1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include <algorithm> 27 #include <cstdio> 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 34 35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 36 const ThunkInfo &Thunk) { 37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 38 39 // Compute the mangled name. 40 SmallString<256> Name; 41 llvm::raw_svector_ostream Out(Name); 42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 44 Thunk.This, Out); 45 else 46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 47 48 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 49 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 50 /*DontDefer=*/true, /*IsThunk=*/true); 51 } 52 53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 54 const ThunkInfo &Thunk, llvm::Function *Fn) { 55 CGM.setGlobalVisibility(Fn, MD); 56 } 57 58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 59 llvm::Function *ThunkFn, bool ForVTable, 60 GlobalDecl GD) { 61 CGM.setFunctionLinkage(GD, ThunkFn); 62 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 63 !Thunk.Return.isEmpty()); 64 65 // Set the right visibility. 66 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 67 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 68 69 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 70 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 71 } 72 73 #ifndef NDEBUG 74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 75 const ABIArgInfo &infoR, CanQualType typeR) { 76 return (infoL.getKind() == infoR.getKind() && 77 (typeL == typeR || 78 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 79 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 80 } 81 #endif 82 83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 84 QualType ResultType, RValue RV, 85 const ThunkInfo &Thunk) { 86 // Emit the return adjustment. 87 bool NullCheckValue = !ResultType->isReferenceType(); 88 89 llvm::BasicBlock *AdjustNull = nullptr; 90 llvm::BasicBlock *AdjustNotNull = nullptr; 91 llvm::BasicBlock *AdjustEnd = nullptr; 92 93 llvm::Value *ReturnValue = RV.getScalarVal(); 94 95 if (NullCheckValue) { 96 AdjustNull = CGF.createBasicBlock("adjust.null"); 97 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 98 AdjustEnd = CGF.createBasicBlock("adjust.end"); 99 100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 101 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 102 CGF.EmitBlock(AdjustNotNull); 103 } 104 105 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 106 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 107 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 108 Address(ReturnValue, ClassAlign), 109 Thunk.Return); 110 111 if (NullCheckValue) { 112 CGF.Builder.CreateBr(AdjustEnd); 113 CGF.EmitBlock(AdjustNull); 114 CGF.Builder.CreateBr(AdjustEnd); 115 CGF.EmitBlock(AdjustEnd); 116 117 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 118 PHI->addIncoming(ReturnValue, AdjustNotNull); 119 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 120 AdjustNull); 121 ReturnValue = PHI; 122 } 123 124 return RValue::get(ReturnValue); 125 } 126 127 // This function does roughly the same thing as GenerateThunk, but in a 128 // very different way, so that va_start and va_end work correctly. 129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 130 // a function, and that there is an alloca built in the entry block 131 // for all accesses to "this". 132 // FIXME: This function assumes there is only one "ret" statement per function. 133 // FIXME: Cloning isn't correct in the presence of indirect goto! 134 // FIXME: This implementation of thunks bloats codesize by duplicating the 135 // function definition. There are alternatives: 136 // 1. Add some sort of stub support to LLVM for cases where we can 137 // do a this adjustment, then a sibcall. 138 // 2. We could transform the definition to take a va_list instead of an 139 // actual variable argument list, then have the thunks (including a 140 // no-op thunk for the regular definition) call va_start/va_end. 141 // There's a bit of per-call overhead for this solution, but it's 142 // better for codesize if the definition is long. 143 llvm::Function * 144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 145 const CGFunctionInfo &FnInfo, 146 GlobalDecl GD, const ThunkInfo &Thunk) { 147 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 148 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 149 QualType ResultType = FPT->getReturnType(); 150 151 // Get the original function 152 assert(FnInfo.isVariadic()); 153 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 154 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 155 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 156 157 // Clone to thunk. 