1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.SetFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 return TEK_Scalar; 199 200 // Complexes. 201 case Type::Complex: 202 return TEK_Complex; 203 204 // Arrays, records, and Objective-C objects. 205 case Type::ConstantArray: 206 case Type::IncompleteArray: 207 case Type::VariableArray: 208 case Type::Record: 209 case Type::ObjCObject: 210 case Type::ObjCInterface: 211 return TEK_Aggregate; 212 213 // We operate on atomic values according to their underlying type. 214 case Type::Atomic: 215 type = cast<AtomicType>(type)->getValueType(); 216 continue; 217 } 218 llvm_unreachable("unknown type kind!"); 219 } 220 } 221 222 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 223 // For cleanliness, we try to avoid emitting the return block for 224 // simple cases. 225 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 226 227 if (CurBB) { 228 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 229 230 // We have a valid insert point, reuse it if it is empty or there are no 231 // explicit jumps to the return block. 232 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 233 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 234 delete ReturnBlock.getBlock(); 235 } else 236 EmitBlock(ReturnBlock.getBlock()); 237 return llvm::DebugLoc(); 238 } 239 240 // Otherwise, if the return block is the target of a single direct 241 // branch then we can just put the code in that block instead. This 242 // cleans up functions which started with a unified return block. 243 if (ReturnBlock.getBlock()->hasOneUse()) { 244 llvm::BranchInst *BI = 245 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 246 if (BI && BI->isUnconditional() && 247 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 248 // Record/return the DebugLoc of the simple 'return' expression to be used 249 // later by the actual 'ret' instruction. 250 llvm::DebugLoc Loc = BI->getDebugLoc(); 251 Builder.SetInsertPoint(BI->getParent()); 252 BI->eraseFromParent(); 253 delete ReturnBlock.getBlock(); 254 return Loc; 255 } 256 } 257 258 // FIXME: We are at an unreachable point, there is no reason to emit the block 259 // unless it has uses. However, we still need a place to put the debug 260 // region.end for now. 261 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 267 if (!BB) return; 268 if (!BB->use_empty()) 269 return CGF.CurFn->getBasicBlockList().push_back(BB); 270 delete BB; 271 } 272 273 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 274 assert(BreakContinueStack.empty() && 275 "mismatched push/pop in break/continue stack!"); 276 277 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 278 && NumSimpleReturnExprs == NumReturnExprs 279 && ReturnBlock.getBlock()->use_empty(); 280 // Usually the return expression is evaluated before the cleanup 281 // code. If the function contains only a simple return statement, 282 // such as a constant, the location before the cleanup code becomes 283 // the last useful breakpoint in the function, because the simple 284 // return expression will be evaluated after the cleanup code. To be 285 // safe, set the debug location for cleanup code to the location of 286 // the return statement. Otherwise the cleanup code should be at the 287 // end of the function's lexical scope. 288 // 289 // If there are multiple branches to the return block, the branch 290 // instructions will get the location of the return statements and 291 // all will be fine. 292 if (CGDebugInfo *DI = getDebugInfo()) { 293 if (OnlySimpleReturnStmts) 294 DI->EmitLocation(Builder, LastStopPoint); 295 else 296 DI->EmitLocation(Builder, EndLoc); 297 } 298 299 // Pop any cleanups that might have been associated with the 300 // parameters. Do this in whatever block we're currently in; it's 301 // important to do this before we enter the return block or return 302 // edges will be *really* confused. 303 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 304 bool HasOnlyLifetimeMarkers = 305 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 306 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 307 if (HasCleanups) { 308 // Make sure the line table doesn't jump back into the body for 309 // the ret after it's been at EndLoc. 310 if (CGDebugInfo *DI = getDebugInfo()) 311 if (OnlySimpleReturnStmts) 312 DI->EmitLocation(Builder, EndLoc); 313 314 PopCleanupBlocks(PrologueCleanupDepth); 315 } 316 317 // Emit function epilog (to return). 318 llvm::DebugLoc Loc = EmitReturnBlock(); 319 320 if (ShouldInstrumentFunction()) 321 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 322 323 // Emit debug descriptor for function end. 324 if (CGDebugInfo *DI = getDebugInfo()) 325 DI->EmitFunctionEnd(Builder); 326 327 // Reset the debug location to that of the simple 'return' expression, if any 328 // rather than that of the end of the function's scope '}'. 329 ApplyDebugLocation AL(*this, Loc); 330 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 331 EmitEndEHSpec(CurCodeDecl); 332 333 assert(EHStack.empty() && 334 "did not remove all scopes from cleanup stack!"); 335 336 // If someone did an indirect goto, emit the indirect goto block at the end of 337 // the function. 338 if (IndirectBranch) { 339 EmitBlock(IndirectBranch->getParent()); 340 Builder.ClearInsertionPoint(); 341 } 342 343 // If some of our locals escaped, insert a call to llvm.localescape in the 344 // entry block. 345 if (!EscapedLocals.empty()) { 346 // Invert the map from local to index into a simple vector. There should be 347 // no holes. 348 SmallVector<llvm::Value *, 4> EscapeArgs; 349 EscapeArgs.resize(EscapedLocals.size()); 350 for (auto &Pair : EscapedLocals) 351 EscapeArgs[Pair.second] = Pair.first; 352 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 353 &CGM.getModule(), llvm::Intrinsic::localescape); 354 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 355 } 356 357 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 358 llvm::Instruction *Ptr = AllocaInsertPt; 359 AllocaInsertPt = nullptr; 360 Ptr->eraseFromParent(); 361 362 // If someone took the address of a label but never did an indirect goto, we 363 // made a zero entry PHI node, which is illegal, zap it now. 364 if (IndirectBranch) { 365 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 366 if (PN->getNumIncomingValues() == 0) { 367 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 368 PN->eraseFromParent(); 369 } 370 } 371 372 EmitIfUsed(*this, EHResumeBlock); 373 EmitIfUsed(*this, TerminateLandingPad); 374 EmitIfUsed(*this, TerminateHandler); 375 EmitIfUsed(*this, UnreachableBlock); 376 377 if (CGM.getCodeGenOpts().EmitDeclMetadata) 378 EmitDeclMetadata(); 379 380 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 381 I = DeferredReplacements.begin(), 382 E = DeferredReplacements.end(); 383 I != E; ++I) { 384 I->first->replaceAllUsesWith(I->second); 385 I->first->eraseFromParent(); 386 } 387 } 388 389 /// ShouldInstrumentFunction - Return true if the current function should be 390 /// instrumented with __cyg_profile_func_* calls 391 bool CodeGenFunction::ShouldInstrumentFunction() { 392 if (!CGM.getCodeGenOpts().InstrumentFunctions) 393 return false; 394 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 395 return false; 396 return true; 397 } 398 399 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 400 /// instrumentation function with the current function and the call site, if 401 /// function instrumentation is enabled. 