Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGBlocks.h"
     16 #include "CGCleanup.h"
     17 #include "CGCUDARuntime.h"
     18 #include "CGCXXABI.h"
     19 #include "CGDebugInfo.h"
     20 #include "CGOpenMPRuntime.h"
     21 #include "CodeGenModule.h"
     22 #include "CodeGenPGO.h"
     23 #include "TargetInfo.h"
     24 #include "clang/AST/ASTContext.h"
     25 #include "clang/AST/Decl.h"
     26 #include "clang/AST/DeclCXX.h"
     27 #include "clang/AST/StmtCXX.h"
     28 #include "clang/Basic/Builtins.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/CodeGen/CGFunctionInfo.h"
     31 #include "clang/Frontend/CodeGenOptions.h"
     32 #include "clang/Sema/SemaDiagnostic.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/IR/MDBuilder.h"
     36 #include "llvm/IR/Operator.h"
     37 using namespace clang;
     38 using namespace CodeGen;
     39 
     40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
     41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
     42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
     43               CGBuilderInserterTy(this)),
     44       CurFn(nullptr), ReturnValue(Address::invalid()),
     45       CapturedStmtInfo(nullptr),
     46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
     47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
     48       IsOutlinedSEHHelper(false),
     49       BlockInfo(nullptr), BlockPointer(nullptr),
     50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
     51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
     52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
     53       DebugInfo(CGM.getModuleDebugInfo()),
     54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
     55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
     56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
     57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
     58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
     59       CXXStructorImplicitParamDecl(nullptr),
     60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
     61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
     62       TerminateHandler(nullptr), TrapBB(nullptr) {
     63   if (!suppressNewContext)
     64     CGM.getCXXABI().getMangleContext().startNewFunction();
     65 
     66   llvm::FastMathFlags FMF;
     67   if (CGM.getLangOpts().FastMath)
     68     FMF.setUnsafeAlgebra();
     69   if (CGM.getLangOpts().FiniteMathOnly) {
     70     FMF.setNoNaNs();
     71     FMF.setNoInfs();
     72   }
     73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
     74     FMF.setNoNaNs();
     75   }
     76   if (CGM.getCodeGenOpts().NoSignedZeros) {
     77     FMF.setNoSignedZeros();
     78   }
     79   if (CGM.getCodeGenOpts().ReciprocalMath) {
     80     FMF.setAllowReciprocal();
     81   }
     82   Builder.SetFastMathFlags(FMF);
     83 }
     84 
     85 CodeGenFunction::~CodeGenFunction() {
     86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
     87 
     88   // If there are any unclaimed block infos, go ahead and destroy them
     89   // now.  This can happen if IR-gen gets clever and skips evaluating
     90   // something.
     91   if (FirstBlockInfo)
     92     destroyBlockInfos(FirstBlockInfo);
     93 
     94   if (getLangOpts().OpenMP) {
     95     CGM.getOpenMPRuntime().functionFinished(*this);
     96   }
     97 }
     98 
     99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
    100                                                      AlignmentSource *Source) {
    101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
    102                                  /*forPointee*/ true);
    103 }
    104 
    105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
    106                                                    AlignmentSource *Source,
    107                                                    bool forPointeeType) {
    108   // Honor alignment typedef attributes even on incomplete types.
    109   // We also honor them straight for C++ class types, even as pointees;
    110   // there's an expressivity gap here.
    111   if (auto TT = T->getAs<TypedefType>()) {
    112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
    113       if (Source) *Source = AlignmentSource::AttributedType;
    114       return getContext().toCharUnitsFromBits(Align);
    115     }
    116   }
    117 
    118   if (Source) *Source = AlignmentSource::Type;
    119 
    120   CharUnits Alignment;
    121   if (T->isIncompleteType()) {
    122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
    123   } else {
    124     // For C++ class pointees, we don't know whether we're pointing at a
    125     // base or a complete object, so we generally need to use the
    126     // non-virtual alignment.
    127     const CXXRecordDecl *RD;
    128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
    129       Alignment = CGM.getClassPointerAlignment(RD);
    130     } else {
    131       Alignment = getContext().getTypeAlignInChars(T);
    132     }
    133 
    134     // Cap to the global maximum type alignment unless the alignment
    135     // was somehow explicit on the type.
    136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
    137       if (Alignment.getQuantity() > MaxAlign &&
    138           !getContext().isAlignmentRequired(T))
    139         Alignment = CharUnits::fromQuantity(MaxAlign);
    140     }
    141   }
    142   return Alignment;
    143 }
    144 
    145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
    146   AlignmentSource AlignSource;
    147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
    148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
    149                           CGM.getTBAAInfo(T));
    150 }
    151 
    152 /// Given a value of type T* that may not be to a complete object,
    153 /// construct an l-value with the natural pointee alignment of T.
    154 LValue
    155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
    156   AlignmentSource AlignSource;
    157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
    158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
    159 }
    160 
    161 
    162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
    163   return CGM.getTypes().ConvertTypeForMem(T);
    164 }
    165 
    166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
    167   return CGM.getTypes().ConvertType(T);
    168 }
    169 
    170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
    171   type = type.getCanonicalType();
    172   while (true) {
    173     switch (type->getTypeClass()) {
    174 #define TYPE(name, parent)
    175 #define ABSTRACT_TYPE(name, parent)
    176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
    177 #define DEPENDENT_TYPE(name, parent) case Type::name:
    178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
    179 #include "clang/AST/TypeNodes.def"
    180       llvm_unreachable("non-canonical or dependent type in IR-generation");
    181 
    182     case Type::Auto:
    183       llvm_unreachable("undeduced auto type in IR-generation");
    184 
    185     // Various scalar types.
    186     case Type::Builtin:
    187     case Type::Pointer:
    188     case Type::BlockPointer:
    189     case Type::LValueReference:
    190     case Type::RValueReference:
    191     case Type::MemberPointer:
    192     case Type::Vector:
    193     case Type::ExtVector:
    194     case Type::FunctionProto:
    195     case Type::FunctionNoProto:
    196     case Type::Enum:
    197     case Type::ObjCObjectPointer:
    198       return TEK_Scalar;
    199 
    200     // Complexes.
    201     case Type::Complex:
    202       return TEK_Complex;
    203 
    204     // Arrays, records, and Objective-C objects.
    205     case Type::ConstantArray:
    206     case Type::IncompleteArray:
    207     case Type::VariableArray:
    208     case Type::Record:
    209     case Type::ObjCObject:
    210     case Type::ObjCInterface:
    211       return TEK_Aggregate;
    212 
    213     // We operate on atomic values according to their underlying type.
    214     case Type::Atomic:
    215       type = cast<AtomicType>(type)->getValueType();
    216       continue;
    217     }
    218     llvm_unreachable("unknown type kind!");
    219   }
    220 }
    221 
    222 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
    223   // For cleanliness, we try to avoid emitting the return block for
    224   // simple cases.
    225   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    226 
    227   if (CurBB) {
    228     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    229 
    230     // We have a valid insert point, reuse it if it is empty or there are no
    231     // explicit jumps to the return block.
    232     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    233       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    234       delete ReturnBlock.getBlock();
    235     } else
    236       EmitBlock(ReturnBlock.getBlock());
    237     return llvm::DebugLoc();
    238   }
    239 
    240   // Otherwise, if the return block is the target of a single direct
    241   // branch then we can just put the code in that block instead. This
    242   // cleans up functions which started with a unified return block.
    243   if (ReturnBlock.getBlock()->hasOneUse()) {
    244     llvm::BranchInst *BI =
    245       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
    246     if (BI && BI->isUnconditional() &&
    247         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    248       // Record/return the DebugLoc of the simple 'return' expression to be used
    249       // later by the actual 'ret' instruction.
    250       llvm::DebugLoc Loc = BI->getDebugLoc();
    251       Builder.SetInsertPoint(BI->getParent());
    252       BI->eraseFromParent();
    253       delete ReturnBlock.getBlock();
    254       return Loc;
    255     }
    256   }
    257 
    258   // FIXME: We are at an unreachable point, there is no reason to emit the block
    259   // unless it has uses. However, we still need a place to put the debug
    260   // region.end for now.
