhs(new BlockRandomAccessDenseMatrix(blocks)); 111 set_rhs(new double[lhs()->num_rows()]); 112 } 113 114 // Solve the system Sx = r, assuming that the matrix S is stored in a 115 // BlockRandomAccessDenseMatrix. The linear system is solved using 116 // Eigen's Cholesky factorization. 117 LinearSolver::Summary 118 DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) { 119 LinearSolver::Summary summary; 120 summary.num_iterations = 0; 121 summary.termination_type = LINEAR_SOLVER_SUCCESS; 122 summary.message = "Success."; 123 124 const BlockRandomAccessDenseMatrix* m = 125 down_cast<const BlockRandomAccessDenseMatrix*>(lhs()); 126 const int num_rows = m->num_rows(); 127 128 // The case where there are no f blocks, and the system is block 129 // diagonal. 130 if (num_rows == 0) { 131 return summary; 132 } 133 134 summary.num_iterations = 1; 135 136 if (options().dense_linear_algebra_library_type == EIGEN) { 137 Eigen::LLT<Matrix, Eigen::Upper> llt = 138 ConstMatrixRef(m->values(), num_rows, num_rows) 139 .selfadjointView<Eigen::Upper>() 140 .llt(); 141 if (llt.info() != Eigen::Success) { 142 summary.termination_type = LINEAR_SOLVER_FAILURE; 143 summary.message = 144 "Eigen failure. Unable to perform dense Cholesky factorization."; 145 return summary; 146 } 147 148 VectorRef(solution, num_rows) = llt.solve(ConstVectorRef(rhs(), num_rows)); 149 } else { 150 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows); 151 summary.termination_type = 152 LAPACK::SolveInPlaceUsingCholesky(num_rows, 153 m->values(), 154 solution, 155 &summary.message); 156 } 157 158 return summary; 159 } 160 161 SparseSchurComplementSolver::SparseSchurComplementSolver( 162 const LinearSolver::Options& options) 163 : SchurComplementSolver(options), 164 factor_(NULL), 165 cxsparse_factor_(NULL) { 166 } 167 168 SparseSchurComplementSolver::~SparseSchurComplementSolver() { 169 if (factor_ != NULL) { 170 ss_.Free(factor_); 171 factor_ = NULL; 172 } 173 174 if (cxsparse_factor_ != NULL) { 175 cxsparse_.Free(cxsparse_factor_); 176 cxsparse_factor_ = NULL; 177 } 178 } 179 180 // Determine the non-zero blocks in the Schur Complement matrix, and 181 // initialize a BlockRandomAccessSparseMatrix object. 182 void SparseSchurComplementSolver::InitStorage( 183 const CompressedRowBlockStructure* bs) { 184 const int num_eliminate_blocks = options().elimination_groups[0]; 185 const int num_col_blocks = bs->cols.size(); 186 const int num_row_blocks = bs->rows.size(); 187 188 blocks_.resize(num_col_blocks - num_eliminate_blocks, 0); 189 for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) { 190 blocks_[i - num_eliminate_blocks] = bs->cols[i].size; 191 } 192 193 set<pair<int, int> > block_pairs; 194 for (int i = 0; i < blocks_.size(); ++i) { 195 block_pairs.insert(make_pair(i, i)); 196 } 197 198 int r = 0; 199 while (r < num_row_blocks) { 200 int e_block_id = bs->rows[r].cells.front().block_id; 201 if (e_block_id >= num_eliminate_blocks) { 202 break; 203 } 204 vector<int> f_blocks; 205 206 // Add to the chunk until the first block in the row is 207 // different than the one in the first row for the chunk. 208 for (; r < num_row_blocks; ++r) { 209 const CompressedRow& row = bs->rows[r]; 210 if (row.cells.front().block_id != e_block_id) { 211 break; 212 } 213 214 // Iterate over the blocks in the row, ignoring the first 215 // block since it is the one to be eliminated. 216 for (int c = 1; c < row.cells.size(); ++c) { 217 const Cell& cell = row.cells[c]; 218 f_blocks.push_back(cell.block_id - num_eliminate_blocks); 219 } 220 } 221 222 sort(f_blocks.begin(), f_blocks.end()); 223 f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end()); 224 for (int i = 0; i < f_blocks.size(); ++i) { 225 for (int j = i + 1; j < f_blocks.size(); ++j) { 226 block_pairs.insert(make_pair(f_blocks[i], f_blocks[j])); 227 } 228 } 229 } 230 231 // Remaing rows do not contribute to the chunks and directly go 232 // into the schur complement via an outer product. 