402 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 403 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 404 llvm::PointerType *PointerTy = Int8PtrTy; 405 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 406 llvm::FunctionType *FunctionTy = 407 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 408 409 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 410 llvm::CallInst *CallSite = Builder.CreateCall( 411 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 412 llvm::ConstantInt::get(Int32Ty, 0), 413 "callsite"); 414 415 llvm::Value *args[] = { 416 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 417 CallSite 418 }; 419 420 EmitNounwindRuntimeCall(F, args); 421 } 422 423 void CodeGenFunction::EmitMCountInstrumentation() { 424 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 425 426 llvm::Constant *MCountFn = 427 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 428 EmitNounwindRuntimeCall(MCountFn); 429 } 430 431 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 432 // information in the program executable. The argument information stored 433 // includes the argument name, its type, the address and access qualifiers used. 434 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 435 CodeGenModule &CGM, llvm::LLVMContext &Context, 436 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 437 CGBuilderTy &Builder, ASTContext &ASTCtx) { 438 // Create MDNodes that represent the kernel arg metadata. 439 // Each MDNode is a list in the form of "key", N number of values which is 440 // the same number of values as their are kernel arguments. 441 442 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 443 444 // MDNode for the kernel argument address space qualifiers. 445 SmallVector<llvm::Metadata *, 8> addressQuals; 446 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 447 448 // MDNode for the kernel argument access qualifiers (images only). 449 SmallVector<llvm::Metadata *, 8> accessQuals; 450 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 451 452 // MDNode for the kernel argument type names. 453 SmallVector<llvm::Metadata *, 8> argTypeNames; 454 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 455 456 // MDNode for the kernel argument base type names. 457 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 458 argBaseTypeNames.push_back( 459 llvm::MDString::get(Context, "kernel_arg_base_type")); 460 461 // MDNode for the kernel argument type qualifiers. 462 SmallVector<llvm::Metadata *, 8> argTypeQuals; 463 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 464 465 // MDNode for the kernel argument names. 466 SmallVector<llvm::Metadata *, 8> argNames; 467 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 468 469 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 470 const ParmVarDecl *parm = FD->getParamDecl(i); 471 QualType ty = parm->getType(); 472 std::string typeQuals; 473 474 if (ty->isPointerType()) { 475 QualType pointeeTy = ty->getPointeeType(); 476 477 // Get address qualifier. 478 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 479 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 480 481 // Get argument type name. 482 std::string typeName = 483 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 484 485 // Turn "unsigned type" to "utype" 486 std::string::size_type pos = typeName.find("unsigned"); 487 if (pointeeTy.isCanonical() && pos != std::string::npos) 488 typeName.erase(pos+1, 8); 489 490 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 491 492 std::string baseTypeName = 493 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 494 Policy) + 495 "*"; 496 497 // Turn "unsigned type" to "utype" 498 pos = baseTypeName.find("unsigned"); 499 if (pos != std::string::npos) 500 baseTypeName.erase(pos+1, 8); 501 502 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 503 504 // Get argument type qualifiers: 505 if (ty.isRestrictQualified()) 506 typeQuals = "restrict"; 507 if (pointeeTy.isConstQualified() || 508 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 509 typeQuals += typeQuals.empty() ? "const" : " const"; 510 if (pointeeTy.isVolatileQualified()) 511 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 512 } else { 513 uint32_t AddrSpc = 0; 514 if (ty->isImageType()) 515 AddrSpc = 516 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 517 518 addressQuals.push_back( 519 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 520 521 // Get argument type name. 522 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 523 524 // Turn "unsigned type" to "utype" 525 std::string::size_type pos = typeName.find("unsigned"); 526 if (ty.isCanonical() && pos != std::string::npos) 527 typeName.erase(pos+1, 8); 528 529 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 530 531 std::string baseTypeName = 532 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 533 534 // Turn "unsigned type" to "utype" 535 pos = baseTypeName.find("unsigned"); 536 if (pos != std::string::npos) 537 baseTypeName.erase(pos+1, 8); 538 539 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 540 541 // Get argument type qualifiers: 542 if (ty.isConstQualified()) 543 typeQuals = "const"; 544 if (ty.isVolatileQualified()) 545 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 546 } 547 548 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 549 550 // Get image access qualifier: 551 if (ty->isImageType()) { 552 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 553 if (A && A->isWriteOnly()) 554 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 555 else 556 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 557 // FIXME: what about read_write? 558 } else 559 accessQuals.push_back(llvm::MDString::get(Context, "none")); 560 561 // Get argument name. 562 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 563 } 564 565 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 566 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 567 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 568 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 569 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 570 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 571 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 572 } 573 574 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 575 llvm::Function *Fn) 576 { 577 if (!FD->hasAttr<OpenCLKernelAttr>()) 578 return; 579 580 llvm::LLVMContext &Context = getLLVMContext(); 581 582 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 583 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 584 585 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 586 getContext()); 587 588 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 589 QualType hintQTy = A->getTypeHint(); 590 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 591 bool isSignedInteger = 592 hintQTy->isSignedIntegerType() || 593 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 594 llvm::Metadata *attrMDArgs[] = { 595 llvm::MDString::get(Context, "vec_type_hint"), 596 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 597 CGM.getTypes().ConvertType(A->getTypeHint()))), 598 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 599 llvm::IntegerType::get(Context, 32), 600 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 601 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 602 } 603 604 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 605 llvm::Metadata *attrMDArgs[] = { 606 llvm::MDString::get(Context, "work_group_size_hint"), 607 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 608 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 609 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 610 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 611 } 612 613 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 614 llvm::Metadata *attrMDArgs[] = { 615 llvm::MDString::get(Context, "reqd_work_group_size"), 616 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 619 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 620 } 621 622 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 623 llvm::NamedMDNode *OpenCLKernelMetadata = 624 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 625 OpenCLKernelMetadata->addOperand(kernelMDNode); 626 } 627 628 /// Determine whether the function F ends with a return stmt. 629 static bool endsWithReturn(const Decl* F) { 630 const Stmt *Body = nullptr; 631 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 632 Body = FD->getBody(); 633 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 634 Body = OMD->getBody(); 635 636 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 637 auto LastStmt = CS->body_rbegin(); 638 if (LastStmt != CS->body_rend()) 639 return isa<ReturnStmt>(*LastStmt); 640 } 641 return false; 642 } 643 644 void CodeGenFunction::StartFunction(GlobalDecl GD, 645 QualType RetTy, 646 llvm::Function *Fn, 647 const CGFunctionInfo &FnInfo, 648 const FunctionArgList &Args, 649 SourceLocation Loc, 650 SourceLocation StartLoc) { 651 assert(!CurFn && 652 "Do not use a CodeGenFunction object for more than one function"); 653 654 const Decl *D = GD.getDecl(); 655 656 DidCallStackSave = false; 657 CurCodeDecl = D; 658 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 659 FnRetTy = RetTy; 660 CurFn = Fn; 661 CurFnInfo = &FnInfo; 662 assert(CurFn->isDeclaration() && "Function already has body?"); 663 664 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 665 SanOpts.clear(); 666 667 if (D) { 668 // Apply the no_sanitize* attributes to SanOpts. 669 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 670 SanOpts.Mask &= ~Attr->getMask(); 671 } 672 673 // Apply sanitizer attributes to the function. 674 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 675 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 676 if (SanOpts.has(SanitizerKind::Thread)) 677 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 678 if (SanOpts.has(SanitizerKind::Memory)) 679 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 680 if (SanOpts.has(SanitizerKind::SafeStack)) 681 Fn->addFnAttr(llvm::Attribute::SafeStack); 682 683 // Pass inline keyword to optimizer if it appears explicitly on any 684 // declaration. Also, in the case of -fno-inline attach NoInline 685 // attribute to all function that are not marked AlwaysInline. 686 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 687 if (!CGM.getCodeGenOpts().NoInline) { 688 for (auto RI : FD->redecls()) 689 if (RI->isInlineSpecified()) { 690 Fn->addFnAttr(llvm::Attribute::InlineHint); 691 break; 692 } 693 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 694 Fn->addFnAttr(llvm::Attribute::NoInline); 695 } 696 697 if (getLangOpts().OpenCL) { 698 // Add metadata for a kernel function. 699 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 700 EmitOpenCLKernelMetadata(FD, Fn); 701 } 702 703 // If we are checking function types, emit a function type signature as 704 // prologue data. 705 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 706 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 707 if (llvm::Constant *PrologueSig = 708 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 709 llvm::Constant *FTRTTIConst = 710 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 711 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 712 llvm::Constant *PrologueStructConst = 713 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 714 Fn->setPrologueData(PrologueStructConst); 715 } 716 } 717 } 718 719 // If we're in C++ mode and the function name is "main", it is guaranteed 720 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 721 // used within a program"). 722 if (getLangOpts().CPlusPlus) 723 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 724 if (FD->isMain()) 725 Fn->addFnAttr(llvm::Attribute::NoRecurse); 726 727 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 728 729 // Create a marker to make it easy to insert allocas into the entryblock 730 // later. Don't create this with the builder, because we don't want it 731 // folded. 732 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 733 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 734 if (Builder.isNamePreserving()) 735 AllocaInsertPt->setName("allocapt"); 736 737 ReturnBlock = getJumpDestInCurrentScope("return"); 738 739 Builder.SetInsertPoint(EntryBB); 740 741 // Emit subprogram debug descriptor. 742 if (CGDebugInfo *DI = getDebugInfo()) { 743 SmallVector<QualType, 16> ArgTypes; 744 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 745 i != e; ++i) { 746 ArgTypes.push_back((*i)->getType()); 747 } 748 749 QualType FnType = 750 getContext().getFunctionType(RetTy, ArgTypes, 751 FunctionProtoType::ExtProtoInfo()); 752 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 753 } 754 755 if (ShouldInstrumentFunction()) 756 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 757 758 if (CGM.getCodeGenOpts().InstrumentForProfiling) 759 EmitMCountInstrumentation(); 760 761 if (RetTy->isVoidType()) { 762 // Void type; nothing to return. 763 ReturnValue = Address::invalid(); 764 765 // Count the implicit return. 766 if (!endsWithReturn(D)) 767 ++NumReturnExprs; 768 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 769 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 770 // Indirect aggregate return; emit returned value directly into sret slot. 771 // This reduces code size, and affects correctness in C++. 772 auto AI = CurFn->arg_begin(); 773 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 774 ++AI; 775 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 776 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 777 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 778 // Load the sret pointer from the argument struct and return into that. 779 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 780 llvm::Function::arg_iterator EI = CurFn->arg_end(); 781 --EI; 782 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 783 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 784 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 785 } else { 786 ReturnValue = CreateIRTemp(RetTy, "retval"); 787 788 // Tell the epilog emitter to autorelease the result. We do this 789 // now so that various specialized functions can suppress it 790 // during their IR-generation. 791 if (getLangOpts().ObjCAutoRefCount && 792 !CurFnInfo->isReturnsRetained() && 793 RetTy->isObjCRetainableType()) 794 AutoreleaseResult = true; 795 } 796 797 EmitStartEHSpec(CurCodeDecl); 798 799 PrologueCleanupDepth = EHStack.stable_begin(); 800 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 801 802 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 803 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 804 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 805 if (MD->getParent()->isLambda() && 806 MD->getOverloadedOperator() == OO_Call) { 807 // We're in a lambda; figure out the captures. 808 MD->getParent()->getCaptureFields(LambdaCaptureFields, 809 LambdaThisCaptureField); 810 if (LambdaThisCaptureField) { 811 // If this lambda captures this, load it. 812 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 813 CXXThisValue = EmitLoadOfLValue(ThisLValue, 814 SourceLocation()).getScalarVal(); 815 } 816 for (auto *FD : MD->getParent()->fields()) { 817 if (FD->hasCapturedVLAType()) { 818 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 819 SourceLocation()).getScalarVal(); 820 auto VAT = FD->getCapturedVLAType(); 821 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 822 } 823 } 824 } else { 825 // Not in a lambda; just use 'this' from the method. 826 // FIXME: Should we generate a new load for each use of 'this'? The 827 // fast register allocator would be happier... 828 CXXThisValue = CXXABIThisValue; 829 } 830 } 831 832 // If any of the arguments have a variably modified type, make sure to 833 // emit the type size. 834 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 835 i != e; ++i) { 836 const VarDecl *VD = *i; 837 838 // Dig out the type as written from ParmVarDecls; it's unclear whether 839 // the standard (C99 6.9.1p10) requires this, but we're following the 840 // precedent set by gcc. 841 QualType Ty; 842 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 843 Ty = PVD->getOriginalType(); 844 else 845 Ty = VD->getType(); 846 847 if (Ty->isVariablyModifiedType()) 848 EmitVariablyModifiedType(Ty); 849 } 850 // Emit a location at the end of the prologue. 