    261 
    262   EmitBlock(ReturnBlock.getBlock());
    263   return llvm::DebugLoc();
    264 }
    265 
    266 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    267   if (!BB) return;
    268   if (!BB->use_empty())
    269     return CGF.CurFn->getBasicBlockList().push_back(BB);
    270   delete BB;
    271 }
    272 
    273 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    274   assert(BreakContinueStack.empty() &&
    275          "mismatched push/pop in break/continue stack!");
    276 
    277   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
    278     && NumSimpleReturnExprs == NumReturnExprs
    279     && ReturnBlock.getBlock()->use_empty();
    280   // Usually the return expression is evaluated before the cleanup
    281   // code.  If the function contains only a simple return statement,
    282   // such as a constant, the location before the cleanup code becomes
    283   // the last useful breakpoint in the function, because the simple
    284   // return expression will be evaluated after the cleanup code. To be
    285   // safe, set the debug location for cleanup code to the location of
    286   // the return statement.  Otherwise the cleanup code should be at the
    287   // end of the function's lexical scope.
    288   //
    289   // If there are multiple branches to the return block, the branch
    290   // instructions will get the location of the return statements and
    291   // all will be fine.
    292   if (CGDebugInfo *DI = getDebugInfo()) {
    293     if (OnlySimpleReturnStmts)
    294       DI->EmitLocation(Builder, LastStopPoint);
    295     else
    296       DI->EmitLocation(Builder, EndLoc);
    297   }
    298 
    299   // Pop any cleanups that might have been associated with the
    300   // parameters.  Do this in whatever block we're currently in; it's
    301   // important to do this before we enter the return block or return
    302   // edges will be *really* confused.
    303   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
    304   bool HasOnlyLifetimeMarkers =
    305       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
    306   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
    307   if (HasCleanups) {
    308     // Make sure the line table doesn't jump back into the body for
    309     // the ret after it's been at EndLoc.
    310     if (CGDebugInfo *DI = getDebugInfo())
    311       if (OnlySimpleReturnStmts)
    312         DI->EmitLocation(Builder, EndLoc);
    313 
    314     PopCleanupBlocks(PrologueCleanupDepth);
    315   }
    316 
    317   // Emit function epilog (to return).
    318   llvm::DebugLoc Loc = EmitReturnBlock();
    319 
    320   if (ShouldInstrumentFunction())
    321     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    322 
    323   // Emit debug descriptor for function end.
    324   if (CGDebugInfo *DI = getDebugInfo())
    325     DI->EmitFunctionEnd(Builder);
    326 
    327   // Reset the debug location to that of the simple 'return' expression, if any
    328   // rather than that of the end of the function's scope '}'.
    329   ApplyDebugLocation AL(*this, Loc);
    330   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
    331   EmitEndEHSpec(CurCodeDecl);
    332 
    333   assert(EHStack.empty() &&
    334          "did not remove all scopes from cleanup stack!");
    335 
    336   // If someone did an indirect goto, emit the indirect goto block at the end of
    337   // the function.
    338   if (IndirectBranch) {
    339     EmitBlock(IndirectBranch->getParent());
    340     Builder.ClearInsertionPoint();
    341   }
    342 
    343   // If some of our locals escaped, insert a call to llvm.localescape in the
    344   // entry block.
    345   if (!EscapedLocals.empty()) {
    346     // Invert the map from local to index into a simple vector. There should be
    347     // no holes.
    348     SmallVector<llvm::Value *, 4> EscapeArgs;
    349     EscapeArgs.resize(EscapedLocals.size());
    350     for (auto &Pair : EscapedLocals)
    351       EscapeArgs[Pair.second] = Pair.first;
    352     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
    353         &CGM.getModule(), llvm::Intrinsic::localescape);
    354     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
    355   }
    356 
    357   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    358   llvm::Instruction *Ptr = AllocaInsertPt;
    359   AllocaInsertPt = nullptr;
    360   Ptr->eraseFromParent();
    361 
    362   // If someone took the address of a label but never did an indirect goto, we
    363   // made a zero entry PHI node, which is illegal, zap it now.
    364   if (IndirectBranch) {
    365     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    366     if (PN->getNumIncomingValues() == 0) {
    367       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    368       PN->eraseFromParent();
    369     }
    370   }
    371 
    372   EmitIfUsed(*this, EHResumeBlock);
    373   EmitIfUsed(*this, TerminateLandingPad);
    374   EmitIfUsed(*this, TerminateHandler);
    375   EmitIfUsed(*this, UnreachableBlock);
    376 
    377   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    378     EmitDeclMetadata();
    379 
    380   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
    381            I = DeferredReplacements.begin(),
    382            E = DeferredReplacements.end();
    383        I != E; ++I) {
    384     I->first->replaceAllUsesWith(I->second);
    385     I->first->eraseFromParent();
    386   }
    387 }
    388 
    389 /// ShouldInstrumentFunction - Return true if the current function should be
    390 /// instrumented with __cyg_profile_func_* calls
    391 bool CodeGenFunction::ShouldInstrumentFunction() {
    392   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    393     return false;
    394   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    395     return false;
    396   return true;
    397 }
    398 
    399 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    400 /// instrumentation function with the current function and the call site, if
    401 /// function instrumentation is enabled.
    402 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    403   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    404   llvm::PointerType *PointerTy = Int8PtrTy;
    405   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    406   llvm::FunctionType *FunctionTy =
    407     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    408 
    409   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    410   llvm::CallInst *CallSite = Builder.CreateCall(
    411     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    412     llvm::ConstantInt::get(Int32Ty, 0),
    413     "callsite");
    414 
    415   llvm::Value *args[] = {
    416     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    417     CallSite
    418   };
    419 
    420   EmitNounwindRuntimeCall(F, args);
    421 }
    422 
    423 void CodeGenFunction::EmitMCountInstrumentation() {
    424   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    425 
    426   llvm::Constant *MCountFn =
    427     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
    428   EmitNounwindRuntimeCall(MCountFn);
    429 }
    430 
    431 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
    432 // information in the program executable. The argument information stored
    433 // includes the argument name, its type, the address and access qualifiers used.
    434 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
    435                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
    436                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
    437                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
    438   // Create MDNodes that represent the kernel arg metadata.
    439   // Each MDNode is a list in the form of "key", N number of values which is
    440   // the same number of values as their are kernel arguments.
    441 
    442   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
    443 
    444   // MDNode for the kernel argument address space qualifiers.
    445   SmallVector<llvm::Metadata *, 8> addressQuals;
    446   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
    447 
    448   // MDNode for the kernel argument access qualifiers (images only).
    449   SmallVector<llvm::Metadata *, 8> accessQuals;
    450   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
    451 
    452   // MDNode for the kernel argument type names.
    453   SmallVector<llvm::Metadata *, 8> argTypeNames;
    454   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
    455 
    456   // MDNode for the kernel argument base type names.
    457   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
    458   argBaseTypeNames.push_back(
    459       llvm::MDString::get(Context, "kernel_arg_base_type"));
    460 
    461   // MDNode for the kernel argument type qualifiers.
    462   SmallVector<llvm::Metadata *, 8> argTypeQuals;
    463   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
    464 
    465   // MDNode for the kernel argument names.
    466   SmallVector<llvm::Metadata *, 8> argNames;
    467   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
    468 
    469   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    470     const ParmVarDecl *parm = FD->getParamDecl(i);
    471     QualType ty = parm->getType();
    472     std::string typeQuals;
    473 
    474     if (ty->isPointerType()) {
    475       QualType pointeeTy = ty->getPointeeType();
    476 
    477       // Get address qualifier.
    478       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
    479           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
    480 
    481       // Get argument type name.
    482       std::string typeName =
    483           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
    484 
    485       // Turn "unsigned type" to "utype"
    486       std::string::size_type pos = typeName.find("unsigned");
    487       if (pointeeTy.isCanonical() && pos != std::string::npos)
    488         typeName.erase(pos+1, 8);
    489 
    490       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    491 
    492       std::string baseTypeName =
    493           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
    494               Policy) +
    495           "*";
    496 
    497       // Turn "unsigned type" to "utype"
    498       pos = baseTypeName.find("unsigned");
    499       if (pos != std::string::npos)
    500         baseTypeName.erase(pos+1, 8);
    501 
    502       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
    503 
    504       // Get argument type qualifiers:
    505       if (ty.isRestrictQualified())
    506         typeQuals = "restrict";
    507       if (pointeeTy.isConstQualified() ||
    508           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
    509         typeQuals += typeQuals.empty() ? "const" : " const";
    510       if (pointeeTy.isVolatileQualified())
    511         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    512     } else {
    513       uint32_t AddrSpc = 0;
    514       if (ty->isImageType())
    515         AddrSpc =
    516           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
    517 
    518       addressQuals.push_back(
    519           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
    520 
    521       // Get argument type name.
