Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of virtual tables.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CodeGenModule.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/RecordLayout.h"
     19 #include "clang/CodeGen/CGFunctionInfo.h"
     20 #include "clang/Frontend/CodeGenOptions.h"
     21 #include "llvm/ADT/DenseSet.h"
     22 #include "llvm/ADT/SetVector.h"
     23 #include "llvm/Support/Compiler.h"
     24 #include "llvm/Support/Format.h"
     25 #include "llvm/Transforms/Utils/Cloning.h"
     26 #include <algorithm>
     27 #include <cstdio>
     28 
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
     33     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
     34 
     35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
     36                                               const ThunkInfo &Thunk) {
     37   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
     38 
     39   // Compute the mangled name.
     40   SmallString<256> Name;
     41   llvm::raw_svector_ostream Out(Name);
     42   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
     43     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
     44                                                       Thunk.This, Out);
     45   else
     46     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
     47 
     48   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
     49   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
     50                                  /*DontDefer=*/true, /*IsThunk=*/true);
     51 }
     52 
     53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
     54                                const ThunkInfo &Thunk, llvm::Function *Fn) {
     55   CGM.setGlobalVisibility(Fn, MD);
     56 }
     57 
     58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
     59                                llvm::Function *ThunkFn, bool ForVTable,
     60                                GlobalDecl GD) {
     61   CGM.setFunctionLinkage(GD, ThunkFn);
     62   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
     63                                   !Thunk.Return.isEmpty());
     64 
     65   // Set the right visibility.
     66   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
     67   setThunkVisibility(CGM, MD, Thunk, ThunkFn);
     68 
     69   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
     70     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
     71 }
     72 
     73 #ifndef NDEBUG
     74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
     75                     const ABIArgInfo &infoR, CanQualType typeR) {
     76   return (infoL.getKind() == infoR.getKind() &&
     77           (typeL == typeR ||
     78            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
     79            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
     80 }
     81 #endif
     82 
     83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
     84                                       QualType ResultType, RValue RV,
     85                                       const ThunkInfo &Thunk) {
     86   // Emit the return adjustment.
     87   bool NullCheckValue = !ResultType->isReferenceType();
     88 
     89   llvm::BasicBlock *AdjustNull = nullptr;
     90   llvm::BasicBlock *AdjustNotNull = nullptr;
     91   llvm::BasicBlock *AdjustEnd = nullptr;
     92 
     93   llvm::Value *ReturnValue = RV.getScalarVal();
     94 
     95   if (NullCheckValue) {
     96     AdjustNull = CGF.createBasicBlock("adjust.null");
     97     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
     98     AdjustEnd = CGF.createBasicBlock("adjust.end");
     99 
    100     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
    101     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
    102     CGF.EmitBlock(AdjustNotNull);
    103   }
    104 
    105   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
    106   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
    107   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
    108                                             Address(ReturnValue, ClassAlign),
    109                                             Thunk.Return);
    110 
    111   if (NullCheckValue) {
    112     CGF.Builder.CreateBr(AdjustEnd);
    113     CGF.EmitBlock(AdjustNull);
    114     CGF.Builder.CreateBr(AdjustEnd);
    115     CGF.EmitBlock(AdjustEnd);
    116 
    117     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
    118     PHI->addIncoming(ReturnValue, AdjustNotNull);
    119     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
    120                      AdjustNull);
    121     ReturnValue = PHI;
    122   }
    123 
    124   return RValue::get(ReturnValue);
    125 }
    126 
    127 // This function does roughly the same thing as GenerateThunk, but in a
    128 // very different way, so that va_start and va_end work correctly.
    129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
    130 //        a function, and that there is an alloca built in the entry block
    131 //        for all accesses to "this".
    132 // FIXME: This function assumes there is only one "ret" statement per function.
    133 // FIXME: Cloning isn't correct in the presence of indirect goto!
    134 // FIXME: This implementation of thunks bloats codesize by duplicating the
    135 //        function definition.  There are alternatives:
    136 //        1. Add some sort of stub support to LLVM for cases where we can
    137 //           do a this adjustment, then a sibcall.