851 if (CGDebugInfo *DI = getDebugInfo()) 852 DI->EmitLocation(Builder, StartLoc); 853 } 854 855 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 856 const Stmt *Body) { 857 incrementProfileCounter(Body); 858 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 859 EmitCompoundStmtWithoutScope(*S); 860 else 861 EmitStmt(Body); 862 } 863 864 /// When instrumenting to collect profile data, the counts for some blocks 865 /// such as switch cases need to not include the fall-through counts, so 866 /// emit a branch around the instrumentation code. When not instrumenting, 867 /// this just calls EmitBlock(). 868 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 869 const Stmt *S) { 870 llvm::BasicBlock *SkipCountBB = nullptr; 871 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 872 // When instrumenting for profiling, the fallthrough to certain 873 // statements needs to skip over the instrumentation code so that we 874 // get an accurate count. 875 SkipCountBB = createBasicBlock("skipcount"); 876 EmitBranch(SkipCountBB); 877 } 878 EmitBlock(BB); 879 uint64_t CurrentCount = getCurrentProfileCount(); 880 incrementProfileCounter(S); 881 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 882 if (SkipCountBB) 883 EmitBlock(SkipCountBB); 884 } 885 886 /// Tries to mark the given function nounwind based on the 887 /// non-existence of any throwing calls within it. We believe this is 888 /// lightweight enough to do at -O0. 889 static void TryMarkNoThrow(llvm::Function *F) { 890 // LLVM treats 'nounwind' on a function as part of the type, so we 891 // can't do this on functions that can be overwritten. 892 if (F->mayBeOverridden()) return; 893 894 for (llvm::BasicBlock &BB : *F) 895 for (llvm::Instruction &I : BB) 896 if (I.mayThrow()) 897 return; 898 899 F->setDoesNotThrow(); 900 } 901 902 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 903 const CGFunctionInfo &FnInfo) { 904 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 905 906 // Check if we should generate debug info for this function. 907 if (FD->hasAttr<NoDebugAttr>()) 908 DebugInfo = nullptr; // disable debug info indefinitely for this function 909 910 FunctionArgList Args; 911 QualType ResTy = FD->getReturnType(); 912 913 CurGD = GD; 914 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 915 if (MD && MD->isInstance()) { 916 if (CGM.getCXXABI().HasThisReturn(GD)) 917 ResTy = MD->getThisType(getContext()); 918 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 919 ResTy = CGM.getContext().VoidPtrTy; 920 CGM.getCXXABI().buildThisParam(*this, Args); 921 } 922 923 for (auto *Param : FD->params()) { 924 Args.push_back(Param); 925 if (!Param->hasAttr<PassObjectSizeAttr>()) 926 continue; 927 928 IdentifierInfo *NoID = nullptr; 929 auto *Implicit = ImplicitParamDecl::Create( 930 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 931 getContext().getSizeType()); 932 SizeArguments[Param] = Implicit; 933 Args.push_back(Implicit); 934 } 935 936 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 937 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 938 939 SourceRange BodyRange; 940 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 941 CurEHLocation = BodyRange.getEnd(); 942 943 // Use the location of the start of the function to determine where 944 // the function definition is located. By default use the location 945 // of the declaration as the location for the subprogram. A function 946 // may lack a declaration in the source code if it is created by code 947 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 948 SourceLocation Loc = FD->getLocation(); 949 950 // If this is a function specialization then use the pattern body 951 // as the location for the function. 952 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 953 if (SpecDecl->hasBody(SpecDecl)) 954 Loc = SpecDecl->getLocation(); 955 956 // Emit the standard function prologue. 957 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 958 959 // Generate the body of the function. 960 PGO.assignRegionCounters(GD, CurFn); 961 if (isa<CXXDestructorDecl>(FD)) 962 EmitDestructorBody(Args); 963 else if (isa<CXXConstructorDecl>(FD)) 964 EmitConstructorBody(Args); 965 else if (getLangOpts().CUDA && 966 !getLangOpts().CUDAIsDevice && 967 FD->hasAttr<CUDAGlobalAttr>()) 968 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 969 else if (isa<CXXConversionDecl>(FD) && 970 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 971 // The lambda conversion to block pointer is special; the semantics can't be 972 // expressed in the AST, so IRGen needs to special-case it. 973 EmitLambdaToBlockPointerBody(Args); 974 } else if (isa<CXXMethodDecl>(FD) && 975 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 976 // The lambda static invoker function is special, because it forwards or 977 // clones the body of the function call operator (but is actually static). 978 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 979 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 980 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 981 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 982 // Implicit copy-assignment gets the same special treatment as implicit 983 // copy-constructors. 984 emitImplicitAssignmentOperatorBody(Args); 985 } else if (Stmt *Body = FD->getBody()) { 986 EmitFunctionBody(Args, Body); 987 } else 988 llvm_unreachable("no definition for emitted function"); 989 990 // C++11 [stmt.return]p2: 991 // Flowing off the end of a function [...] results in undefined behavior in 992 // a value-returning function. 993 // C11 6.9.1p12: 994 // If the '}' that terminates a function is reached, and the value of the 995 // function call is used by the caller, the behavior is undefined. 996 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 997 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 998 if (SanOpts.has(SanitizerKind::Return)) { 999 SanitizerScope SanScope(this); 1000 llvm::Value *IsFalse = Builder.getFalse(); 1001 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1002 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1003 None); 1004 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1005 EmitTrapCall(llvm::Intrinsic::trap); 1006 } 1007 Builder.CreateUnreachable(); 1008 Builder.ClearInsertionPoint(); 1009 } 1010 1011 // Emit the standard function epilogue. 1012 FinishFunction(BodyRange.getEnd()); 1013 1014 // If we haven't marked the function nothrow through other means, do 1015 // a quick pass now to see if we can. 1016 if (!CurFn->doesNotThrow()) 1017 TryMarkNoThrow(CurFn); 1018 } 1019 1020 /// ContainsLabel - Return true if the statement contains a label in it. If 1021 /// this statement is not executed normally, it not containing a label means 1022 /// that we can just remove the code. 1023 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1024 // Null statement, not a label! 1025 if (!S) return false; 1026 1027 // If this is a label, we have to emit the code, consider something like: 1028 // if (0) { ... foo: bar(); } goto foo; 1029 // 1030 // TODO: If anyone cared, we could track __label__'s, since we know that you 1031 // can't jump to one from outside their declared region. 1032 if (isa<LabelStmt>(S)) 1033 return true; 1034 1035 // If this is a case/default statement, and we haven't seen a switch, we have 1036 // to emit the code. 1037 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1038 return true; 1039 1040 // If this is a switch statement, we want to ignore cases below it. 1041 if (isa<SwitchStmt>(S)) 1042 IgnoreCaseStmts = true; 1043 1044 // Scan subexpressions for verboten labels. 