    522       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
    523 
    524       // Turn "unsigned type" to "utype"
    525       std::string::size_type pos = typeName.find("unsigned");
    526       if (ty.isCanonical() && pos != std::string::npos)
    527         typeName.erase(pos+1, 8);
    528 
    529       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
    530 
    531       std::string baseTypeName =
    532           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
    533 
    534       // Turn "unsigned type" to "utype"
    535       pos = baseTypeName.find("unsigned");
    536       if (pos != std::string::npos)
    537         baseTypeName.erase(pos+1, 8);
    538 
    539       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
    540 
    541       // Get argument type qualifiers:
    542       if (ty.isConstQualified())
    543         typeQuals = "const";
    544       if (ty.isVolatileQualified())
    545         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
    546     }
    547 
    548     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
    549 
    550     // Get image access qualifier:
    551     if (ty->isImageType()) {
    552       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
    553       if (A && A->isWriteOnly())
    554         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
    555       else
    556         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
    557       // FIXME: what about read_write?
    558     } else
    559       accessQuals.push_back(llvm::MDString::get(Context, "none"));
    560 
    561     // Get argument name.
    562     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
    563   }
    564 
    565   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
    566   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
    567   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
    568   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
    569   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
    570   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    571     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
    572 }
    573 
    574 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
    575                                                llvm::Function *Fn)
    576 {
    577   if (!FD->hasAttr<OpenCLKernelAttr>())
    578     return;
    579 
    580   llvm::LLVMContext &Context = getLLVMContext();
    581 
    582   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
    583   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
    584 
    585   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
    586                        getContext());
    587 
    588   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
    589     QualType hintQTy = A->getTypeHint();
    590     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
    591     bool isSignedInteger =
    592         hintQTy->isSignedIntegerType() ||
    593         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
    594     llvm::Metadata *attrMDArgs[] = {
    595         llvm::MDString::get(Context, "vec_type_hint"),
    596         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
    597             CGM.getTypes().ConvertType(A->getTypeHint()))),
    598         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
    599             llvm::IntegerType::get(Context, 32),
    600             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
    601     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    602   }
    603 
    604   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
    605     llvm::Metadata *attrMDArgs[] = {
    606         llvm::MDString::get(Context, "work_group_size_hint"),
    607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
    608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
    609         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    610     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    611   }
    612 
    613   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
    614     llvm::Metadata *attrMDArgs[] = {
    615         llvm::MDString::get(Context, "reqd_work_group_size"),
    616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
    617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
    618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    619     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    620   }
    621 
    622   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
    623   llvm::NamedMDNode *OpenCLKernelMetadata =
    624     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    625   OpenCLKernelMetadata->addOperand(kernelMDNode);
    626 }
    627 
    628 /// Determine whether the function F ends with a return stmt.
    629 static bool endsWithReturn(const Decl* F) {
    630   const Stmt *Body = nullptr;
    631   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
    632     Body = FD->getBody();
    633   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
    634     Body = OMD->getBody();
    635 
    636   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
    637     auto LastStmt = CS->body_rbegin();
    638     if (LastStmt != CS->body_rend())
    639       return isa<ReturnStmt>(*LastStmt);
    640   }
    641   return false;
    642 }
    643 
    644 void CodeGenFunction::StartFunction(GlobalDecl GD,
    645                                     QualType RetTy,
    646                                     llvm::Function *Fn,
    647                                     const CGFunctionInfo &FnInfo,
    648                                     const FunctionArgList &Args,
    649                                     SourceLocation Loc,
    650                                     SourceLocation StartLoc) {
    651   assert(!CurFn &&
    652          "Do not use a CodeGenFunction object for more than one function");
    653 
    654   const Decl *D = GD.getDecl();
    655 
    656   DidCallStackSave = false;
    657   CurCodeDecl = D;
    658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
    659   FnRetTy = RetTy;
    660   CurFn = Fn;
    661   CurFnInfo = &FnInfo;
    662   assert(CurFn->isDeclaration() && "Function already has body?");
    663 
    664   if (CGM.isInSanitizerBlacklist(Fn, Loc))
    665     SanOpts.clear();
    666 
    667   if (D) {
    668     // Apply the no_sanitize* attributes to SanOpts.
    669     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
    670       SanOpts.Mask &= ~Attr->getMask();
    671   }
    672 
    673   // Apply sanitizer attributes to the function.
    674   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
    675     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
    676   if (SanOpts.has(SanitizerKind::Thread))
    677     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
    678   if (SanOpts.has(SanitizerKind::Memory))
    679     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
    680   if (SanOpts.has(SanitizerKind::SafeStack))
    681     Fn->addFnAttr(llvm::Attribute::SafeStack);
    682 
    683   // Pass inline keyword to optimizer if it appears explicitly on any
    684   // declaration. Also, in the case of -fno-inline attach NoInline
    685   // attribute to all function that are not marked AlwaysInline.
    686   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    687     if (!CGM.getCodeGenOpts().NoInline) {
    688       for (auto RI : FD->redecls())
    689         if (RI->isInlineSpecified()) {
    690           Fn->addFnAttr(llvm::Attribute::InlineHint);
    691           break;
    692         }
    693     } else if (!FD->hasAttr<AlwaysInlineAttr>())
    694       Fn->addFnAttr(llvm::Attribute::NoInline);
    695   }
    696 
    697   if (getLangOpts().OpenCL) {
    698     // Add metadata for a kernel function.
    699     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    700       EmitOpenCLKernelMetadata(FD, Fn);
    701   }
    702 
    703   // If we are checking function types, emit a function type signature as
    704   // prologue data.
    705   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
    706     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    707       if (llvm::Constant *PrologueSig =
    708               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
    709         llvm::Constant *FTRTTIConst =
    710             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
    711         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
    712         llvm::Constant *PrologueStructConst =
    713             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
    714         Fn->setPrologueData(PrologueStructConst);
    715       }
    716     }
    717   }
    718 
    719   // If we're in C++ mode and the function name is "main", it is guaranteed
    720   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
    721   // used within a program").
    722   if (getLangOpts().CPlusPlus)
    723     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    724       if (FD->isMain())
    725         Fn->addFnAttr(llvm::Attribute::NoRecurse);
    726 
    727   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    728 
    729   // Create a marker to make it easy to insert allocas into the entryblock
    730   // later.  Don't create this with the builder, because we don't want it
    731   // folded.
    732   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    733   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    734   if (Builder.isNamePreserving())
    735     AllocaInsertPt->setName("allocapt");
    736 
    737   ReturnBlock = getJumpDestInCurrentScope("return");
    738 
    739   Builder.SetInsertPoint(EntryBB);
    740 
    741   // Emit subprogram debug descriptor.
    742   if (CGDebugInfo *DI = getDebugInfo()) {
    743     SmallVector<QualType, 16> ArgTypes;
    744     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    745 	 i != e; ++i) {
    746       ArgTypes.push_back((*i)->getType());
    747     }
    748 
    749     QualType FnType =
    750       getContext().getFunctionType(RetTy, ArgTypes,
    751                                    FunctionProtoType::ExtProtoInfo());
    752     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
    753   }
    754 
    755   if (ShouldInstrumentFunction())
    756     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    757 
    758   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    759     EmitMCountInstrumentation();
    760 
    761   if (RetTy->isVoidType()) {
    762     // Void type; nothing to return.
    763     ReturnValue = Address::invalid();
    764 
    765     // Count the implicit return.
    766     if (!endsWithReturn(D))
    767       ++NumReturnExprs;
    768   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    769              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    770     // Indirect aggregate return; emit returned value directly into sret slot.
    771     // This reduces code size, and affects correctness in C++.