    138 //        2. We could transform the definition to take a va_list instead of an
    139 //           actual variable argument list, then have the thunks (including a
    140 //           no-op thunk for the regular definition) call va_start/va_end.
    141 //           There's a bit of per-call overhead for this solution, but it's
    142 //           better for codesize if the definition is long.
    143 llvm::Function *
    144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
    145                                       const CGFunctionInfo &FnInfo,
    146                                       GlobalDecl GD, const ThunkInfo &Thunk) {
    147   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    148   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    149   QualType ResultType = FPT->getReturnType();
    150 
    151   // Get the original function
    152   assert(FnInfo.isVariadic());
    153   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
    154   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
    155   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
    156 
    157   // Clone to thunk.
    158   llvm::ValueToValueMapTy VMap;
    159   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
    160                                               /*ModuleLevelChanges=*/false);
    161   CGM.getModule().getFunctionList().push_back(NewFn);
    162   Fn->replaceAllUsesWith(NewFn);
    163   NewFn->takeName(Fn);
    164   Fn->eraseFromParent();
    165   Fn = NewFn;
    166 
    167   // "Initialize" CGF (minimally).
    168   CurFn = Fn;
    169 
    170   // Get the "this" value
    171   llvm::Function::arg_iterator AI = Fn->arg_begin();
    172   if (CGM.ReturnTypeUsesSRet(FnInfo))
    173     ++AI;
    174 
    175   // Find the first store of "this", which will be to the alloca associated
    176   // with "this".
    177   Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
    178   llvm::BasicBlock *EntryBB = &Fn->front();
    179   llvm::BasicBlock::iterator ThisStore =
    180       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
    181         return isa<llvm::StoreInst>(I) &&
    182                I.getOperand(0) == ThisPtr.getPointer();
    183       });
    184   assert(ThisStore != EntryBB->end() &&
    185          "Store of this should be in entry block?");
    186   // Adjust "this", if necessary.
    187   Builder.SetInsertPoint(&*ThisStore);
    188   llvm::Value *AdjustedThisPtr =
    189       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
    190   ThisStore->setOperand(0, AdjustedThisPtr);
    191 
    192   if (!Thunk.Return.isEmpty()) {
    193     // Fix up the returned value, if necessary.
    194     for (llvm::BasicBlock &BB : *Fn) {
    195       llvm::Instruction *T = BB.getTerminator();
    196       if (isa<llvm::ReturnInst>(T)) {
    197         RValue RV = RValue::get(T->getOperand(0));
    198         T->eraseFromParent();
    199         Builder.SetInsertPoint(&BB);
    200         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
    201         Builder.CreateRet(RV.getScalarVal());
    202         break;
    203       }
    204     }
    205   }
    206 
    207   return Fn;
    208 }
    209 
    210 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
    211                                  const CGFunctionInfo &FnInfo) {
    212   assert(!CurGD.getDecl() && "CurGD was already set!");
    213   CurGD = GD;
    214   CurFuncIsThunk = true;
    215 
    216   // Build FunctionArgs.
    217   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    218   QualType ThisType = MD->getThisType(getContext());
    219   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    220   QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
    221                             ? ThisType
    222                             : CGM.getCXXABI().hasMostDerivedReturn(GD)
    223                                   ? CGM.getContext().VoidPtrTy
    224                                   : FPT->getReturnType();
    225   FunctionArgList FunctionArgs;
    226 
    227   // Create the implicit 'this' parameter declaration.
    228   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
    229 
    230   // Add the rest of the parameters.
    231   FunctionArgs.append(MD->param_begin(), MD->param_end());
    232 
    233   if (isa<CXXDestructorDecl>(MD))
    234     CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
    235 
    236   // Start defining the function.
    237   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
    238                 MD->getLocation(), MD->getLocation());
    239 
    240   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
    241   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    242   CXXThisValue = CXXABIThisValue;
    243   CurCodeDecl = MD;
    244   CurFuncDecl = MD;
    245 }
    246 
    247 void CodeGenFunction::FinishThunk() {
    248   // Clear these to restore the invariants expected by
    249   // StartFunction/FinishFunction.