1045 for (const Stmt *SubStmt : S->children()) 1046 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1047 return true; 1048 1049 return false; 1050 } 1051 1052 /// containsBreak - Return true if the statement contains a break out of it. 1053 /// If the statement (recursively) contains a switch or loop with a break 1054 /// inside of it, this is fine. 1055 bool CodeGenFunction::containsBreak(const Stmt *S) { 1056 // Null statement, not a label! 1057 if (!S) return false; 1058 1059 // If this is a switch or loop that defines its own break scope, then we can 1060 // include it and anything inside of it. 1061 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1062 isa<ForStmt>(S)) 1063 return false; 1064 1065 if (isa<BreakStmt>(S)) 1066 return true; 1067 1068 // Scan subexpressions for verboten breaks. 1069 for (const Stmt *SubStmt : S->children()) 1070 if (containsBreak(SubStmt)) 1071 return true; 1072 1073 return false; 1074 } 1075 1076 1077 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1078 /// to a constant, or if it does but contains a label, return false. If it 1079 /// constant folds return true and set the boolean result in Result. 1080 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1081 bool &ResultBool) { 1082 llvm::APSInt ResultInt; 1083 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1084 return false; 1085 1086 ResultBool = ResultInt.getBoolValue(); 1087 return true; 1088 } 1089 1090 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1091 /// to a constant, or if it does but contains a label, return false. If it 1092 /// constant folds return true and set the folded value. 1093 bool CodeGenFunction:: 1094 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1095 // FIXME: Rename and handle conversion of other evaluatable things 1096 // to bool. 1097 llvm::APSInt Int; 1098 if (!Cond->EvaluateAsInt(Int, getContext())) 1099 return false; // Not foldable, not integer or not fully evaluatable. 1100 1101 if (CodeGenFunction::ContainsLabel(Cond)) 1102 return false; // Contains a label. 1103 1104 ResultInt = Int; 1105 return true; 1106 } 1107 1108 1109 1110 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1111 /// statement) to the specified blocks. Based on the condition, this might try 1112 /// to simplify the codegen of the conditional based on the branch. 1113 /// 1114 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1115 llvm::BasicBlock *TrueBlock, 1116 llvm::BasicBlock *FalseBlock, 1117 uint64_t TrueCount) { 1118 Cond = Cond->IgnoreParens(); 1119 1120 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1121 1122 // Handle X && Y in a condition. 1123 if (CondBOp->getOpcode() == BO_LAnd) { 1124 // If we have "1 && X", simplify the code. "0 && X" would have constant 1125 // folded if the case was simple enough. 1126 bool ConstantBool = false; 1127 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1128 ConstantBool) { 1129 // br(1 && X) -> br(X). 1130 incrementProfileCounter(CondBOp); 1131 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1132 TrueCount); 1133 } 1134 1135 // If we have "X && 1", simplify the code to use an uncond branch. 1136 // "X && 0" would have been constant folded to 0. 1137 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1138 ConstantBool) { 1139 // br(X && 1) -> br(X). 1140 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1141 TrueCount); 1142 } 1143 1144 // Emit the LHS as a conditional. If the LHS conditional is false, we 1145 // want to jump to the FalseBlock. 1146 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1147 // The counter tells us how often we evaluate RHS, and all of TrueCount 1148 // can be propagated to that branch. 1149 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1150 1151 ConditionalEvaluation eval(*this); 1152 { 1153 ApplyDebugLocation DL(*this, Cond); 1154 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1155 EmitBlock(LHSTrue); 1156 } 1157 1158 incrementProfileCounter(CondBOp); 1159 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1160 1161 // Any temporaries created here are conditional. 1162 eval.begin(*this); 1163 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1164 eval.end(*this); 1165 1166 return; 1167 } 1168 1169 if (CondBOp->getOpcode() == BO_LOr) { 1170 // If we have "0 || X", simplify the code. "1 || X" would have constant 1171 // folded if the case was simple enough. 1172 bool ConstantBool = false; 1173 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1174 !ConstantBool) { 1175 // br(0 || X) -> br(X). 1176 incrementProfileCounter(CondBOp); 1177 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1178 TrueCount); 1179 } 1180 1181 // If we have "X || 0", simplify the code to use an uncond branch. 1182 // "X || 1" would have been constant folded to 1. 1183 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1184 !ConstantBool) { 1185 // br(X || 0) -> br(X). 1186 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1187 TrueCount); 1188 } 1189 1190 // Emit the LHS as a conditional. If the LHS conditional is true, we 1191 // want to jump to the TrueBlock. 1192 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1193 // We have the count for entry to the RHS and for the whole expression 1194 // being true, so we can divy up True count between the short circuit and 1195 // the RHS. 1196 uint64_t LHSCount = 1197 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1198 uint64_t RHSCount = TrueCount - LHSCount; 1199 1200 ConditionalEvaluation eval(*this); 1201 { 1202 ApplyDebugLocation DL(*this, Cond); 1203 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1204 EmitBlock(LHSFalse); 1205 } 1206 1207 incrementProfileCounter(CondBOp); 1208 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1209 1210 // Any temporaries created here are conditional. 1211 eval.begin(*this); 1212 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1213 1214 eval.end(*this); 1215 1216 return; 1217 } 1218 } 1219 1220 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1221 // br(!x, t, f) -> br(x, f, t) 1222 if (CondUOp->getOpcode() == UO_LNot) { 1223 // Negate the count. 1224 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1225 // Negate the condition and swap the destination blocks. 1226 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1227 FalseCount); 1228 } 1229 } 1230 1231 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1232 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1233 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1234 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1235 1236 ConditionalEvaluation cond(*this); 1237 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1238 getProfileCount(CondOp)); 1239 1240 // When computing PGO branch weights, we only know the overall count for 1241 // the true block. This code is essentially doing tail duplication of the 1242 // naive code-gen, introducing new edges for which counts are not 1243 // available. Divide the counts proportionally between the LHS and RHS of 1244 // the conditional operator. 1245 uint64_t LHSScaledTrueCount = 0; 1246 if (TrueCount) { 1247 double LHSRatio = 1248 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1249 LHSScaledTrueCount = TrueCount * LHSRatio; 1250 } 1251 1252 cond.begin(*this); 1253 EmitBlock(LHSBlock); 1254 incrementProfileCounter(CondOp); 1255 { 1256 ApplyDebugLocation DL(*this, Cond); 1257 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1258 LHSScaledTrueCount); 1259 } 1260 cond.end(*this); 1261 1262 cond.begin(*this); 1263 EmitBlock(RHSBlock); 1264 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1265 TrueCount - LHSScaledTrueCount); 1266 cond.end(*this); 1267 1268 return; 1269 } 1270 1271 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1272 // Conditional operator handling can give us a throw expression as a 1273 // condition for a case like: 1274 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1275 // Fold this to: 1276 // br(c, throw x, br(y, t, f)) 1277 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1278 return; 1279 } 1280 1281 // If the branch has a condition wrapped by __builtin_unpredictable, 1282 // create metadata that specifies that the branch is unpredictable. 