233 for (; r < num_row_blocks; ++r) { 234 const CompressedRow& row = bs->rows[r]; 235 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks); 236 for (int i = 0; i < row.cells.size(); ++i) { 237 int r_block1_id = row.cells[i].block_id - num_eliminate_blocks; 238 for (int j = 0; j < row.cells.size(); ++j) { 239 int r_block2_id = row.cells[j].block_id - num_eliminate_blocks; 240 if (r_block1_id <= r_block2_id) { 241 block_pairs.insert(make_pair(r_block1_id, r_block2_id)); 242 } 243 } 244 } 245 } 246 247 set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs)); 248 set_rhs(new double[lhs()->num_rows()]); 249 } 250 251 LinearSolver::Summary 252 SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) { 253 switch (options().sparse_linear_algebra_library_type) { 254 case SUITE_SPARSE: 255 return SolveReducedLinearSystemUsingSuiteSparse(solution); 256 case CX_SPARSE: 257 return SolveReducedLinearSystemUsingCXSparse(solution); 258 case EIGEN_SPARSE: 259 return SolveReducedLinearSystemUsingEigen(solution); 260 default: 261 LOG(FATAL) << "Unknown sparse linear algebra library : " 262 << options().sparse_linear_algebra_library_type; 263 } 264 265 return LinearSolver::Summary(); 266 } 267 268 // Solve the system Sx = r, assuming that the matrix S is stored in a 269 // BlockRandomAccessSparseMatrix. The linear system is solved using 270 // CHOLMOD's sparse cholesky factorization routines. 271 LinearSolver::Summary 272 SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse( 273 double* solution) { 274 #ifdef CERES_NO_SUITESPARSE 275 276 LinearSolver::Summary summary; 277 summary.num_iterations = 0; 278 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 279 summary.message = "Ceres was not built with SuiteSparse support. " 280 "Therefore, SPARSE_SCHUR cannot be used with SUITE_SPARSE"; 281 return summary; 282 283 #else 284 285 LinearSolver::Summary summary; 286 summary.num_iterations = 0; 287 summary.termination_type = LINEAR_SOLVER_SUCCESS; 288 summary.message = "Success."; 289 290 TripletSparseMatrix* tsm = 291 const_cast<TripletSparseMatrix*>( 292 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix()); 293 const int num_rows = tsm->num_rows(); 294 295 // The case where there are no f blocks, and the system is block 296 // diagonal. 297 if (num_rows == 0) { 298 return summary; 299 } 300 301 summary.num_iterations = 1; 302 cholmod_sparse* cholmod_lhs = NULL; 303 if (options().use_postordering) { 304 // If we are going to do a full symbolic analysis of the schur 305 // complement matrix from scratch and not rely on the 306 // pre-ordering, then the fastest path in cholmod_factorize is the 307 // one corresponding to upper triangular matrices. 308 309 // Create a upper triangular symmetric matrix. 310 cholmod_lhs = ss_.CreateSparseMatrix(tsm); 311 cholmod_lhs->stype = 1; 312 313 if (factor_ == NULL) { 314 factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, 315 blocks_, 316 blocks_, 317 &summary.message); 318 } 319 } else { 320 // If we are going to use the natural ordering (i.e. rely on the 321 // pre-ordering computed by solver_impl.cc), then the fastest 322 // path in cholmod_factorize is the one corresponding to lower 323 // triangular matrices. 324 325 // Create a upper triangular symmetric matrix. 326 cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm); 327 cholmod_lhs->stype = -1; 328 329 if (factor_ == NULL) { 330 factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs, 331 &summary.message); 332 } 333 } 334 335 if (factor_ == NULL) { 336 ss_.Free(cholmod_lhs); 337 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 338 // No need to set message as it has already been set by the 339 // symbolic analysis routines above. 340 return summary; 341 } 342 343 summary.termination_type = 344 ss_.Cholesky(cholmod_lhs, factor_, &summary.message); 345 346 ss_.Free(cholmod_lhs); 347 348 if (summary.termination_type != LINEAR_SOLVER_SUCCESS) { 349 // No need to set message as it has already been set by the 350 // numeric factorization routine above. 351 return summary; 352 } 353 354 cholmod_dense* cholmod_rhs = 355 ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows); 356 cholmod_dense* cholmod_solution = ss_.Solve(factor_, 357 cholmod_rhs, 358 &summary.message); 359 ss_.Free(cholmod_rhs); 360 361 if (cholmod_solution == NULL) { 362 summary.message = 363 "SuiteSparse failure. Unable to perform triangular solve."; 364 summary.termination_type = LINEAR_SOLVER_FAILURE; 365 return summary; 366 } 367 368 VectorRef(solution, num_rows) 369 = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows); 370 ss_.Free(cholmod_solution); 371 return summary; 372 #endif // CERES_NO_SUITESPARSE 373 } 374 375 // Solve the system Sx = r, assuming that the matrix S is stored in a 376 // BlockRandomAccessSparseMatrix. The linear system is solved using 377 // CXSparse's sparse cholesky factorization routines. 