    772     auto AI = CurFn->arg_begin();
    773     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
    774       ++AI;
    775     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
    776   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
    777              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    778     // Load the sret pointer from the argument struct and return into that.
    779     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
    780     llvm::Function::arg_iterator EI = CurFn->arg_end();
    781     --EI;
    782     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
    783     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
    784     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
    785   } else {
    786     ReturnValue = CreateIRTemp(RetTy, "retval");
    787 
    788     // Tell the epilog emitter to autorelease the result.  We do this
    789     // now so that various specialized functions can suppress it
    790     // during their IR-generation.
    791     if (getLangOpts().ObjCAutoRefCount &&
    792         !CurFnInfo->isReturnsRetained() &&
    793         RetTy->isObjCRetainableType())
    794       AutoreleaseResult = true;
    795   }
    796 
    797   EmitStartEHSpec(CurCodeDecl);
    798 
    799   PrologueCleanupDepth = EHStack.stable_begin();
    800   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    801 
    802   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    803     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    804     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    805     if (MD->getParent()->isLambda() &&
    806         MD->getOverloadedOperator() == OO_Call) {
    807       // We're in a lambda; figure out the captures.
    808       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    809                                         LambdaThisCaptureField);
    810       if (LambdaThisCaptureField) {
    811         // If this lambda captures this, load it.
    812         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
    813         CXXThisValue = EmitLoadOfLValue(ThisLValue,
    814                                         SourceLocation()).getScalarVal();
    815       }
    816       for (auto *FD : MD->getParent()->fields()) {
    817         if (FD->hasCapturedVLAType()) {
    818           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
    819                                            SourceLocation()).getScalarVal();
    820           auto VAT = FD->getCapturedVLAType();
    821           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
    822         }
    823       }
    824     } else {
    825       // Not in a lambda; just use 'this' from the method.
    826       // FIXME: Should we generate a new load for each use of 'this'?  The
    827       // fast register allocator would be happier...
    828       CXXThisValue = CXXABIThisValue;
    829     }
    830   }
    831 
    832   // If any of the arguments have a variably modified type, make sure to
    833   // emit the type size.
    834   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    835        i != e; ++i) {
    836     const VarDecl *VD = *i;
    837 
    838     // Dig out the type as written from ParmVarDecls; it's unclear whether
    839     // the standard (C99 6.9.1p10) requires this, but we're following the
    840     // precedent set by gcc.
    841     QualType Ty;
    842     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
    843       Ty = PVD->getOriginalType();
    844     else
    845       Ty = VD->getType();
    846 
    847     if (Ty->isVariablyModifiedType())
    848       EmitVariablyModifiedType(Ty);
    849   }
    850   // Emit a location at the end of the prologue.
    851   if (CGDebugInfo *DI = getDebugInfo())
    852     DI->EmitLocation(Builder, StartLoc);
    853 }
    854 
    855 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
    856                                        const Stmt *Body) {
    857   incrementProfileCounter(Body);
    858   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
    859     EmitCompoundStmtWithoutScope(*S);
    860   else
    861     EmitStmt(Body);
    862 }
    863 
    864 /// When instrumenting to collect profile data, the counts for some blocks
    865 /// such as switch cases need to not include the fall-through counts, so
    866 /// emit a branch around the instrumentation code. When not instrumenting,
    867 /// this just calls EmitBlock().
    868 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
    869                                                const Stmt *S) {
    870   llvm::BasicBlock *SkipCountBB = nullptr;
    871   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
    872     // When instrumenting for profiling, the fallthrough to certain
    873     // statements needs to skip over the instrumentation code so that we
    874     // get an accurate count.
    875     SkipCountBB = createBasicBlock("skipcount");
    876     EmitBranch(SkipCountBB);
    877   }
    878   EmitBlock(BB);
    879   uint64_t CurrentCount = getCurrentProfileCount();
    880   incrementProfileCounter(S);
    881   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
    882   if (SkipCountBB)
    883     EmitBlock(SkipCountBB);
    884 }
    885 
    886 /// Tries to mark the given function nounwind based on the
    887 /// non-existence of any throwing calls within it.  We believe this is
    888 /// lightweight enough to do at -O0.
    889 static void TryMarkNoThrow(llvm::Function *F) {
    890   // LLVM treats 'nounwind' on a function as part of the type, so we
    891   // can't do this on functions that can be overwritten.
    892   if (F->mayBeOverridden()) return;
    893 
    894   for (llvm::BasicBlock &BB : *F)
    895     for (llvm::Instruction &I : BB)
    896       if (I.mayThrow())
    897         return;
    898 
    899   F->setDoesNotThrow();
    900 }
    901 
    902 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    903                                    const CGFunctionInfo &FnInfo) {
    904   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    905 
    906   // Check if we should generate debug info for this function.
    907   if (FD->hasAttr<NoDebugAttr>())
    908     DebugInfo = nullptr; // disable debug info indefinitely for this function
    909 
    910   FunctionArgList Args;
    911   QualType ResTy = FD->getReturnType();
    912 
    913   CurGD = GD;
    914   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
    915   if (MD && MD->isInstance()) {
    916     if (CGM.getCXXABI().HasThisReturn(GD))
    917       ResTy = MD->getThisType(getContext());
    918     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
    919       ResTy = CGM.getContext().VoidPtrTy;
    920     CGM.getCXXABI().buildThisParam(*this, Args);
    921   }
    922 
    923   for (auto *Param : FD->params()) {
    924     Args.push_back(Param);
    925     if (!Param->hasAttr<PassObjectSizeAttr>())
    926       continue;
    927 
    928     IdentifierInfo *NoID = nullptr;
    929     auto *Implicit = ImplicitParamDecl::Create(
    930         getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
    931         getContext().getSizeType());
    932     SizeArguments[Param] = Implicit;
    933     Args.push_back(Implicit);
    934   }
    935 
    936   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
    937     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
    938 
    939   SourceRange BodyRange;
    940   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    941   CurEHLocation = BodyRange.getEnd();
    942 
    943   // Use the location of the start of the function to determine where
    944   // the function definition is located. By default use the location
    945   // of the declaration as the location for the subprogram. A function
    946   // may lack a declaration in the source code if it is created by code
    947   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
    948   SourceLocation Loc = FD->getLocation();
    949 
    950   // If this is a function specialization then use the pattern body
    951   // as the location for the function.
    952   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
    953     if (SpecDecl->hasBody(SpecDecl))
    954       Loc = SpecDecl->getLocation();
    955 
    956   // Emit the standard function prologue.
    957   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
    958 
    959   // Generate the body of the function.
    960   PGO.assignRegionCounters(GD, CurFn);
    961   if (isa<CXXDestructorDecl>(FD))
    962     EmitDestructorBody(Args);
    963   else if (isa<CXXConstructorDecl>(FD))
    964     EmitConstructorBody(Args);
    965   else if (getLangOpts().CUDA &&
    966            !getLangOpts().CUDAIsDevice &&
    967            FD->hasAttr<CUDAGlobalAttr>())
    968     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
    969   else if (isa<CXXConversionDecl>(FD) &&
    970            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    971     // The lambda conversion to block pointer is special; the semantics can't be
    972     // expressed in the AST, so IRGen needs to special-case it.
    973     EmitLambdaToBlockPointerBody(Args);
    974   } else if (isa<CXXMethodDecl>(FD) &&
    975              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    976     // The lambda static invoker function is special, because it forwards or
    977     // clones the body of the function call operator (but is actually static).
    978     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    979   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
    980              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
    981               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
    982     // Implicit copy-assignment gets the same special treatment as implicit
    983     // copy-constructors.
    984     emitImplicitAssignmentOperatorBody(Args);
    985   } else if (Stmt *Body = FD->getBody()) {
    986     EmitFunctionBody(Args, Body);
    987   } else
    988     llvm_unreachable("no definition for emitted function");
    989 
    990   // C++11 [stmt.return]p2:
    991   //   Flowing off the end of a function [...] results in undefined behavior in
    992   //   a value-returning function.
    993   // C11 6.9.1p12:
    994   //   If the '}' that terminates a function is reached, and the value of the
    995   //   function call is used by the caller, the behavior is undefined.