1283 // Don't bother if not optimizing because that metadata would not be used. 1284 llvm::MDNode *Unpredictable = nullptr; 1285 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1286 if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) { 1287 const Decl *TargetDecl = Call->getCalleeDecl(); 1288 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1289 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1290 llvm::MDBuilder MDHelper(getLLVMContext()); 1291 Unpredictable = MDHelper.createUnpredictable(); 1292 } 1293 } 1294 } 1295 } 1296 1297 // Create branch weights based on the number of times we get here and the 1298 // number of times the condition should be true. 1299 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1300 llvm::MDNode *Weights = 1301 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1302 1303 // Emit the code with the fully general case. 1304 llvm::Value *CondV; 1305 { 1306 ApplyDebugLocation DL(*this, Cond); 1307 CondV = EvaluateExprAsBool(Cond); 1308 } 1309 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1310 } 1311 1312 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1313 /// specified stmt yet. 1314 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1315 CGM.ErrorUnsupported(S, Type); 1316 } 1317 1318 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1319 /// variable-length array whose elements have a non-zero bit-pattern. 1320 /// 1321 /// \param baseType the inner-most element type of the array 1322 /// \param src - a char* pointing to the bit-pattern for a single 1323 /// base element of the array 1324 /// \param sizeInChars - the total size of the VLA, in chars 1325 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1326 Address dest, Address src, 1327 llvm::Value *sizeInChars) { 1328 CGBuilderTy &Builder = CGF.Builder; 1329 1330 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1331 llvm::Value *baseSizeInChars 1332 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1333 1334 Address begin = 1335 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1336 llvm::Value *end = 1337 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1338 1339 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1340 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1341 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1342 1343 // Make a loop over the VLA. C99 guarantees that the VLA element 1344 // count must be nonzero. 1345 CGF.EmitBlock(loopBB); 1346 1347 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1348 cur->addIncoming(begin.getPointer(), originBB); 1349 1350 CharUnits curAlign = 1351 dest.getAlignment().alignmentOfArrayElement(baseSize); 1352 1353 // memcpy the individual element bit-pattern. 1354 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1355 /*volatile*/ false); 1356 1357 // Go to the next element. 1358 llvm::Value *next = 1359 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1360 1361 // Leave if that's the end of the VLA. 1362 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1363 Builder.CreateCondBr(done, contBB, loopBB); 1364 cur->addIncoming(next, loopBB); 1365 1366 CGF.EmitBlock(contBB); 1367 } 1368 1369 void 1370 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1371 // Ignore empty classes in C++. 1372 if (getLangOpts().CPlusPlus) { 1373 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1374 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1375 return; 1376 } 1377 } 1378 1379 // Cast the dest ptr to the appropriate i8 pointer type. 1380 if (DestPtr.getElementType() != Int8Ty) 1381 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1382 1383 // Get size and alignment info for this aggregate. 1384 CharUnits size = getContext().getTypeSizeInChars(Ty); 1385 1386 llvm::Value *SizeVal; 1387 const VariableArrayType *vla; 1388 1389 // Don't bother emitting a zero-byte memset. 1390 if (size.isZero()) { 1391 // But note that getTypeInfo returns 0 for a VLA. 1392 if (const VariableArrayType *vlaType = 1393 dyn_cast_or_null<VariableArrayType>( 1394 getContext().getAsArrayType(Ty))) { 1395 QualType eltType; 1396 llvm::Value *numElts; 1397 std::tie(numElts, eltType) = getVLASize(vlaType); 1398 1399 SizeVal = numElts; 1400 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1401 if (!eltSize.isOne()) 1402 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1403 vla = vlaType; 1404 } else { 1405 return; 1406 } 1407 } else { 1408 SizeVal = CGM.getSize(size); 1409 vla = nullptr; 1410 } 1411 1412 // If the type contains a pointer to data member we can't memset it to zero. 1413 // Instead, create a null constant and copy it to the destination. 1414 // TODO: there are other patterns besides zero that we can usefully memset, 1415 // like -1, which happens to be the pattern used by member-pointers. 1416 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1417 // For a VLA, emit a single element, then splat that over the VLA. 1418 if (vla) Ty = getContext().getBaseElementType(vla); 1419 1420 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1421 1422 llvm::GlobalVariable *NullVariable = 1423 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1424 /*isConstant=*/true, 1425 llvm::GlobalVariable::PrivateLinkage, 1426 NullConstant, Twine()); 1427 CharUnits NullAlign = DestPtr.getAlignment(); 1428 NullVariable->setAlignment(NullAlign.getQuantity()); 1429 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1430 NullAlign); 1431 1432 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1433 1434 // Get and call the appropriate llvm.memcpy overload. 1435 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1436 return; 1437 } 1438 1439 // Otherwise, just memset the whole thing to zero. This is legal 1440 // because in LLVM, all default initializers (other than the ones we just 1441 // handled above) are guaranteed to have a bit pattern of all zeros. 1442 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1443 } 1444 1445 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1446 // Make sure that there is a block for the indirect goto. 1447 if (!IndirectBranch) 1448 GetIndirectGotoBlock(); 1449 1450 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1451 1452 // Make sure the indirect branch includes all of the address-taken blocks. 1453 IndirectBranch->addDestination(BB); 1454 return llvm::BlockAddress::get(CurFn, BB); 1455 } 1456 1457 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1458 // If we already made the indirect branch for indirect goto, return its block. 1459 if (IndirectBranch) return IndirectBranch->getParent(); 1460 1461 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1462 1463 // Create the PHI node that indirect gotos will add entries to. 1464 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1465 "indirect.goto.dest"); 1466 1467 // Create the indirect branch instruction. 1468 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1469 return IndirectBranch->getParent(); 1470 } 1471 1472 /// Computes the length of an array in elements, as well as the base 1473 /// element type and a properly-typed first element pointer. 1474 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1475 QualType &baseType, 1476 Address &addr) { 1477 const ArrayType *arrayType = origArrayType; 1478 1479 // If it's a VLA, we have to load the stored size. Note that 1480 // this is the size of the VLA in bytes, not its size in elements. 