    250   CurCodeDecl = nullptr;
    251   CurFuncDecl = nullptr;
    252 
    253   FinishFunction();
    254 }
    255 
    256 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
    257                                                 const ThunkInfo *Thunk) {
    258   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
    259          "Please use a new CGF for this thunk");
    260   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
    261 
    262   // Adjust the 'this' pointer if necessary
    263   llvm::Value *AdjustedThisPtr =
    264     Thunk ? CGM.getCXXABI().performThisAdjustment(
    265                           *this, LoadCXXThisAddress(), Thunk->This)
    266           : LoadCXXThis();
    267 
    268   if (CurFnInfo->usesInAlloca()) {
    269     // We don't handle return adjusting thunks, because they require us to call
    270     // the copy constructor.  For now, fall through and pretend the return
    271     // adjustment was empty so we don't crash.
    272     if (Thunk && !Thunk->Return.isEmpty()) {
    273       CGM.ErrorUnsupported(
    274           MD, "non-trivial argument copy for return-adjusting thunk");
    275     }
    276     EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
    277     return;
    278   }
    279 
    280   // Start building CallArgs.
    281   CallArgList CallArgs;
    282   QualType ThisType = MD->getThisType(getContext());
    283   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
    284 
    285   if (isa<CXXDestructorDecl>(MD))
    286     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
    287 
    288   // Add the rest of the arguments.
    289   for (const ParmVarDecl *PD : MD->params())
    290     EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
    291 
    292   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    293 
    294 #ifndef NDEBUG
    295   const CGFunctionInfo &CallFnInfo =
    296     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
    297                                        RequiredArgs::forPrototypePlus(FPT, 1));
    298   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
    299          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
    300          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
    301   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
    302          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
    303                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
    304   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
    305   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
    306     assert(similar(CallFnInfo.arg_begin()[i].info,
    307                    CallFnInfo.arg_begin()[i].type,
    308                    CurFnInfo->arg_begin()[i].info,
    309                    CurFnInfo->arg_begin()[i].type));
    310 #endif
    311 
    312   // Determine whether we have a return value slot to use.
    313   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
    314                             ? ThisType
    315                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
    316                                   ? CGM.getContext().VoidPtrTy
    317                                   : FPT->getReturnType();
    318   ReturnValueSlot Slot;
    319   if (!ResultType->isVoidType() &&
    320       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    321       !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
    322     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
    323 
    324   // Now emit our call.
    325   llvm::Instruction *CallOrInvoke;
    326   RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
    327 
    328   // Consider return adjustment if we have ThunkInfo.
    329   if (Thunk && !Thunk->Return.isEmpty())
    330     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
    331   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
    332     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
    333 
    334   // Emit return.
    335   if (!ResultType->isVoidType() && Slot.isNull())
    336     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
    337 
    338   // Disable the final ARC autorelease.
    339   AutoreleaseResult = false;
    340 
    341   FinishThunk();
    342 }
    343 
    344 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
    345                                         llvm::Value *AdjustedThisPtr,
    346                                         llvm::Value *Callee) {
    347   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
    348   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
    349   // that the caller prototype more or less matches the callee prototype with
    350   // the exception of 'this'.
    351   SmallVector<llvm::Value *, 8> Args;
    352   for (llvm::Argument &A : CurFn->args())
    353     Args.push_back(&A);
    354 
    355   // Set the adjusted 'this' pointer.
    356   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
    357   if (ThisAI.isDirect()) {
    358     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
    359     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
    360     llvm::Type *ThisType = Args[ThisArgNo]->getType();
    361     if (ThisType != AdjustedThisPtr->getType())
    362       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    363     Args[ThisArgNo] = AdjustedThisPtr;
    364   } else {
    365     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
    366     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
    367     llvm::Type *ThisType = ThisAddr.getElementType();
    368     if (ThisType != AdjustedThisPtr->getType())
    369       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
    370     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
    371   }
    372 
    373   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
    374   // don't actually want to run them.
    375   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
    376   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
    377 
    378   // Apply the standard set of call attributes.