    996   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
    997       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
    998     if (SanOpts.has(SanitizerKind::Return)) {
    999       SanitizerScope SanScope(this);
   1000       llvm::Value *IsFalse = Builder.getFalse();
   1001       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
   1002                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
   1003                 None);
   1004     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1005       EmitTrapCall(llvm::Intrinsic::trap);
   1006     }
   1007     Builder.CreateUnreachable();
   1008     Builder.ClearInsertionPoint();
   1009   }
   1010 
   1011   // Emit the standard function epilogue.
   1012   FinishFunction(BodyRange.getEnd());
   1013 
   1014   // If we haven't marked the function nothrow through other means, do
   1015   // a quick pass now to see if we can.
   1016   if (!CurFn->doesNotThrow())
   1017     TryMarkNoThrow(CurFn);
   1018 }
   1019 
   1020 /// ContainsLabel - Return true if the statement contains a label in it.  If
   1021 /// this statement is not executed normally, it not containing a label means
   1022 /// that we can just remove the code.
   1023 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
   1024   // Null statement, not a label!
   1025   if (!S) return false;
   1026 
   1027   // If this is a label, we have to emit the code, consider something like:
   1028   // if (0) {  ...  foo:  bar(); }  goto foo;
   1029   //
   1030   // TODO: If anyone cared, we could track __label__'s, since we know that you
   1031   // can't jump to one from outside their declared region.
   1032   if (isa<LabelStmt>(S))
   1033     return true;
   1034 
   1035   // If this is a case/default statement, and we haven't seen a switch, we have
   1036   // to emit the code.
   1037   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
   1038     return true;
   1039 
   1040   // If this is a switch statement, we want to ignore cases below it.
   1041   if (isa<SwitchStmt>(S))
   1042     IgnoreCaseStmts = true;
   1043 
   1044   // Scan subexpressions for verboten labels.
   1045   for (const Stmt *SubStmt : S->children())
   1046     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
   1047       return true;
   1048 
   1049   return false;
   1050 }
   1051 
   1052 /// containsBreak - Return true if the statement contains a break out of it.
   1053 /// If the statement (recursively) contains a switch or loop with a break
   1054 /// inside of it, this is fine.
   1055 bool CodeGenFunction::containsBreak(const Stmt *S) {
   1056   // Null statement, not a label!
   1057   if (!S) return false;
   1058 
   1059   // If this is a switch or loop that defines its own break scope, then we can
   1060   // include it and anything inside of it.
   1061   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
   1062       isa<ForStmt>(S))
   1063     return false;
   1064 
   1065   if (isa<BreakStmt>(S))
   1066     return true;
   1067 
   1068   // Scan subexpressions for verboten breaks.
   1069   for (const Stmt *SubStmt : S->children())
   1070     if (containsBreak(SubStmt))
   1071       return true;
   1072 
   1073   return false;
   1074 }
   1075 
   1076 
   1077 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   1078 /// to a constant, or if it does but contains a label, return false.  If it
   1079 /// constant folds return true and set the boolean result in Result.
   1080 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
   1081                                                    bool &ResultBool) {
   1082   llvm::APSInt ResultInt;
   1083   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
   1084     return false;
   1085 
   1086   ResultBool = ResultInt.getBoolValue();
   1087   return true;
   1088 }
   1089 
   1090 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   1091 /// to a constant, or if it does but contains a label, return false.  If it
   1092 /// constant folds return true and set the folded value.
   1093 bool CodeGenFunction::
   1094 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
   1095   // FIXME: Rename and handle conversion of other evaluatable things
   1096   // to bool.
   1097   llvm::APSInt Int;
   1098   if (!Cond->EvaluateAsInt(Int, getContext()))
   1099     return false;  // Not foldable, not integer or not fully evaluatable.
   1100 
   1101   if (CodeGenFunction::ContainsLabel(Cond))
   1102     return false;  // Contains a label.
   1103 
   1104   ResultInt = Int;
   1105   return true;
   1106 }
   1107 
   1108 
   1109 
   1110 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
   1111 /// statement) to the specified blocks.  Based on the condition, this might try
   1112 /// to simplify the codegen of the conditional based on the branch.
   1113 ///
   1114 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
   1115                                            llvm::BasicBlock *TrueBlock,
   1116                                            llvm::BasicBlock *FalseBlock,
   1117                                            uint64_t TrueCount) {
   1118   Cond = Cond->IgnoreParens();
   1119 
   1120   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
   1121 
   1122     // Handle X && Y in a condition.
   1123     if (CondBOp->getOpcode() == BO_LAnd) {
   1124       // If we have "1 && X", simplify the code.  "0 && X" would have constant
   1125       // folded if the case was simple enough.
   1126       bool ConstantBool = false;
   1127       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
   1128           ConstantBool) {
   1129         // br(1 && X) -> br(X).
   1130         incrementProfileCounter(CondBOp);
   1131         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
   1132                                     TrueCount);
   1133       }
   1134 
   1135       // If we have "X && 1", simplify the code to use an uncond branch.
   1136       // "X && 0" would have been constant folded to 0.
   1137       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
   1138           ConstantBool) {
   1139         // br(X && 1) -> br(X).
   1140         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
   1141                                     TrueCount);
   1142       }
   1143 
   1144       // Emit the LHS as a conditional.  If the LHS conditional is false, we
   1145       // want to jump to the FalseBlock.
   1146       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
   1147       // The counter tells us how often we evaluate RHS, and all of TrueCount
   1148       // can be propagated to that branch.
   1149       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
   1150 
   1151       ConditionalEvaluation eval(*this);
   1152       {
   1153         ApplyDebugLocation DL(*this, Cond);
   1154         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
   1155         EmitBlock(LHSTrue);
   1156       }
   1157 
   1158       incrementProfileCounter(CondBOp);
   1159       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
   1160 
   1161       // Any temporaries created here are conditional.
   1162       eval.begin(*this);
   1163       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
   1164       eval.end(*this);
   1165 
   1166       return;
   1167     }
   1168 
   1169     if (CondBOp->getOpcode() == BO_LOr) {
   1170       // If we have "0 || X", simplify the code.  "1 || X" would have constant
   1171       // folded if the case was simple enough.
   1172       bool ConstantBool = false;
   1173       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
   1174           !ConstantBool) {
   1175         // br(0 || X) -> br(X).
   1176         incrementProfileCounter(CondBOp);
   1177         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
   1178                                     TrueCount);
   1179       }
   1180 
   1181       // If we have "X || 0", simplify the code to use an uncond branch.
   1182       // "X || 1" would have been constant folded to 1.
   1183       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
   1184           !ConstantBool) {
   1185         // br(X || 0) -> br(X).
   1186         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
   1187                                     TrueCount);
   1188       }
   1189 
   1190       // Emit the LHS as a conditional.  If the LHS conditional is true, we
   1191       // want to jump to the TrueBlock.
   1192       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
   1193       // We have the count for entry to the RHS and for the whole expression
   1194       // being true, so we can divy up True count between the short circuit and
   1195       // the RHS.
   1196       uint64_t LHSCount =
   1197           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
   1198       uint64_t RHSCount = TrueCount - LHSCount;
   1199 
   1200       ConditionalEvaluation eval(*this);
   1201       {
   1202         ApplyDebugLocation DL(*this, Cond);
   1203         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
   1204         EmitBlock(LHSFalse);
   1205       }
   1206 
   1207       incrementProfileCounter(CondBOp);
   1208       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
   1209 
   1210       // Any temporaries created here are conditional.
   1211       eval.begin(*this);
   1212       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
   1213 
   1214       eval.end(*this);
   1215 
   1216       return;
   1217     }
   1218   }
   1219 
   1220   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
   1221     // br(!x, t, f) -> br(x, f, t)
   1222     if (CondUOp->getOpcode() == UO_LNot) {
   1223       // Negate the count.
   1224       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
   1225       // Negate the condition and swap the destination blocks.
   1226       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
   1227                                   FalseCount);
   1228     }
   1229   }
   1230 
   1231   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
   1232     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
   1233     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
   1234     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
   1235 
   1236     ConditionalEvaluation cond(*this);
   1237     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
   1238                          getProfileCount(CondOp));
   1239 
   1240     // When computing PGO branch weights, we only know the overall count for
   1241     // the true block. This code is essentially doing tail duplication of the
   1242     // naive code-gen, introducing new edges for which counts are not
   1243     // available. Divide the counts proportionally between the LHS and RHS of
   1244     // the conditional operator.