1481 llvm::Value *numVLAElements = nullptr; 1482 if (isa<VariableArrayType>(arrayType)) { 1483 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1484 1485 // Walk into all VLAs. This doesn't require changes to addr, 1486 // which has type T* where T is the first non-VLA element type. 1487 do { 1488 QualType elementType = arrayType->getElementType(); 1489 arrayType = getContext().getAsArrayType(elementType); 1490 1491 // If we only have VLA components, 'addr' requires no adjustment. 1492 if (!arrayType) { 1493 baseType = elementType; 1494 return numVLAElements; 1495 } 1496 } while (isa<VariableArrayType>(arrayType)); 1497 1498 // We get out here only if we find a constant array type 1499 // inside the VLA. 1500 } 1501 1502 // We have some number of constant-length arrays, so addr should 1503 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1504 // down to the first element of addr. 1505 SmallVector<llvm::Value*, 8> gepIndices; 1506 1507 // GEP down to the array type. 1508 llvm::ConstantInt *zero = Builder.getInt32(0); 1509 gepIndices.push_back(zero); 1510 1511 uint64_t countFromCLAs = 1; 1512 QualType eltType; 1513 1514 llvm::ArrayType *llvmArrayType = 1515 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1516 while (llvmArrayType) { 1517 assert(isa<ConstantArrayType>(arrayType)); 1518 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1519 == llvmArrayType->getNumElements()); 1520 1521 gepIndices.push_back(zero); 1522 countFromCLAs *= llvmArrayType->getNumElements(); 1523 eltType = arrayType->getElementType(); 1524 1525 llvmArrayType = 1526 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1527 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1528 assert((!llvmArrayType || arrayType) && 1529 "LLVM and Clang types are out-of-synch"); 1530 } 1531 1532 if (arrayType) { 1533 // From this point onwards, the Clang array type has been emitted 1534 // as some other type (probably a packed struct). Compute the array 1535 // size, and just emit the 'begin' expression as a bitcast. 1536 while (arrayType) { 1537 countFromCLAs *= 1538 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1539 eltType = arrayType->getElementType(); 1540 arrayType = getContext().getAsArrayType(eltType); 1541 } 1542 1543 llvm::Type *baseType = ConvertType(eltType); 1544 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1545 } else { 1546 // Create the actual GEP. 1547 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1548 gepIndices, "array.begin"), 1549 addr.getAlignment()); 1550 } 1551 1552 baseType = eltType; 1553 1554 llvm::Value *numElements 1555 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1556 1557 // If we had any VLA dimensions, factor them in. 1558 if (numVLAElements) 1559 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1560 1561 return numElements; 1562 } 1563 1564 std::pair<llvm::Value*, QualType> 1565 CodeGenFunction::getVLASize(QualType type) { 1566 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1567 assert(vla && "type was not a variable array type!"); 1568 return getVLASize(vla); 1569 } 1570 1571 std::pair<llvm::Value*, QualType> 1572 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1573 // The number of elements so far; always size_t. 1574 llvm::Value *numElements = nullptr; 1575 1576 QualType elementType; 1577 do { 1578 elementType = type->getElementType(); 1579 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1580 assert(vlaSize && "no size for VLA!"); 1581 assert(vlaSize->getType() == SizeTy); 1582 1583 if (!numElements) { 1584 numElements = vlaSize; 1585 } else { 1586 // It's undefined behavior if this wraps around, so mark it that way. 1587 // FIXME: Teach -fsanitize=undefined to trap this. 1588 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1589 } 1590 } while ((type = getContext().getAsVariableArrayType(elementType))); 1591 1592 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1593 } 1594 1595 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1596 assert(type->isVariablyModifiedType() && 1597 "Must pass variably modified type to EmitVLASizes!"); 1598 1599 EnsureInsertPoint(); 1600 1601 // We're going to walk down into the type and look for VLA 1602 // expressions. 1603 do { 1604 assert(type->isVariablyModifiedType()); 1605 1606 const Type *ty = type.getTypePtr(); 1607 switch (ty->getTypeClass()) { 1608 1609 #define TYPE(Class, Base) 1610 #define ABSTRACT_TYPE(Class, Base) 1611 #define NON_CANONICAL_TYPE(Class, Base) 1612 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1613 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1614 #include "clang/AST/TypeNodes.def" 1615 llvm_unreachable("unexpected dependent type!"); 1616 1617 // These types are never variably-modified. 1618 case Type::Builtin: 1619 case Type::Complex: 1620 case Type::Vector: 1621 case Type::ExtVector: 1622 case Type::Record: 1623 case Type::Enum: 1624 case Type::Elaborated: 1625 case Type::TemplateSpecialization: 1626 case Type::ObjCObject: 1627 case Type::ObjCInterface: 1628 case Type::ObjCObjectPointer: 1629 llvm_unreachable("type class is never variably-modified!"); 1630 1631 case Type::Adjusted: 1632 type = cast<AdjustedType>(ty)->getAdjustedType(); 1633 break; 1634 1635 case Type::Decayed: 1636 type = cast<DecayedType>(ty)->getPointeeType(); 1637 break; 1638 1639 case Type::Pointer: 1640 type = cast<PointerType>(ty)->getPointeeType(); 1641 break; 1642 1643 case Type::BlockPointer: 1644 type = cast<BlockPointerType>(ty)->getPointeeType(); 1645 break; 1646 1647 case Type::LValueReference: 1648 case Type::RValueReference: 1649 type = cast<ReferenceType>(ty)->getPointeeType(); 1650 break; 1651 1652 case Type::MemberPointer: 1653 type = cast<MemberPointerType>(ty)->getPointeeType(); 1654 break; 1655 1656 case Type::ConstantArray: 1657 case Type::IncompleteArray: 1658 // Losing element qualification here is fine. 1659 type = cast<ArrayType>(ty)->getElementType(); 1660 break; 1661 1662 case Type::VariableArray: { 1663 // Losing element qualification here is fine. 1664 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1665 1666 // Unknown size indication requires no size computation. 1667 // Otherwise, evaluate and record it. 1668 if (const Expr *size = vat->getSizeExpr()) { 1669 // It's possible that we might have emitted this already, 1670 // e.g. with a typedef and a pointer to it. 1671 llvm::Value *&entry = VLASizeMap[size]; 1672 if (!entry) { 1673 llvm::Value *Size = EmitScalarExpr(size); 1674 1675 // C11 6.7.6.2p5: 1676 // If the size is an expression that is not an integer constant 1677 // expression [...] each time it is evaluated it shall have a value 1678 // greater than zero. 1679 if (SanOpts.has(SanitizerKind::VLABound) && 1680 size->getType()->isSignedIntegerType()) { 1681 SanitizerScope SanScope(this); 1682 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1683 llvm::Constant *StaticArgs[] = { 1684 EmitCheckSourceLocation(size->getLocStart()), 1685 EmitCheckTypeDescriptor(size->getType()) 1686 }; 1687 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1688 SanitizerKind::VLABound), 1689 "vla_bound_not_positive", StaticArgs, Size); 1690 } 1691 1692 // Always zexting here would be wrong if it weren't 1693 // undefined behavior to have a negative bound. 1694 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1695 } 1696 } 1697 type = vat->getElementType(); 1698 break; 1699 } 1700 1701 case Type::FunctionProto: 1702 case Type::FunctionNoProto: 1703 type = cast<FunctionType>(ty)->getReturnType(); 1704 break; 1705 1706 case Type::Paren: 1707 case Type::TypeOf: 1708 case Type::UnaryTransform: 1709 case Type::Attributed: 1710 case Type::SubstTemplateTypeParm: 1711 case Type::PackExpansion: 1712 // Keep walking after single level desugaring. 1713 type = type.getSingleStepDesugaredType(getContext()); 1714 break; 1715 1716 case Type::Typedef: 1717 case Type::Decltype: 1718 case Type::Auto: 1719 // Stop walking: nothing to do. 1720 return; 1721 1722 case Type::TypeOfExpr: 1723 // Stop walking: emit typeof expression. 