    379   unsigned CallingConv;
    380   CodeGen::AttributeListType AttributeList;
    381   CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv,
    382                              /*AttrOnCallSite=*/true);
    383   llvm::AttributeSet Attrs =
    384       llvm::AttributeSet::get(getLLVMContext(), AttributeList);
    385   Call->setAttributes(Attrs);
    386   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
    387 
    388   if (Call->getType()->isVoidTy())
    389     Builder.CreateRetVoid();
    390   else
    391     Builder.CreateRet(Call);
    392 
    393   // Finish the function to maintain CodeGenFunction invariants.
    394   // FIXME: Don't emit unreachable code.
    395   EmitBlock(createBasicBlock());
    396   FinishFunction();
    397 }
    398 
    399 void CodeGenFunction::generateThunk(llvm::Function *Fn,
    400                                     const CGFunctionInfo &FnInfo,
    401                                     GlobalDecl GD, const ThunkInfo &Thunk) {
    402   StartThunk(Fn, GD, FnInfo);
    403 
    404   // Get our callee.
    405   llvm::Type *Ty =
    406     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
    407   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
    408 
    409   // Make the call and return the result.
    410   EmitCallAndReturnForThunk(Callee, &Thunk);
    411 }
    412 
    413 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
    414                                bool ForVTable) {
    415   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
    416 
    417   // FIXME: re-use FnInfo in this computation.
    418   llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
    419   llvm::GlobalValue *Entry;
    420 
    421   // Strip off a bitcast if we got one back.
    422   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
    423     assert(CE->getOpcode() == llvm::Instruction::BitCast);
    424     Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
    425   } else {
    426     Entry = cast<llvm::GlobalValue>(C);
    427   }
    428 
    429   // There's already a declaration with the same name, check if it has the same
    430   // type or if we need to replace it.
    431   if (Entry->getType()->getElementType() !=
    432       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
    433     llvm::GlobalValue *OldThunkFn = Entry;
    434 
    435     // If the types mismatch then we have to rewrite the definition.
    436     assert(OldThunkFn->isDeclaration() &&
    437            "Shouldn't replace non-declaration");
    438 
    439     // Remove the name from the old thunk function and get a new thunk.
    440     OldThunkFn->setName(StringRef());
    441     Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
    442 
    443     // If needed, replace the old thunk with a bitcast.
    444     if (!OldThunkFn->use_empty()) {
    445       llvm::Constant *NewPtrForOldDecl =
    446         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
    447       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
    448     }
    449 
    450     // Remove the old thunk.
    451     OldThunkFn->eraseFromParent();
    452   }
    453 
    454   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
    455   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
    456   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
    457 
    458   if (!ThunkFn->isDeclaration()) {
    459     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
    460       // There is already a thunk emitted for this function, do nothing.
    461       return;
    462     }
    463 
    464     setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
    465     return;
    466   }
    467 
    468   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
    469 
    470   if (ThunkFn->isVarArg()) {
    471     // Varargs thunks are special; we can't just generate a call because
    472     // we can't copy the varargs.  Our implementation is rather
    473     // expensive/sucky at the moment, so don't generate the thunk unless
    474     // we have to.
    475     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
    476     if (UseAvailableExternallyLinkage)
    477       return;
    478     ThunkFn =
    479         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
    480   } else {
    481     // Normal thunk body generation.
    482     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk);
    483   }
    484 
    485   setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
    486 }
    487 
    488 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
    489                                              const ThunkInfo &Thunk) {
    490   // If the ABI has key functions, only the TU with the key function should emit
    491   // the thunk. However, we can allow inlining of thunks if we emit them with
    492   // available_externally linkage together with vtables when optimizations are
    493   // enabled.
    494   if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
    495       !CGM.getCodeGenOpts().OptimizationLevel)
    496     return;
    497 
    498   // We can't emit thunks for member functions with incomplete types.