378 LinearSolver::Summary 379 SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse( 380 double* solution) { 381 #ifdef CERES_NO_CXSPARSE 382 383 LinearSolver::Summary summary; 384 summary.num_iterations = 0; 385 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 386 summary.message = "Ceres was not built with CXSparse support. " 387 "Therefore, SPARSE_SCHUR cannot be used with CX_SPARSE"; 388 return summary; 389 390 #else 391 392 LinearSolver::Summary summary; 393 summary.num_iterations = 0; 394 summary.termination_type = LINEAR_SOLVER_SUCCESS; 395 summary.message = "Success."; 396 397 // Extract the TripletSparseMatrix that is used for actually storing S. 398 TripletSparseMatrix* tsm = 399 const_cast<TripletSparseMatrix*>( 400 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix()); 401 const int num_rows = tsm->num_rows(); 402 403 // The case where there are no f blocks, and the system is block 404 // diagonal. 405 if (num_rows == 0) { 406 return summary; 407 } 408 409 cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm)); 410 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows); 411 412 // Compute symbolic factorization if not available. 413 if (cxsparse_factor_ == NULL) { 414 cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_); 415 } 416 417 if (cxsparse_factor_ == NULL) { 418 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 419 summary.message = 420 "CXSparse failure. Unable to find symbolic factorization."; 421 } else if (!cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution)) { 422 summary.termination_type = LINEAR_SOLVER_FAILURE; 423 summary.message = "CXSparse::SolveCholesky failed."; 424 } 425 426 cxsparse_.Free(lhs); 427 return summary; 428 #endif // CERES_NO_CXPARSE 429 } 430 431 // Solve the system Sx = r, assuming that the matrix S is stored in a 432 // BlockRandomAccessSparseMatrix. The linear system is solved using 433 // Eigen's sparse cholesky factorization routines. 434 LinearSolver::Summary 435 SparseSchurComplementSolver::SolveReducedLinearSystemUsingEigen( 436 double* solution) { 437 #ifndef CERES_USE_EIGEN_SPARSE 438 439 LinearSolver::Summary summary; 440 summary.num_iterations = 0; 441 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 442 summary.message = 443 "SPARSE_SCHUR cannot be used with EIGEN_SPARSE. " 444 "Ceres was not built with support for " 445 "Eigen's SimplicialLDLT decomposition. " 446 "This requires enabling building with -DEIGENSPARSE=ON."; 447 return summary; 448 449 #else 450 EventLogger event_logger("SchurComplementSolver::EigenSolve"); 451 LinearSolver::Summary summary; 452 summary.num_iterations = 0; 453 summary.termination_type = LINEAR_SOLVER_SUCCESS; 454 summary.message = "Success."; 455 456 // Extract the TripletSparseMatrix that is used for actually storing S. 457 TripletSparseMatrix* tsm = 458 const_cast<TripletSparseMatrix*>( 459 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix()); 460 const int num_rows = tsm->num_rows(); 461 462 // The case where there are no f blocks, and the system is block 463 // diagonal. 464 if (num_rows == 0) { 465 return summary; 466 } 467 468 // This is an upper triangular matrix. 469 CompressedRowSparseMatrix crsm(*tsm); 470 // Map this to a column major, lower triangular matrix. 471 Eigen::MappedSparseMatrix<double, Eigen::ColMajor> eigen_lhs( 472 crsm.num_rows(), 473 crsm.num_rows(), 474 crsm.num_nonzeros(), 475 crsm.mutable_rows(), 476 crsm.mutable_cols(), 477 crsm.mutable_values()); 478 event_logger.AddEvent("ToCompressedRowSparseMatrix"); 479 480 // Compute symbolic factorization if one does not exist. 481 if (simplicial_ldlt_.get() == NULL) { 482 simplicial_ldlt_.reset(new SimplicialLDLT); 483 // This ordering is quite bad. The scalar ordering produced by the 484 // AMD algorithm is quite bad and can be an order of magnitude 485 // worse than the one computed using the block version of the 486 // algorithm. 487 simplicial_ldlt_->analyzePattern(eigen_lhs); 488 event_logger.AddEvent("Analysis"); 489 if (simplicial_ldlt_->info() != Eigen::Success) { 490 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; 491 summary.message = 492 "Eigen failure. Unable to find symbolic factorization."; 493 return summary; 494 } 495 } 496 497 simplicial_ldlt_->factorize(eigen_lhs); 498 event_logger.AddEvent("Factorize"); 499 if (simplicial_ldlt_->info() != Eigen::Success) { 500 summary.termination_type = LINEAR_SOLVER_FAILURE; 501 summary.message = "Eigen failure. Unable to find numeric factoriztion."; 502 return summary; 503 } 504 505 VectorRef(solution, num_rows) = 506 simplicial_ldlt_->solve(ConstVectorRef(rhs(), num_rows)); 507 event_logger.AddEvent("Solve"); 508 if (simplicial_ldlt_->info() != Eigen::Success) { 509 summary.termination_type = LINEAR_SOLVER_FAILURE; 510 summary.message = "Eigen failure. Unable to do triangular solve."; 511 } 512 513 return summary; 514 #endif // CERES_USE_EIGEN_SPARSE 515 } 516 517 } // namespace internal 518 } // namespace ceres 519