158 llvm::ValueToValueMapTy VMap; 159 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap, 160 /*ModuleLevelChanges=*/false); 161 CGM.getModule().getFunctionList().push_back(NewFn); 162 Fn->replaceAllUsesWith(NewFn); 163 NewFn->takeName(Fn); 164 Fn->eraseFromParent(); 165 Fn = NewFn; 166 167 // "Initialize" CGF (minimally). 168 CurFn = Fn; 169 170 // Get the "this" value 171 llvm::Function::arg_iterator AI = Fn->arg_begin(); 172 if (CGM.ReturnTypeUsesSRet(FnInfo)) 173 ++AI; 174 175 // Find the first store of "this", which will be to the alloca associated 176 // with "this". 177 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 178 llvm::BasicBlock *EntryBB = &Fn->front(); 179 llvm::BasicBlock::iterator ThisStore = 180 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 181 return isa<llvm::StoreInst>(I) && 182 I.getOperand(0) == ThisPtr.getPointer(); 183 }); 184 assert(ThisStore != EntryBB->end() && 185 "Store of this should be in entry block?"); 186 // Adjust "this", if necessary. 187 Builder.SetInsertPoint(&*ThisStore); 188 llvm::Value *AdjustedThisPtr = 189 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 190 ThisStore->setOperand(0, AdjustedThisPtr); 191 192 if (!Thunk.Return.isEmpty()) { 193 // Fix up the returned value, if necessary. 194 for (llvm::BasicBlock &BB : *Fn) { 195 llvm::Instruction *T = BB.getTerminator(); 196 if (isa<llvm::ReturnInst>(T)) { 197 RValue RV = RValue::get(T->getOperand(0)); 198 T->eraseFromParent(); 199 Builder.SetInsertPoint(&BB); 200 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 201 Builder.CreateRet(RV.getScalarVal()); 202 break; 203 } 204 } 205 } 206 207 return Fn; 208 } 209 210 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 211 const CGFunctionInfo &FnInfo) { 212 assert(!CurGD.getDecl() && "CurGD was already set!"); 213 CurGD = GD; 214 CurFuncIsThunk = true; 215 216 // Build FunctionArgs. 217 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 218 QualType ThisType = MD->getThisType(getContext()); 219 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 220 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 221 ? ThisType 222 : CGM.getCXXABI().hasMostDerivedReturn(GD) 223 ? CGM.getContext().VoidPtrTy 224 : FPT->getReturnType(); 225 FunctionArgList FunctionArgs; 226 227 // Create the implicit 'this' parameter declaration. 228 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 229 230 // Add the rest of the parameters. 231 FunctionArgs.append(MD->param_begin(), MD->param_end()); 232 233 if (isa<CXXDestructorDecl>(MD)) 234 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 235 236 // Start defining the function. 237 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 238 MD->getLocation(), MD->getLocation()); 239 240 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 241 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 242 CXXThisValue = CXXABIThisValue; 243 CurCodeDecl = MD; 244 CurFuncDecl = MD; 245 } 246 247 void CodeGenFunction::FinishThunk() { 248 // Clear these to restore the invariants expected by 249 // StartFunction/FinishFunction. 250 CurCodeDecl = nullptr; 251 CurFuncDecl = nullptr; 252 253 FinishFunction(); 254 } 255 256 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee, 257 const ThunkInfo *Thunk) { 258 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 259 "Please use a new CGF for this thunk"); 260 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 261 262 // Adjust the 'this' pointer if necessary 263 llvm::Value *AdjustedThisPtr = 264 Thunk ? CGM.getCXXABI().performThisAdjustment( 265 *this, LoadCXXThisAddress(), Thunk->This) 266 : LoadCXXThis(); 267 268 if (CurFnInfo->usesInAlloca()) { 269 // We don't handle return adjusting thunks, because they require us to call 270 // the copy constructor. For now, fall through and pretend the return 271 // adjustment was empty so we don't crash. 272 if (Thunk && !Thunk->Return.isEmpty()) { 273 CGM.ErrorUnsupported( 274 MD, "non-trivial argument copy for return-adjusting thunk"); 275 } 276 EmitMustTailThunk(MD, AdjustedThisPtr, Callee); 277 return; 278 } 279 280 // Start building CallArgs. 281 CallArgList CallArgs; 282 QualType ThisType = MD->getThisType(getContext()); 283 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 284 285 if (isa<CXXDestructorDecl>(MD)) 286 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 287 288 // Add the rest of the arguments. 