   1245     uint64_t LHSScaledTrueCount = 0;
   1246     if (TrueCount) {
   1247       double LHSRatio =
   1248           getProfileCount(CondOp) / (double)getCurrentProfileCount();
   1249       LHSScaledTrueCount = TrueCount * LHSRatio;
   1250     }
   1251 
   1252     cond.begin(*this);
   1253     EmitBlock(LHSBlock);
   1254     incrementProfileCounter(CondOp);
   1255     {
   1256       ApplyDebugLocation DL(*this, Cond);
   1257       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
   1258                            LHSScaledTrueCount);
   1259     }
   1260     cond.end(*this);
   1261 
   1262     cond.begin(*this);
   1263     EmitBlock(RHSBlock);
   1264     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
   1265                          TrueCount - LHSScaledTrueCount);
   1266     cond.end(*this);
   1267 
   1268     return;
   1269   }
   1270 
   1271   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
   1272     // Conditional operator handling can give us a throw expression as a
   1273     // condition for a case like:
   1274     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
   1275     // Fold this to:
   1276     //   br(c, throw x, br(y, t, f))
   1277     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
   1278     return;
   1279   }
   1280 
   1281   // If the branch has a condition wrapped by __builtin_unpredictable,
   1282   // create metadata that specifies that the branch is unpredictable.
   1283   // Don't bother if not optimizing because that metadata would not be used.
   1284   llvm::MDNode *Unpredictable = nullptr;
   1285   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
   1286     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
   1287       const Decl *TargetDecl = Call->getCalleeDecl();
   1288       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   1289         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
   1290           llvm::MDBuilder MDHelper(getLLVMContext());
   1291           Unpredictable = MDHelper.createUnpredictable();
   1292         }
   1293       }
   1294     }
   1295   }
   1296 
   1297   // Create branch weights based on the number of times we get here and the
   1298   // number of times the condition should be true.
   1299   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
   1300   llvm::MDNode *Weights =
   1301       createProfileWeights(TrueCount, CurrentCount - TrueCount);
   1302 
   1303   // Emit the code with the fully general case.
   1304   llvm::Value *CondV;
   1305   {
   1306     ApplyDebugLocation DL(*this, Cond);
   1307     CondV = EvaluateExprAsBool(Cond);
   1308   }
   1309   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
   1310 }
   1311 
   1312 /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1313 /// specified stmt yet.
   1314 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
   1315   CGM.ErrorUnsupported(S, Type);
   1316 }
   1317 
   1318 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
   1319 /// variable-length array whose elements have a non-zero bit-pattern.
   1320 ///
   1321 /// \param baseType the inner-most element type of the array
   1322 /// \param src - a char* pointing to the bit-pattern for a single
   1323 /// base element of the array
   1324 /// \param sizeInChars - the total size of the VLA, in chars
   1325 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
   1326                                Address dest, Address src,
   1327                                llvm::Value *sizeInChars) {
   1328   CGBuilderTy &Builder = CGF.Builder;
   1329 
   1330   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
   1331   llvm::Value *baseSizeInChars
   1332     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
   1333 
   1334   Address begin =
   1335     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
   1336   llvm::Value *end =
   1337     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
   1338 
   1339   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
   1340   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
   1341   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
   1342 
   1343   // Make a loop over the VLA.  C99 guarantees that the VLA element
   1344   // count must be nonzero.
   1345   CGF.EmitBlock(loopBB);
   1346 
   1347   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
   1348   cur->addIncoming(begin.getPointer(), originBB);
   1349 
   1350   CharUnits curAlign =
   1351     dest.getAlignment().alignmentOfArrayElement(baseSize);
   1352 
   1353   // memcpy the individual element bit-pattern.
   1354   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
   1355                        /*volatile*/ false);
   1356 
   1357   // Go to the next element.
   1358   llvm::Value *next =
   1359     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
   1360 
   1361   // Leave if that's the end of the VLA.
   1362   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
   1363   Builder.CreateCondBr(done, contBB, loopBB);
   1364   cur->addIncoming(next, loopBB);
   1365 
   1366   CGF.EmitBlock(contBB);
   1367 }
   1368 
   1369 void
   1370 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
   1371   // Ignore empty classes in C++.
   1372   if (getLangOpts().CPlusPlus) {
   1373     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1374       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
   1375         return;
   1376     }
   1377   }
   1378 
   1379   // Cast the dest ptr to the appropriate i8 pointer type.
   1380   if (DestPtr.getElementType() != Int8Ty)
   1381     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
   1382 
   1383   // Get size and alignment info for this aggregate.
   1384   CharUnits size = getContext().getTypeSizeInChars(Ty);
   1385 
   1386   llvm::Value *SizeVal;
   1387   const VariableArrayType *vla;
   1388 
   1389   // Don't bother emitting a zero-byte memset.
   1390   if (size.isZero()) {
   1391     // But note that getTypeInfo returns 0 for a VLA.
   1392     if (const VariableArrayType *vlaType =
   1393           dyn_cast_or_null<VariableArrayType>(
   1394                                           getContext().getAsArrayType(Ty))) {
   1395       QualType eltType;
   1396       llvm::Value *numElts;
   1397       std::tie(numElts, eltType) = getVLASize(vlaType);
   1398 
   1399       SizeVal = numElts;
   1400       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
   1401       if (!eltSize.isOne())
   1402         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
   1403       vla = vlaType;
   1404     } else {
   1405       return;
   1406     }
   1407   } else {
   1408     SizeVal = CGM.getSize(size);
   1409     vla = nullptr;
   1410   }
   1411 
   1412   // If the type contains a pointer to data member we can't memset it to zero.
   1413   // Instead, create a null constant and copy it to the destination.
   1414   // TODO: there are other patterns besides zero that we can usefully memset,
   1415   // like -1, which happens to be the pattern used by member-pointers.
   1416   if (!CGM.getTypes().isZeroInitializable(Ty)) {
   1417     // For a VLA, emit a single element, then splat that over the VLA.
   1418     if (vla) Ty = getContext().getBaseElementType(vla);
   1419 
   1420     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
   1421 
   1422     llvm::GlobalVariable *NullVariable =
   1423       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
   1424                                /*isConstant=*/true,
   1425                                llvm::GlobalVariable::PrivateLinkage,
   1426                                NullConstant, Twine());
   1427     CharUnits NullAlign = DestPtr.getAlignment();
   1428     NullVariable->setAlignment(NullAlign.getQuantity());
   1429     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
   1430                    NullAlign);
   1431 
   1432     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
   1433 
   1434     // Get and call the appropriate llvm.memcpy overload.
   1435     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
   1436     return;
   1437   }
   1438 
   1439   // Otherwise, just memset the whole thing to zero.  This is legal
   1440   // because in LLVM, all default initializers (other than the ones we just
   1441   // handled above) are guaranteed to have a bit pattern of all zeros.
   1442   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
   1443 }
   1444 
   1445 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
   1446   // Make sure that there is a block for the indirect goto.
   1447   if (!IndirectBranch)
   1448     GetIndirectGotoBlock();
   1449 
   1450   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
   1451 
   1452   // Make sure the indirect branch includes all of the address-taken blocks.
   1453   IndirectBranch->addDestination(BB);
   1454   return llvm::BlockAddress::get(CurFn, BB);
   1455 }
   1456 
   1457 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
   1458   // If we already made the indirect branch for indirect goto, return its block.
   1459   if (IndirectBranch) return IndirectBranch->getParent();
   1460 
   1461   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
   1462 
   1463   // Create the PHI node that indirect gotos will add entries to.
   1464   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
   1465                                               "indirect.goto.dest");
   1466 
   1467   // Create the indirect branch instruction.
   1468   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
   1469   return IndirectBranch->getParent();
   1470 }
   1471 
   1472 /// Computes the length of an array in elements, as well as the base
   1473 /// element type and a properly-typed first element pointer.
   1474 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
   1475                                               QualType &baseType,
   1476                                               Address &addr) {
   1477   const ArrayType *arrayType = origArrayType;
   1478 
   1479   // If it's a VLA, we have to load the stored size.  Note that
   1480   // this is the size of the VLA in bytes, not its size in elements.