    499   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    500   if (!CGM.getTypes().isFuncTypeConvertible(
    501            MD->getType()->castAs<FunctionType>()))
    502     return;
    503 
    504   emitThunk(GD, Thunk, /*ForVTable=*/true);
    505 }
    506 
    507 void CodeGenVTables::EmitThunks(GlobalDecl GD)
    508 {
    509   const CXXMethodDecl *MD =
    510     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
    511 
    512   // We don't need to generate thunks for the base destructor.
    513   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
    514     return;
    515 
    516   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
    517       VTContext->getThunkInfo(GD);
    518 
    519   if (!ThunkInfoVector)
    520     return;
    521 
    522   for (const ThunkInfo& Thunk : *ThunkInfoVector)
    523     emitThunk(GD, Thunk, /*ForVTable=*/false);
    524 }
    525 
    526 llvm::Constant *CodeGenVTables::CreateVTableInitializer(
    527     const CXXRecordDecl *RD, const VTableComponent *Components,
    528     unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
    529     unsigned NumVTableThunks, llvm::Constant *RTTI) {
    530   SmallVector<llvm::Constant *, 64> Inits;
    531 
    532   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
    533 
    534   llvm::Type *PtrDiffTy =
    535     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
    536 
    537   unsigned NextVTableThunkIndex = 0;
    538 
    539   llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
    540 
    541   for (unsigned I = 0; I != NumComponents; ++I) {
    542     VTableComponent Component = Components[I];
    543 
    544     llvm::Constant *Init = nullptr;
    545 
    546     switch (Component.getKind()) {
    547     case VTableComponent::CK_VCallOffset:
    548       Init = llvm::ConstantInt::get(PtrDiffTy,
    549                                     Component.getVCallOffset().getQuantity());
    550       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
    551       break;
    552     case VTableComponent::CK_VBaseOffset:
    553       Init = llvm::ConstantInt::get(PtrDiffTy,
    554                                     Component.getVBaseOffset().getQuantity());
    555       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
    556       break;
    557     case VTableComponent::CK_OffsetToTop:
    558       Init = llvm::ConstantInt::get(PtrDiffTy,
    559                                     Component.getOffsetToTop().getQuantity());
    560       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
    561       break;
    562     case VTableComponent::CK_RTTI:
    563       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
    564       break;
    565     case VTableComponent::CK_FunctionPointer:
    566     case VTableComponent::CK_CompleteDtorPointer:
    567     case VTableComponent::CK_DeletingDtorPointer: {
    568       GlobalDecl GD;
    569 
    570       // Get the right global decl.
    571       switch (Component.getKind()) {
    572       default:
    573         llvm_unreachable("Unexpected vtable component kind");
    574       case VTableComponent::CK_FunctionPointer:
    575         GD = Component.getFunctionDecl();
    576         break;
    577       case VTableComponent::CK_CompleteDtorPointer:
    578         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
    579         break;
    580       case VTableComponent::CK_DeletingDtorPointer:
    581         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
    582         break;
    583       }
    584 
    585       if (CGM.getLangOpts().CUDA) {
    586         // Emit NULL for methods we can't codegen on this
    587         // side. Otherwise we'd end up with vtable with unresolved
    588         // references.
    589         const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    590         // OK on device side: functions w/ __device__ attribute
    591         // OK on host side: anything except __device__-only functions.
    592         bool CanEmitMethod = CGM.getLangOpts().CUDAIsDevice
    593                                  ? MD->hasAttr<CUDADeviceAttr>()
    594                                  : (MD->hasAttr<CUDAHostAttr>() ||
    595                                     !MD->hasAttr<CUDADeviceAttr>());
    596         if (!CanEmitMethod) {
    597           Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
    598           break;
    599         }
    600         // Method is acceptable, continue processing as usual.
    601       }
    602 
    603       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
    604         // We have a pure virtual member function.
    605         if (!PureVirtualFn) {
    606           llvm::FunctionType *Ty =
    607             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
    608           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
    609           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
    610           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
    611                                                          CGM.Int8PtrTy);
    612         }
    613         Init = PureVirtualFn;
    614       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
    615         if (!DeletedVirtualFn) {
    616           llvm::FunctionType *Ty =
    617             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
    618           StringRef DeletedCallName =
    619             CGM.getCXXABI().GetDeletedVirtualCallName();
    620           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
    621           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
    622                                                          CGM.Int8PtrTy);
    623         }
    624         Init = DeletedVirtualFn;
    625       } else {
    626         // Check if we should use a thunk.