1724 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1725 return; 1726 1727 case Type::Atomic: 1728 type = cast<AtomicType>(ty)->getValueType(); 1729 break; 1730 } 1731 } while (type->isVariablyModifiedType()); 1732 } 1733 1734 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1735 if (getContext().getBuiltinVaListType()->isArrayType()) 1736 return EmitPointerWithAlignment(E); 1737 return EmitLValue(E).getAddress(); 1738 } 1739 1740 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1741 return EmitLValue(E).getAddress(); 1742 } 1743 1744 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1745 llvm::Constant *Init) { 1746 assert (Init && "Invalid DeclRefExpr initializer!"); 1747 if (CGDebugInfo *Dbg = getDebugInfo()) 1748 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1749 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1750 } 1751 1752 CodeGenFunction::PeepholeProtection 1753 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1754 // At the moment, the only aggressive peephole we do in IR gen 1755 // is trunc(zext) folding, but if we add more, we can easily 1756 // extend this protection. 1757 1758 if (!rvalue.isScalar()) return PeepholeProtection(); 1759 llvm::Value *value = rvalue.getScalarVal(); 1760 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1761 1762 // Just make an extra bitcast. 1763 assert(HaveInsertPoint()); 1764 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1765 Builder.GetInsertBlock()); 1766 1767 PeepholeProtection protection; 1768 protection.Inst = inst; 1769 return protection; 1770 } 1771 1772 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1773 if (!protection.Inst) return; 1774 1775 // In theory, we could try to duplicate the peepholes now, but whatever. 1776 protection.Inst->eraseFromParent(); 1777 } 1778 1779 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1780 llvm::Value *AnnotatedVal, 1781 StringRef AnnotationStr, 1782 SourceLocation Location) { 1783 llvm::Value *Args[4] = { 1784 AnnotatedVal, 1785 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1786 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1787 CGM.EmitAnnotationLineNo(Location) 1788 }; 1789 return Builder.CreateCall(AnnotationFn, Args); 1790 } 1791 1792 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1793 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1794 // FIXME We create a new bitcast for every annotation because that's what 1795 // llvm-gcc was doing. 1796 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1797 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1798 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1799 I->getAnnotation(), D->getLocation()); 1800 } 1801 1802 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1803 Address Addr) { 1804 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1805 llvm::Value *V = Addr.getPointer(); 1806 llvm::Type *VTy = V->getType(); 1807 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1808 CGM.Int8PtrTy); 1809 1810 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1811 // FIXME Always emit the cast inst so we can differentiate between 1812 // annotation on the first field of a struct and annotation on the struct 1813 // itself. 1814 if (VTy != CGM.Int8PtrTy) 1815 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1816 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1817 V = Builder.CreateBitCast(V, VTy); 1818 } 1819 1820 return Address(V, Addr.getAlignment()); 1821 } 1822 1823 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1824 1825 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1826 : CGF(CGF) { 1827 assert(!CGF->IsSanitizerScope); 1828 CGF->IsSanitizerScope = true; 1829 } 1830 1831 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1832 CGF->IsSanitizerScope = false; 1833 } 1834 1835 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1836 const llvm::Twine &Name, 1837 llvm::BasicBlock *BB, 1838 llvm::BasicBlock::iterator InsertPt) const { 1839 LoopStack.InsertHelper(I); 1840 if (IsSanitizerScope) 1841 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1842 } 1843 1844 template <bool PreserveNames> 1845 void CGBuilderInserter<PreserveNames>::InsertHelper( 1846 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1847 llvm::BasicBlock::iterator InsertPt) const { 1848 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1849 InsertPt); 1850 if (CGF) 1851 CGF->InsertHelper(I, Name, BB, InsertPt); 1852 } 1853 1854 #ifdef NDEBUG 1855 #define PreserveNames false 1856 #else 1857 #define PreserveNames true 1858 #endif 1859 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1860 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1861 llvm::BasicBlock::iterator InsertPt) const; 1862 #undef PreserveNames 1863 1864 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1865 CodeGenModule &CGM, const FunctionDecl *FD, 1866 std::string &FirstMissing) { 1867 // If there aren't any required features listed then go ahead and return. 1868 if (ReqFeatures.empty()) 1869 return false; 1870 1871 // Now build up the set of caller features and verify that all the required 1872 // features are there. 1873 llvm::StringMap<bool> CallerFeatureMap; 1874 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1875 1876 // If we have at least one of the features in the feature list return 1877 // true, otherwise return false. 1878 return std::all_of( 1879 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1880 SmallVector<StringRef, 1> OrFeatures; 1881 Feature.split(OrFeatures, "|"); 1882 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1883 [&](StringRef Feature) { 1884 if (!CallerFeatureMap.lookup(Feature)) { 1885 FirstMissing = Feature.str(); 1886 return false; 1887 } 1888 return true; 1889 }); 1890 }); 1891 } 1892 1893 // Emits an error if we don't have a valid set of target features for the 1894 // called function. 1895 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1896 const FunctionDecl *TargetDecl) { 1897 // Early exit if this is an indirect call. 1898 if (!TargetDecl) 1899 return; 1900 1901 // Get the current enclosing function if it exists. If it doesn't 1902 // we can't check the target features anyhow. 1903 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1904 if (!FD) 1905 return; 1906 1907 // Grab the required features for the call. For a builtin this is listed in 1908 // the td file with the default cpu, for an always_inline function this is any 1909 // listed cpu and any listed features. 1910 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1911 std::string MissingFeature; 1912 if (BuiltinID) { 1913 SmallVector<StringRef, 1> ReqFeatures; 1914 const char *FeatureList = 1915 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1916 // Return if the builtin doesn't have any required features. 1917 if (!FeatureList || StringRef(FeatureList) == "") 1918 return; 1919 StringRef(FeatureList).split(ReqFeatures, ","); 1920 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1921 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1922 << TargetDecl->getDeclName() 1923 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1924 1925 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1926 // Get the required features for the callee. 1927 SmallVector<StringRef, 1> ReqFeatures; 1928 llvm::StringMap<bool> CalleeFeatureMap; 1929 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1930 for (const auto &F : CalleeFeatureMap) { 1931 // Only positive features are "required". 1932 if (F.getValue()) 1933 ReqFeatures.push_back(F.getKey()); 1934 } 1935 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1936 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1937 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1938 } 1939 } 1940