   1481   llvm::Value *numVLAElements = nullptr;
   1482   if (isa<VariableArrayType>(arrayType)) {
   1483     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
   1484 
   1485     // Walk into all VLAs.  This doesn't require changes to addr,
   1486     // which has type T* where T is the first non-VLA element type.
   1487     do {
   1488       QualType elementType = arrayType->getElementType();
   1489       arrayType = getContext().getAsArrayType(elementType);
   1490 
   1491       // If we only have VLA components, 'addr' requires no adjustment.
   1492       if (!arrayType) {
   1493         baseType = elementType;
   1494         return numVLAElements;
   1495       }
   1496     } while (isa<VariableArrayType>(arrayType));
   1497 
   1498     // We get out here only if we find a constant array type
   1499     // inside the VLA.
   1500   }
   1501 
   1502   // We have some number of constant-length arrays, so addr should
   1503   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
   1504   // down to the first element of addr.
   1505   SmallVector<llvm::Value*, 8> gepIndices;
   1506 
   1507   // GEP down to the array type.
   1508   llvm::ConstantInt *zero = Builder.getInt32(0);
   1509   gepIndices.push_back(zero);
   1510 
   1511   uint64_t countFromCLAs = 1;
   1512   QualType eltType;
   1513 
   1514   llvm::ArrayType *llvmArrayType =
   1515     dyn_cast<llvm::ArrayType>(addr.getElementType());
   1516   while (llvmArrayType) {
   1517     assert(isa<ConstantArrayType>(arrayType));
   1518     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
   1519              == llvmArrayType->getNumElements());
   1520 
   1521     gepIndices.push_back(zero);
   1522     countFromCLAs *= llvmArrayType->getNumElements();
   1523     eltType = arrayType->getElementType();
   1524 
   1525     llvmArrayType =
   1526       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
   1527     arrayType = getContext().getAsArrayType(arrayType->getElementType());
   1528     assert((!llvmArrayType || arrayType) &&
   1529            "LLVM and Clang types are out-of-synch");
   1530   }
   1531 
   1532   if (arrayType) {
   1533     // From this point onwards, the Clang array type has been emitted
   1534     // as some other type (probably a packed struct). Compute the array
   1535     // size, and just emit the 'begin' expression as a bitcast.
   1536     while (arrayType) {
   1537       countFromCLAs *=
   1538           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
   1539       eltType = arrayType->getElementType();
   1540       arrayType = getContext().getAsArrayType(eltType);
   1541     }
   1542 
   1543     llvm::Type *baseType = ConvertType(eltType);
   1544     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
   1545   } else {
   1546     // Create the actual GEP.
   1547     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
   1548                                              gepIndices, "array.begin"),
   1549                    addr.getAlignment());
   1550   }
   1551 
   1552   baseType = eltType;
   1553 
   1554   llvm::Value *numElements
   1555     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
   1556 
   1557   // If we had any VLA dimensions, factor them in.
   1558   if (numVLAElements)
   1559     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
   1560 
   1561   return numElements;
   1562 }
   1563 
   1564 std::pair<llvm::Value*, QualType>
   1565 CodeGenFunction::getVLASize(QualType type) {
   1566   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
   1567   assert(vla && "type was not a variable array type!");
   1568   return getVLASize(vla);
   1569 }
   1570 
   1571 std::pair<llvm::Value*, QualType>
   1572 CodeGenFunction::getVLASize(const VariableArrayType *type) {
   1573   // The number of elements so far; always size_t.
   1574   llvm::Value *numElements = nullptr;
   1575 
   1576   QualType elementType;
   1577   do {
   1578     elementType = type->getElementType();
   1579     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
   1580     assert(vlaSize && "no size for VLA!");
   1581     assert(vlaSize->getType() == SizeTy);
   1582 
   1583     if (!numElements) {
   1584       numElements = vlaSize;
   1585     } else {
   1586       // It's undefined behavior if this wraps around, so mark it that way.
   1587       // FIXME: Teach -fsanitize=undefined to trap this.
   1588       numElements = Builder.CreateNUWMul(numElements, vlaSize);
   1589     }
   1590   } while ((type = getContext().getAsVariableArrayType(elementType)));
   1591 
   1592   return std::pair<llvm::Value*,QualType>(numElements, elementType);
   1593 }
   1594 
   1595 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
   1596   assert(type->isVariablyModifiedType() &&
   1597          "Must pass variably modified type to EmitVLASizes!");
   1598 
   1599   EnsureInsertPoint();
   1600 
   1601   // We're going to walk down into the type and look for VLA
   1602   // expressions.
   1603   do {
   1604     assert(type->isVariablyModifiedType());
   1605 
   1606     const Type *ty = type.getTypePtr();
   1607     switch (ty->getTypeClass()) {
   1608 
   1609 #define TYPE(Class, Base)
   1610 #define ABSTRACT_TYPE(Class, Base)
   1611 #define NON_CANONICAL_TYPE(Class, Base)
   1612 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1613 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   1614 #include "clang/AST/TypeNodes.def"
   1615       llvm_unreachable("unexpected dependent type!");
   1616 
   1617     // These types are never variably-modified.
   1618     case Type::Builtin:
   1619     case Type::Complex:
   1620     case Type::Vector:
   1621     case Type::ExtVector:
   1622     case Type::Record:
   1623     case Type::Enum:
   1624     case Type::Elaborated:
   1625     case Type::TemplateSpecialization:
   1626     case Type::ObjCObject:
   1627     case Type::ObjCInterface:
   1628     case Type::ObjCObjectPointer:
   1629       llvm_unreachable("type class is never variably-modified!");
   1630 
   1631     case Type::Adjusted:
   1632       type = cast<AdjustedType>(ty)->getAdjustedType();
   1633       break;
   1634 
   1635     case Type::Decayed:
   1636       type = cast<DecayedType>(ty)->getPointeeType();
   1637       break;
   1638 
   1639     case Type::Pointer:
   1640       type = cast<PointerType>(ty)->getPointeeType();
   1641       break;
   1642 
   1643     case Type::BlockPointer:
   1644       type = cast<BlockPointerType>(ty)->getPointeeType();
   1645       break;
   1646 
   1647     case Type::LValueReference:
   1648     case Type::RValueReference:
   1649       type = cast<ReferenceType>(ty)->getPointeeType();
   1650       break;
   1651 
   1652     case Type::MemberPointer:
   1653       type = cast<MemberPointerType>(ty)->getPointeeType();
   1654       break;
   1655 
   1656     case Type::ConstantArray:
   1657     case Type::IncompleteArray:
   1658       // Losing element qualification here is fine.
   1659       type = cast<ArrayType>(ty)->getElementType();
   1660       break;
   1661 
   1662     case Type::VariableArray: {
   1663       // Losing element qualification here is fine.
   1664       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1665 
   1666       // Unknown size indication requires no size computation.
   1667       // Otherwise, evaluate and record it.
   1668       if (const Expr *size = vat->getSizeExpr()) {
   1669         // It's possible that we might have emitted this already,
   1670         // e.g. with a typedef and a pointer to it.
   1671         llvm::Value *&entry = VLASizeMap[size];
   1672         if (!entry) {
   1673           llvm::Value *Size = EmitScalarExpr(size);
   1674 
   1675           // C11 6.7.6.2p5:
   1676           //   If the size is an expression that is not an integer constant
   1677           //   expression [...] each time it is evaluated it shall have a value
   1678           //   greater than zero.
   1679           if (SanOpts.has(SanitizerKind::VLABound) &&
   1680               size->getType()->isSignedIntegerType()) {
   1681             SanitizerScope SanScope(this);
   1682             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
   1683             llvm::Constant *StaticArgs[] = {
   1684               EmitCheckSourceLocation(size->getLocStart()),
   1685               EmitCheckTypeDescriptor(size->getType())
   1686             };
   1687             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
   1688                                      SanitizerKind::VLABound),
   1689                       "vla_bound_not_positive", StaticArgs, Size);
   1690           }
   1691 
   1692           // Always zexting here would be wrong if it weren't
   1693           // undefined behavior to have a negative bound.