    627         if (NextVTableThunkIndex < NumVTableThunks &&
    628             VTableThunks[NextVTableThunkIndex].first == I) {
    629           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
    630 
    631           maybeEmitThunkForVTable(GD, Thunk);
    632           Init = CGM.GetAddrOfThunk(GD, Thunk);
    633 
    634           NextVTableThunkIndex++;
    635         } else {
    636           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
    637 
    638           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
    639         }
    640 
    641         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
    642       }
    643       break;
    644     }
    645 
    646     case VTableComponent::CK_UnusedFunctionPointer:
    647       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
    648       break;
    649     };
    650 
    651     Inits.push_back(Init);
    652   }
    653 
    654   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
    655   return llvm::ConstantArray::get(ArrayType, Inits);
    656 }
    657 
    658 llvm::GlobalVariable *
    659 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
    660                                       const BaseSubobject &Base,
    661                                       bool BaseIsVirtual,
    662                                    llvm::GlobalVariable::LinkageTypes Linkage,
    663                                       VTableAddressPointsMapTy& AddressPoints) {
    664   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    665     DI->completeClassData(Base.getBase());
    666 
    667   std::unique_ptr<VTableLayout> VTLayout(
    668       getItaniumVTableContext().createConstructionVTableLayout(
    669           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
    670 
    671   // Add the address points.
    672   AddressPoints = VTLayout->getAddressPoints();
    673 
    674   // Get the mangled construction vtable name.
    675   SmallString<256> OutName;
    676   llvm::raw_svector_ostream Out(OutName);
    677   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
    678       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
    679                            Base.getBase(), Out);
    680   StringRef Name = OutName.str();
    681 
    682   llvm::ArrayType *ArrayType =
    683     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
    684 
    685   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
    686   // guarantee that they actually will be available externally. Instead, when
    687   // emitting an available_externally VTT, we provide references to an internal
    688   // linkage construction vtable. The ABI only requires complete-object vtables
    689   // to be the same for all instances of a type, not construction vtables.
    690   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
    691     Linkage = llvm::GlobalVariable::InternalLinkage;
    692 
    693   // Create the variable that will hold the construction vtable.
    694   llvm::GlobalVariable *VTable =
    695     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
    696   CGM.setGlobalVisibility(VTable, RD);
    697 
    698   // V-tables are always unnamed_addr.
    699   VTable->setUnnamedAddr(true);
    700 
    701   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
    702       CGM.getContext().getTagDeclType(Base.getBase()));
    703 
    704   // Create and set the initializer.
    705   llvm::Constant *Init = CreateVTableInitializer(
    706       Base.getBase(), VTLayout->vtable_component_begin(),
    707       VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
    708       VTLayout->getNumVTableThunks(), RTTI);
    709   VTable->setInitializer(Init);
    710 
    711   CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get());
    712 
    713   return VTable;
    714 }
    715 
    716 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
    717                                                 const CXXRecordDecl *RD) {
    718   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
    719          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
    720 }
    721 
    722 /// Compute the required linkage of the v-table for the given class.
    723 ///
    724 /// Note that we only call this at the end of the translation unit.
    725 llvm::GlobalVariable::LinkageTypes
    726 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
    727   if (!RD->isExternallyVisible())
    728     return llvm::GlobalVariable::InternalLinkage;
    729 
    730   // We're at the end of the translation unit, so the current key
    731   // function is fully correct.
    732   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
    733   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
    734     // If this class has a key function, use that to determine the
    735     // linkage of the vtable.