289 for (const ParmVarDecl *PD : MD->params()) 290 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart()); 291 292 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 293 294 #ifndef NDEBUG 295 const CGFunctionInfo &CallFnInfo = 296 CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, 297 RequiredArgs::forPrototypePlus(FPT, 1)); 298 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 299 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 300 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 301 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 302 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 303 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 304 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 305 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 306 assert(similar(CallFnInfo.arg_begin()[i].info, 307 CallFnInfo.arg_begin()[i].type, 308 CurFnInfo->arg_begin()[i].info, 309 CurFnInfo->arg_begin()[i].type)); 310 #endif 311 312 // Determine whether we have a return value slot to use. 313 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 314 ? ThisType 315 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 316 ? CGM.getContext().VoidPtrTy 317 : FPT->getReturnType(); 318 ReturnValueSlot Slot; 319 if (!ResultType->isVoidType() && 320 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 321 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 322 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 323 324 // Now emit our call. 325 llvm::Instruction *CallOrInvoke; 326 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke); 327 328 // Consider return adjustment if we have ThunkInfo. 329 if (Thunk && !Thunk->Return.isEmpty()) 330 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 331 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 332 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 333 334 // Emit return. 335 if (!ResultType->isVoidType() && Slot.isNull()) 336 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 337 338 // Disable the final ARC autorelease. 339 AutoreleaseResult = false; 340 341 FinishThunk(); 342 } 343 344 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 345 llvm::Value *AdjustedThisPtr, 346 llvm::Value *Callee) { 347 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 348 // to translate AST arguments into LLVM IR arguments. For thunks, we know 349 // that the caller prototype more or less matches the callee prototype with 350 // the exception of 'this'. 351 SmallVector<llvm::Value *, 8> Args; 352 for (llvm::Argument &A : CurFn->args()) 353 Args.push_back(&A); 354 355 // Set the adjusted 'this' pointer. 356 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 357 if (ThisAI.isDirect()) { 358 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 359 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 360 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 361 if (ThisType != AdjustedThisPtr->getType()) 362 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 363 Args[ThisArgNo] = AdjustedThisPtr; 364 } else { 365 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 366 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 367 llvm::Type *ThisType = ThisAddr.getElementType(); 368 if (ThisType != AdjustedThisPtr->getType()) 369 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 370 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 371 } 372 373 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 374 // don't actually want to run them. 375 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 376 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 377 378 // Apply the standard set of call attributes. 379 unsigned CallingConv; 380 CodeGen::AttributeListType AttributeList; 381 CGM.ConstructAttributeList(*CurFnInfo, MD, AttributeList, CallingConv, 382 /*AttrOnCallSite=*/true); 383 llvm::AttributeSet Attrs = 384 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 385 Call->setAttributes(Attrs); 386 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 387 388 if (Call->getType()->isVoidTy()) 389 Builder.CreateRetVoid(); 390 else 391 Builder.CreateRet(Call); 392 393 // Finish the function to maintain CodeGenFunction invariants. 394 // FIXME: Don't emit unreachable code. 395 EmitBlock(createBasicBlock()); 396 FinishFunction(); 397 } 398 399 void CodeGenFunction::generateThunk(llvm::Function *Fn, 400 const CGFunctionInfo &FnInfo, 401 GlobalDecl GD, const ThunkInfo &Thunk) { 402 StartThunk(Fn, GD, FnInfo); 403 404 // Get our callee. 405 llvm::Type *Ty = 406 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 407 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 408 409 // Make the call and return the result. 410 EmitCallAndReturnForThunk(Callee, &Thunk); 411 } 412 413 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 414 bool ForVTable) { 415 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 416 417 // FIXME: re-use FnInfo in this computation. 