   1694           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
   1695         }
   1696       }
   1697       type = vat->getElementType();
   1698       break;
   1699     }
   1700 
   1701     case Type::FunctionProto:
   1702     case Type::FunctionNoProto:
   1703       type = cast<FunctionType>(ty)->getReturnType();
   1704       break;
   1705 
   1706     case Type::Paren:
   1707     case Type::TypeOf:
   1708     case Type::UnaryTransform:
   1709     case Type::Attributed:
   1710     case Type::SubstTemplateTypeParm:
   1711     case Type::PackExpansion:
   1712       // Keep walking after single level desugaring.
   1713       type = type.getSingleStepDesugaredType(getContext());
   1714       break;
   1715 
   1716     case Type::Typedef:
   1717     case Type::Decltype:
   1718     case Type::Auto:
   1719       // Stop walking: nothing to do.
   1720       return;
   1721 
   1722     case Type::TypeOfExpr:
   1723       // Stop walking: emit typeof expression.
   1724       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1725       return;
   1726 
   1727     case Type::Atomic:
   1728       type = cast<AtomicType>(ty)->getValueType();
   1729       break;
   1730     }
   1731   } while (type->isVariablyModifiedType());
   1732 }
   1733 
   1734 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
   1735   if (getContext().getBuiltinVaListType()->isArrayType())
   1736     return EmitPointerWithAlignment(E);
   1737   return EmitLValue(E).getAddress();
   1738 }
   1739 
   1740 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
   1741   return EmitLValue(E).getAddress();
   1742 }
   1743 
   1744 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1745                                               llvm::Constant *Init) {
   1746   assert (Init && "Invalid DeclRefExpr initializer!");
   1747   if (CGDebugInfo *Dbg = getDebugInfo())
   1748     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
   1749       Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1750 }
   1751 
   1752 CodeGenFunction::PeepholeProtection
   1753 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1754   // At the moment, the only aggressive peephole we do in IR gen
   1755   // is trunc(zext) folding, but if we add more, we can easily
   1756   // extend this protection.
   1757 
   1758   if (!rvalue.isScalar()) return PeepholeProtection();
   1759   llvm::Value *value = rvalue.getScalarVal();
   1760   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1761 
   1762   // Just make an extra bitcast.
   1763   assert(HaveInsertPoint());
   1764   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1765                                                   Builder.GetInsertBlock());
   1766 
   1767   PeepholeProtection protection;
   1768   protection.Inst = inst;
   1769   return protection;
   1770 }
   1771 
   1772 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1773   if (!protection.Inst) return;
   1774 
   1775   // In theory, we could try to duplicate the peepholes now, but whatever.
   1776   protection.Inst->eraseFromParent();
   1777 }
   1778 
   1779 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1780                                                  llvm::Value *AnnotatedVal,
   1781                                                  StringRef AnnotationStr,
   1782                                                  SourceLocation Location) {
   1783   llvm::Value *Args[4] = {
   1784     AnnotatedVal,
   1785     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1786     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1787     CGM.EmitAnnotationLineNo(Location)
   1788   };
   1789   return Builder.CreateCall(AnnotationFn, Args);
   1790 }
   1791 
   1792 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1793   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1794   // FIXME We create a new bitcast for every annotation because that's what
   1795   // llvm-gcc was doing.
   1796   for (const auto *I : D->specific_attrs<AnnotateAttr>())
   1797     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1798                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1799                        I->getAnnotation(), D->getLocation());
   1800 }
   1801 
   1802 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1803                                               Address Addr) {
   1804   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1805   llvm::Value *V = Addr.getPointer();
   1806   llvm::Type *VTy = V->getType();
   1807   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1808                                     CGM.Int8PtrTy);
   1809 
   1810   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
   1811     // FIXME Always emit the cast inst so we can differentiate between
   1812     // annotation on the first field of a struct and annotation on the struct
   1813     // itself.
   1814     if (VTy != CGM.Int8PtrTy)
   1815       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1816     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
   1817     V = Builder.CreateBitCast(V, VTy);
   1818   }
   1819 
   1820   return Address(V, Addr.getAlignment());
   1821 }
   1822 
   1823 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
   1824 
   1825 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
   1826     : CGF(CGF) {
   1827   assert(!CGF->IsSanitizerScope);
   1828   CGF->IsSanitizerScope = true;
   1829 }
   1830 
   1831 CodeGenFunction::SanitizerScope::~SanitizerScope() {
   1832   CGF->IsSanitizerScope = false;
   1833 }
   1834 
   1835 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
   1836                                    const llvm::Twine &Name,
   1837                                    llvm::BasicBlock *BB,
   1838                                    llvm::BasicBlock::iterator InsertPt) const {
   1839   LoopStack.InsertHelper(I);
   1840   if (IsSanitizerScope)
   1841     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
   1842 }
   1843 
   1844 template <bool PreserveNames>
   1845 void CGBuilderInserter<PreserveNames>::InsertHelper(
   1846     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1847     llvm::BasicBlock::iterator InsertPt) const {
   1848   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
   1849                                                               InsertPt);
   1850   if (CGF)
   1851     CGF->InsertHelper(I, Name, BB, InsertPt);
   1852 }
   1853 
   1854 #ifdef NDEBUG
   1855 #define PreserveNames false
   1856 #else
   1857 #define PreserveNames true
   1858 #endif
   1859 template void CGBuilderInserter<PreserveNames>::InsertHelper(
   1860     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
   1861     llvm::BasicBlock::iterator InsertPt) const;
   1862 #undef PreserveNames
   1863 
   1864 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
   1865                                 CodeGenModule &CGM, const FunctionDecl *FD,
   1866                                 std::string &FirstMissing) {
   1867   // If there aren't any required features listed then go ahead and return.
   1868   if (ReqFeatures.empty())
   1869     return false;
   1870 
   1871   // Now build up the set of caller features and verify that all the required
   1872   // features are there.
   1873   llvm::StringMap<bool> CallerFeatureMap;
   1874   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
   1875 
   1876   // If we have at least one of the features in the feature list return
   1877   // true, otherwise return false.
   1878   return std::all_of(
   1879       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
   1880         SmallVector<StringRef, 1> OrFeatures;
   1881         Feature.split(OrFeatures, "|");
   1882         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
   1883                            [&](StringRef Feature) {
   1884                              if (!CallerFeatureMap.lookup(Feature)) {
   1885                                FirstMissing = Feature.str();
   1886                                return false;
   1887                              }
   1888                              return true;
   1889                            });
   1890       });
   1891 }
   1892 
   1893 // Emits an error if we don't have a valid set of target features for the
   1894 // called function.
   1895 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
   1896                                           const FunctionDecl *TargetDecl) {
   1897   // Early exit if this is an indirect call.
   1898   if (!TargetDecl)
   1899     return;
   1900 
   1901   // Get the current enclosing function if it exists. If it doesn't
   1902   // we can't check the target features anyhow.
   1903   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
   1904   if (!FD)
   1905     return;
   1906 
   1907   // Grab the required features for the call. For a builtin this is listed in
   1908   // the td file with the default cpu, for an always_inline function this is any
   1909   // listed cpu and any listed features.
   1910   unsigned BuiltinID = TargetDecl->getBuiltinID();
   1911   std::string MissingFeature;
   1912   if (BuiltinID) {
   1913     SmallVector<StringRef, 1> ReqFeatures;
   1914     const char *FeatureList =
   1915         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
   1916     // Return if the builtin doesn't have any required features.
   1917     if (!FeatureList || StringRef(FeatureList) == "")
   1918       return;
   1919     StringRef(FeatureList).split(ReqFeatures, ",");
   1920     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
   1921       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
   1922           << TargetDecl->getDeclName()
   1923           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
   1924 
   1925   } else if (TargetDecl->hasAttr<TargetAttr>()) {
   1926     // Get the required features for the callee.
   1927     SmallVector<StringRef, 1> ReqFeatures;
   1928     llvm::StringMap<bool> CalleeFeatureMap;
   1929     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
   1930     for (const auto &F : CalleeFeatureMap) {
   1931       // Only positive features are "required".
   1932       if (F.getValue())
   1933         ReqFeatures.push_back(F.getKey());
   1934     }
   1935     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
   1936       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
   1937           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
   1938   }
   1939 }
   1940