    736     const FunctionDecl *def = nullptr;
    737     if (keyFunction->hasBody(def))
    738       keyFunction = cast<CXXMethodDecl>(def);
    739 
    740     switch (keyFunction->getTemplateSpecializationKind()) {
    741       case TSK_Undeclared:
    742       case TSK_ExplicitSpecialization:
    743         assert((def || CodeGenOpts.OptimizationLevel > 0) &&
    744                "Shouldn't query vtable linkage without key function or "
    745                "optimizations");
    746         if (!def && CodeGenOpts.OptimizationLevel > 0)
    747           return llvm::GlobalVariable::AvailableExternallyLinkage;
    748 
    749         if (keyFunction->isInlined())
    750           return !Context.getLangOpts().AppleKext ?
    751                    llvm::GlobalVariable::LinkOnceODRLinkage :
    752                    llvm::Function::InternalLinkage;
    753 
    754         return llvm::GlobalVariable::ExternalLinkage;
    755 
    756       case TSK_ImplicitInstantiation:
    757         return !Context.getLangOpts().AppleKext ?
    758                  llvm::GlobalVariable::LinkOnceODRLinkage :
    759                  llvm::Function::InternalLinkage;
    760 
    761       case TSK_ExplicitInstantiationDefinition:
    762         return !Context.getLangOpts().AppleKext ?
    763                  llvm::GlobalVariable::WeakODRLinkage :
    764                  llvm::Function::InternalLinkage;
    765 
    766       case TSK_ExplicitInstantiationDeclaration:
    767         llvm_unreachable("Should not have been asked to emit this");
    768     }
    769   }
    770 
    771   // -fapple-kext mode does not support weak linkage, so we must use
    772   // internal linkage.
    773   if (Context.getLangOpts().AppleKext)
    774     return llvm::Function::InternalLinkage;
    775 
    776   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
    777       llvm::GlobalValue::LinkOnceODRLinkage;
    778   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
    779       llvm::GlobalValue::WeakODRLinkage;
    780   if (RD->hasAttr<DLLExportAttr>()) {
    781     // Cannot discard exported vtables.
    782     DiscardableODRLinkage = NonDiscardableODRLinkage;
    783   } else if (RD->hasAttr<DLLImportAttr>()) {
    784     // Imported vtables are available externally.
    785     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
    786     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
    787   }
    788 
    789   switch (RD->getTemplateSpecializationKind()) {
    790     case TSK_Undeclared:
    791     case TSK_ExplicitSpecialization:
    792     case TSK_ImplicitInstantiation:
    793       return DiscardableODRLinkage;
    794 
    795     case TSK_ExplicitInstantiationDeclaration:
    796       return shouldEmitAvailableExternallyVTable(*this, RD)
    797                  ? llvm::GlobalVariable::AvailableExternallyLinkage
    798                  : llvm::GlobalVariable::ExternalLinkage;
    799 
    800     case TSK_ExplicitInstantiationDefinition:
    801       return NonDiscardableODRLinkage;
    802   }
    803 
    804   llvm_unreachable("Invalid TemplateSpecializationKind!");
    805 }
    806 
    807 /// This is a callback from Sema to tell us that that a particular v-table is
    808 /// required to be emitted in this translation unit.
    809 ///
    810 /// This is only called for vtables that _must_ be emitted (mainly due to key
    811 /// functions).  For weak vtables, CodeGen tracks when they are needed and
    812 /// emits them as-needed.
    813 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
    814   VTables.GenerateClassData(theClass);
    815 }
    816 
    817 void
    818 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
    819   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    820     DI->completeClassData(RD);
    821 
    822   if (RD->getNumVBases())
    823     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
    824 
    825   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
    826 }
    827 
    828 /// At this point in the translation unit, does it appear that can we
    829 /// rely on the vtable being defined elsewhere in the program?
    830 ///
    831 /// The response is really only definitive when called at the end of
    832 /// the translation unit.
    833 ///
    834 /// The only semantic restriction here is that the object file should
    835 /// not contain a v-table definition when that v-table is defined
    836 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
    837 /// v-tables when unnecessary.
    838 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
    839   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
    840 
    841   // If we have an explicit instantiation declaration (and not a
    842   // definition), the v-table is defined elsewhere.
    843   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
    844   if (TSK == TSK_ExplicitInstantiationDeclaration)
    845     return true;
    846 
    847   // Otherwise, if the class is an instantiated template, the
    848   // v-table must be defined here.