418 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 419 llvm::GlobalValue *Entry; 420 421 // Strip off a bitcast if we got one back. 422 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 423 assert(CE->getOpcode() == llvm::Instruction::BitCast); 424 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 425 } else { 426 Entry = cast<llvm::GlobalValue>(C); 427 } 428 429 // There's already a declaration with the same name, check if it has the same 430 // type or if we need to replace it. 431 if (Entry->getType()->getElementType() != 432 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 433 llvm::GlobalValue *OldThunkFn = Entry; 434 435 // If the types mismatch then we have to rewrite the definition. 436 assert(OldThunkFn->isDeclaration() && 437 "Shouldn't replace non-declaration"); 438 439 // Remove the name from the old thunk function and get a new thunk. 440 OldThunkFn->setName(StringRef()); 441 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 442 443 // If needed, replace the old thunk with a bitcast. 444 if (!OldThunkFn->use_empty()) { 445 llvm::Constant *NewPtrForOldDecl = 446 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 447 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 448 } 449 450 // Remove the old thunk. 451 OldThunkFn->eraseFromParent(); 452 } 453 454 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 455 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 456 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 457 458 if (!ThunkFn->isDeclaration()) { 459 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 460 // There is already a thunk emitted for this function, do nothing. 461 return; 462 } 463 464 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 465 return; 466 } 467 468 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 469 470 if (ThunkFn->isVarArg()) { 471 // Varargs thunks are special; we can't just generate a call because 472 // we can't copy the varargs. Our implementation is rather 473 // expensive/sucky at the moment, so don't generate the thunk unless 474 // we have to. 475 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 476 if (UseAvailableExternallyLinkage) 477 return; 478 ThunkFn = 479 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 480 } else { 481 // Normal thunk body generation. 482 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 483 } 484 485 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 486 } 487 488 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 489 const ThunkInfo &Thunk) { 490 // If the ABI has key functions, only the TU with the key function should emit 491 // the thunk. However, we can allow inlining of thunks if we emit them with 492 // available_externally linkage together with vtables when optimizations are 493 // enabled. 494 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 495 !CGM.getCodeGenOpts().OptimizationLevel) 496 return; 497 498 // We can't emit thunks for member functions with incomplete types. 499 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 500 if (!CGM.getTypes().isFuncTypeConvertible( 501 MD->getType()->castAs<FunctionType>())) 502 return; 503 504 emitThunk(GD, Thunk, /*ForVTable=*/true); 505 } 506 507 void CodeGenVTables::EmitThunks(GlobalDecl GD) 508 { 509 const CXXMethodDecl *MD = 510 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 511 512 // We don't need to generate thunks for the base destructor. 513 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 514 return; 515 516 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 517 VTContext->getThunkInfo(GD); 518 519 if (!ThunkInfoVector) 520 return; 521 522 for (const ThunkInfo& Thunk : *ThunkInfoVector) 523 emitThunk(GD, Thunk, /*ForVTable=*/false); 524 } 525 526 llvm::Constant *CodeGenVTables::CreateVTableInitializer( 527 const CXXRecordDecl *RD, const VTableComponent *Components, 528 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks, 529 unsigned NumVTableThunks, llvm::Constant *RTTI) { 530 SmallVector<llvm::Constant *, 64> Inits; 531 532 llvm::Type *Int8PtrTy = CGM.Int8PtrTy; 533 534 llvm::Type *PtrDiffTy = 535 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); 536 537 unsigned NextVTableThunkIndex = 0; 538 539 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr; 540 541 for (unsigned I = 0; I != NumComponents; ++I) { 542 VTableComponent Component = Components[I]; 543 544 llvm::Constant *Init = nullptr; 545 546 switch (Component.getKind()) { 547 case VTableComponent::CK_VCallOffset: 548 Init = llvm::ConstantInt::get(PtrDiffTy, 549 Component.getVCallOffset().getQuantity()); 550 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 551 break; 552 case VTableComponent::CK_VBaseOffset: 553 Init = llvm::ConstantInt::get(PtrDiffTy, 554 Component.getVBaseOffset().getQuantity()); 555 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 556 break; 557 case VTableComponent::CK_OffsetToTop: 558 Init = llvm::ConstantInt::get(PtrDiffTy, 559 Component.getOffsetToTop().getQuantity()); 560 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy); 561 break; 562 case VTableComponent::CK_RTTI: 