    849   if (TSK == TSK_ImplicitInstantiation ||
    850       TSK == TSK_ExplicitInstantiationDefinition)
    851     return false;
    852 
    853   // Otherwise, if the class doesn't have a key function (possibly
    854   // anymore), the v-table must be defined here.
    855   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
    856   if (!keyFunction)
    857     return false;
    858 
    859   // Otherwise, if we don't have a definition of the key function, the
    860   // v-table must be defined somewhere else.
    861   return !keyFunction->hasBody();
    862 }
    863 
    864 /// Given that we're currently at the end of the translation unit, and
    865 /// we've emitted a reference to the v-table for this class, should
    866 /// we define that v-table?
    867 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
    868                                                    const CXXRecordDecl *RD) {
    869   // If vtable is internal then it has to be done.
    870   if (!CGM.getVTables().isVTableExternal(RD))
    871     return true;
    872 
    873   // If it's external then maybe we will need it as available_externally.
    874   return shouldEmitAvailableExternallyVTable(CGM, RD);
    875 }
    876 
    877 /// Given that at some point we emitted a reference to one or more
    878 /// v-tables, and that we are now at the end of the translation unit,
    879 /// decide whether we should emit them.
    880 void CodeGenModule::EmitDeferredVTables() {
    881 #ifndef NDEBUG
    882   // Remember the size of DeferredVTables, because we're going to assume
    883   // that this entire operation doesn't modify it.
    884   size_t savedSize = DeferredVTables.size();
    885 #endif
    886 
    887   for (const CXXRecordDecl *RD : DeferredVTables)
    888     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
    889       VTables.GenerateClassData(RD);
    890 
    891   assert(savedSize == DeferredVTables.size() &&
    892          "deferred extra v-tables during v-table emission?");
    893   DeferredVTables.clear();
    894 }
    895 
    896 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) {
    897   if (RD->hasAttr<UuidAttr>() &&
    898       getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid"))
    899     return true;
    900 
    901   return getContext().getSanitizerBlacklist().isBlacklistedType(
    902       RD->getQualifiedNameAsString());
    903 }
    904 
    905 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable,
    906                                             const VTableLayout &VTLayout) {
    907   if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
    908       !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
    909       !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
    910       !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast))
    911     return;
    912 
    913   CharUnits PointerWidth =
    914       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    915 
    916   typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry;
    917   std::vector<BSEntry> BitsetEntries;
    918   // Create a bit set entry for each address point.
    919   for (auto &&AP : VTLayout.getAddressPoints()) {
    920     if (IsCFIBlacklistedRecord(AP.first.getBase()))
    921       continue;
    922 
    923     BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second));
    924   }
    925 
    926   // Sort the bit set entries for determinism.
    927   std::sort(BitsetEntries.begin(), BitsetEntries.end(),
    928             [this](const BSEntry &E1, const BSEntry &E2) {
    929     if (&E1 == &E2)
    930       return false;
    931 
    932     std::string S1;
    933     llvm::raw_string_ostream O1(S1);
    934     getCXXABI().getMangleContext().mangleTypeName(
    935         QualType(E1.first->getTypeForDecl(), 0), O1);
    936     O1.flush();
    937 
    938     std::string S2;
    939     llvm::raw_string_ostream O2(S2);
    940     getCXXABI().getMangleContext().mangleTypeName(
    941         QualType(E2.first->getTypeForDecl(), 0), O2);
    942     O2.flush();
    943 
    944     if (S1 < S2)
    945       return true;
    946     if (S1 != S2)
    947       return false;
    948 
    949     return E1.second < E2.second;
    950   });
    951 
    952   llvm::NamedMDNode *BitsetsMD =
    953       getModule().getOrInsertNamedMetadata("llvm.bitsets");
    954   for (auto BitsetEntry : BitsetEntries)
    955     CreateVTableBitSetEntry(BitsetsMD, VTable,
    956                             PointerWidth * BitsetEntry.second,
    957                             BitsetEntry.first);
    958 }
    959