563 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy); 564 break; 565 case VTableComponent::CK_FunctionPointer: 566 case VTableComponent::CK_CompleteDtorPointer: 567 case VTableComponent::CK_DeletingDtorPointer: { 568 GlobalDecl GD; 569 570 // Get the right global decl. 571 switch (Component.getKind()) { 572 default: 573 llvm_unreachable("Unexpected vtable component kind"); 574 case VTableComponent::CK_FunctionPointer: 575 GD = Component.getFunctionDecl(); 576 break; 577 case VTableComponent::CK_CompleteDtorPointer: 578 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 579 break; 580 case VTableComponent::CK_DeletingDtorPointer: 581 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 582 break; 583 } 584 585 if (CGM.getLangOpts().CUDA) { 586 // Emit NULL for methods we can't codegen on this 587 // side. Otherwise we'd end up with vtable with unresolved 588 // references. 589 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 590 // OK on device side: functions w/ __device__ attribute 591 // OK on host side: anything except __device__-only functions. 592 bool CanEmitMethod = CGM.getLangOpts().CUDAIsDevice 593 ? MD->hasAttr<CUDADeviceAttr>() 594 : (MD->hasAttr<CUDAHostAttr>() || 595 !MD->hasAttr<CUDADeviceAttr>()); 596 if (!CanEmitMethod) { 597 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 598 break; 599 } 600 // Method is acceptable, continue processing as usual. 601 } 602 603 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 604 // We have a pure virtual member function. 605 if (!PureVirtualFn) { 606 llvm::FunctionType *Ty = 607 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 608 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName(); 609 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName); 610 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn, 611 CGM.Int8PtrTy); 612 } 613 Init = PureVirtualFn; 614 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 615 if (!DeletedVirtualFn) { 616 llvm::FunctionType *Ty = 617 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 618 StringRef DeletedCallName = 619 CGM.getCXXABI().GetDeletedVirtualCallName(); 620 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName); 621 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn, 622 CGM.Int8PtrTy); 623 } 624 Init = DeletedVirtualFn; 625 } else { 626 // Check if we should use a thunk. 627 if (NextVTableThunkIndex < NumVTableThunks && 628 VTableThunks[NextVTableThunkIndex].first == I) { 629 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second; 630 631 maybeEmitThunkForVTable(GD, Thunk); 632 Init = CGM.GetAddrOfThunk(GD, Thunk); 633 634 NextVTableThunkIndex++; 635 } else { 636 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 637 638 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 639 } 640 641 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy); 642 } 643 break; 644 } 645 646 case VTableComponent::CK_UnusedFunctionPointer: 647 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy); 648 break; 649 }; 650 651 Inits.push_back(Init); 652 } 653 654 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents); 655 return llvm::ConstantArray::get(ArrayType, Inits); 656 } 657 658 llvm::GlobalVariable * 659 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 660 const BaseSubobject &Base, 661 bool BaseIsVirtual, 662 llvm::GlobalVariable::LinkageTypes Linkage, 663 VTableAddressPointsMapTy& AddressPoints) { 664 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 665 DI->completeClassData(Base.getBase()); 666 667 std::unique_ptr<VTableLayout> VTLayout( 668 getItaniumVTableContext().createConstructionVTableLayout( 669 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 670 671 // Add the address points. 672 AddressPoints = VTLayout->getAddressPoints(); 673 674 // Get the mangled construction vtable name. 675 SmallString<256> OutName; 676 llvm::raw_svector_ostream Out(OutName); 677 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 678 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 679 Base.getBase(), Out); 680 StringRef Name = OutName.str(); 681 682 llvm::ArrayType *ArrayType = 683 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents()); 684 685 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 686 // guarantee that they actually will be available externally. Instead, when 687 // emitting an available_externally VTT, we provide references to an internal 688 // linkage construction vtable. The ABI only requires complete-object vtables 689 // to be the same for all instances of a type, not construction vtables. 690 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 691 Linkage = llvm::GlobalVariable::InternalLinkage; 692 693 // Create the variable that will hold the construction vtable. 694 llvm::GlobalVariable *VTable = 695 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 696 CGM.setGlobalVisibility(VTable, RD); 697 698 // V-tables are always unnamed_addr. 699 VTable->setUnnamedAddr(true); 700 701 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 702 CGM.getContext().getTagDeclType(Base.getBase())); 703 704 // Create and set the initializer. 705 llvm::Constant *Init = CreateVTableInitializer( 706 Base.getBase(), VTLayout->vtable_component_begin(), 707 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(), 708 VTLayout->getNumVTableThunks(), RTTI); 709 VTable->setInitializer(Init); 710 711 CGM.EmitVTableBitSetEntries(VTable, *VTLayout.get()); 712 713 return VTable; 714 } 715 716 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 717 const CXXRecordDecl *RD) { 718 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 719 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 720 } 721 722 /// Compute the required linkage of the v-table for the given class. 723 /// 724 /// Note that we only call this at the end of the translation unit. 725 llvm::GlobalVariable::LinkageTypes 726 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 727 if (!RD->isExternallyVisible()) 728 return llvm::GlobalVariable::InternalLinkage; 729 730 // We're at the end of the translation unit, so the current key 731 // function is fully correct. 732 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 733 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 734 // If this class has a key function, use that to determine the 735 // linkage of the vtable. 736 const FunctionDecl *def = nullptr; 737 if (keyFunction->hasBody(def)) 738 keyFunction = cast<CXXMethodDecl>(def); 739 740 switch (keyFunction->getTemplateSpecializationKind()) { 741 case TSK_Undeclared: 742 case TSK_ExplicitSpecialization: 743 assert((def || CodeGenOpts.OptimizationLevel > 0) && 744 "Shouldn't query vtable linkage without key function or " 745 "optimizations"); 746 if (!def && CodeGenOpts.OptimizationLevel > 0) 747 return llvm::GlobalVariable::AvailableExternallyLinkage; 748 749 if (keyFunction->isInlined()) 750 return !Context.getLangOpts().AppleKext ? 751 llvm::GlobalVariable::LinkOnceODRLinkage : 752 llvm::Function::InternalLinkage; 753 754 return llvm::GlobalVariable::ExternalLinkage; 755 756 case TSK_ImplicitInstantiation: 757 return !Context.getLangOpts().AppleKext ? 758 llvm::GlobalVariable::LinkOnceODRLinkage : 759 llvm::Function::InternalLinkage; 760 761 case TSK_ExplicitInstantiationDefinition: 762 return !Context.getLangOpts().AppleKext ? 763 llvm::GlobalVariable::WeakODRLinkage : 764 llvm::Function::InternalLinkage; 765 766 case TSK_ExplicitInstantiationDeclaration: 767 llvm_unreachable("Should not have been asked to emit this"); 768 } 769 } 770 771 // -fapple-kext mode does not support weak linkage, so we must use 772 // internal linkage. 773 if (Context.getLangOpts().AppleKext) 774 return llvm::Function::InternalLinkage; 775 776 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 777 llvm::GlobalValue::LinkOnceODRLinkage; 778 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 779 llvm::GlobalValue::WeakODRLinkage; 780 if (RD->hasAttr<DLLExportAttr>()) { 781 // Cannot discard exported vtables. 782 DiscardableODRLinkage = NonDiscardableODRLinkage; 783 } else if (RD->hasAttr<DLLImportAttr>()) { 784 // Imported vtables are available externally. 785 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 786 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 787 } 788 789 switch (RD->getTemplateSpecializationKind()) { 790 case TSK_Undeclared: 791 case TSK_ExplicitSpecialization: 792 case TSK_ImplicitInstantiation: 793 return DiscardableODRLinkage; 794 795 case TSK_ExplicitInstantiationDeclaration: 796 return shouldEmitAvailableExternallyVTable(*this, RD) 797 ? llvm::GlobalVariable::AvailableExternallyLinkage 798 : llvm::GlobalVariable::ExternalLinkage; 799 800 case TSK_ExplicitInstantiationDefinition: 801 return NonDiscardableODRLinkage; 802 } 803 804 llvm_unreachable("Invalid TemplateSpecializationKind!"); 805 } 806 807 /// This is a callback from Sema to tell us that that a particular v-table is 808 /// required to be emitted in this translation unit. 809 /// 810 /// This is only called for vtables that _must_ be emitted (mainly due to key 811 /// functions). For weak vtables, CodeGen tracks when they are needed and 812 /// emits them as-needed. 813 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 814 VTables.GenerateClassData(theClass); 815 } 816 817 void 818 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 819 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 820 DI->completeClassData(RD); 821 822 if (RD->getNumVBases()) 823 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 824 825 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 826 } 827 828 /// At this point in the translation unit, does it appear that can we 829 /// rely on the vtable being defined elsewhere in the program? 830 /// 831 /// The response is really only definitive when called at the end of 832 /// the translation unit. 833 /// 834 /// The only semantic restriction here is that the object file should 835 /// not contain a v-table definition when that v-table is defined 836 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 837 /// v-tables when unnecessary. 838 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 839 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 840 841 // If we have an explicit instantiation declaration (and not a 842 // definition), the v-table is defined elsewhere. 843 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 844 if (TSK == TSK_ExplicitInstantiationDeclaration) 845 return true; 846 847 // Otherwise, if the class is an instantiated template, the 848 // v-table must be defined here. 849 if (TSK == TSK_ImplicitInstantiation || 850 TSK == TSK_ExplicitInstantiationDefinition) 851 return false; 852 853 // Otherwise, if the class doesn't have a key function (possibly 854 // anymore), the v-table must be defined here. 855 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 856 if (!keyFunction) 857 return false; 858 859 // Otherwise, if we don't have a definition of the key function, the 860 // v-table must be defined somewhere else. 861 return !keyFunction->hasBody(); 862 } 863 864 /// Given that we're currently at the end of the translation unit, and 865 /// we've emitted a reference to the v-table for this class, should 866 /// we define that v-table? 867 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 868 const CXXRecordDecl *RD) { 869 // If vtable is internal then it has to be done. 870 if (!CGM.getVTables().isVTableExternal(RD)) 871 return true; 872 873 // If it's external then maybe we will need it as available_externally. 874 return shouldEmitAvailableExternallyVTable(CGM, RD); 875 } 876 877 /// Given that at some point we emitted a reference to one or more 878 /// v-tables, and that we are now at the end of the translation unit, 879 /// decide whether we should emit them. 880 void CodeGenModule::EmitDeferredVTables() { 881 #ifndef NDEBUG 882 // Remember the size of DeferredVTables, because we're going to assume 883 // that this entire operation doesn't modify it. 884 size_t savedSize = DeferredVTables.size(); 885 #endif 886 887 for (const CXXRecordDecl *RD : DeferredVTables) 888 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 889 VTables.GenerateClassData(RD); 890 891 assert(savedSize == DeferredVTables.size() && 892 "deferred extra v-tables during v-table emission?"); 893 DeferredVTables.clear(); 894 } 895 896 bool CodeGenModule::IsCFIBlacklistedRecord(const CXXRecordDecl *RD) { 897 if (RD->hasAttr<UuidAttr>() && 898 getContext().getSanitizerBlacklist().isBlacklistedType("attr:uuid")) 899 return true; 900 901 return getContext().getSanitizerBlacklist().isBlacklistedType( 902 RD->getQualifiedNameAsString()); 903 } 904 905 void CodeGenModule::EmitVTableBitSetEntries(llvm::GlobalVariable *VTable, 906 const VTableLayout &VTLayout) { 907 if (!LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 908 !LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 909 !LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 910 !LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 911 return; 912 913 CharUnits PointerWidth = 914 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 915 916 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 917 std::vector<BSEntry> BitsetEntries; 918 // Create a bit set entry for each address point. 919 for (auto &&AP : VTLayout.getAddressPoints()) { 920 if (IsCFIBlacklistedRecord(AP.first.getBase())) 921 continue; 922 923 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second)); 924 } 925 926 // Sort the bit set entries for determinism. 927 std::sort(BitsetEntries.begin(), BitsetEntries.end(), 928 [this](const BSEntry &E1, const BSEntry &E2) { 929 if (&E1 == &E2) 930 return false; 931 932 std::string S1; 933 llvm::raw_string_ostream O1(S1); 934 getCXXABI().getMangleContext().mangleTypeName( 935 QualType(E1.first->getTypeForDecl(), 0), O1); 936 O1.flush(); 937 938 std::string S2; 939 llvm::raw_string_ostream O2(S2); 940 getCXXABI().getMangleContext().mangleTypeName( 941 QualType(E2.first->getTypeForDecl(), 0), O2); 942 O2.flush(); 943 944 if (S1 < S2) 945 return true; 946 if (S1 != S2) 947 return false; 948 949 return E1.second < E2.second; 950 }); 951 952 llvm::NamedMDNode *BitsetsMD = 953 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 954 for (auto BitsetEntry : BitsetEntries) 955 CreateVTableBitSetEntry(BitsetsMD, VTable, 956 PointerWidth * BitsetEntry.second, 957 BitsetEntry.first); 958 } 959