Home | History | Annotate | Download | only in www
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2           "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
      6   <title>Clang - Expressive Diagnostics</title>
      7   <link type="text/css" rel="stylesheet" href="menu.css">
      8   <link type="text/css" rel="stylesheet" href="content.css">
      9   <style type="text/css">
     10   .loc { font-weight: bold; }
     11   .err { color:red; font-weight: bold; }
     12   .warn { color:magenta; font-weight: bold; }
     13   .note { color:gray; font-weight: bold; }
     14   .msg { font-weight: bold; }
     15   .cmd { font-style: italic; }
     16   .snip { }
     17   .point { color:green; font-weight: bold; }
     18   </style>
     19 </head>
     20 <body>
     21 
     22 <!--#include virtual="menu.html.incl"-->
     23 
     24 <div id="content">
     25 
     26 
     27 <!--=======================================================================-->
     28 <h1>Expressive Diagnostics</h1>
     29 <!--=======================================================================-->
     30 
     31 <p>In addition to being fast and functional, we aim to make Clang extremely user
     32 friendly.  As far as a command-line compiler goes, this basically boils down to
     33 making the diagnostics (error and warning messages) generated by the compiler
     34 be as useful as possible.  There are several ways that we do this.  This section
     35 talks about the experience provided by the command line compiler, contrasting
     36 Clang output to GCC 4.9's output in some cases.
     37 </p>
     38 
     39 <h2>Column Numbers and Caret Diagnostics</h2>
     40 
     41 <p>First, all diagnostics produced by clang include full column number
     42 information. The clang command-line compiler driver uses this information
     43 to print "point diagnostics".
     44 (IDEs can use the information to display in-line error markup.)
     45 This is nice because it makes it very easy to understand exactly
     46 what is wrong in a particular piece of code.</p>
     47 
     48 <p>The point (the green "^" character) exactly shows where the problem is, even
     49 inside of a string.  This makes it really easy to jump to the problem and
     50 helps when multiple instances of the same character occur on a line. (We'll
     51 revisit this more in following examples.)</p>
     52 
     53 <pre>
     54   $ <span class="cmd">gcc-4.9 -fsyntax-only -Wformat format-strings.c</span>
     55   format-strings.c: In function 'void f()':
     56   format-strings.c:91:16: warning: field precision specifier '.*' expects a matching 'int' argument [-Wformat=]
     57      printf("%.*d");
     58                   ^
     59   format-strings.c:91:16: warning: format '%d' expects a matching 'int' argument [-Wformat=]
     60   $ <span class="cmd">clang -fsyntax-only format-strings.c</span>
     61   <span class="loc">format-strings.c:91:13:</span> <span class="warn">warning:</span> <span class="msg">'.*' specified field precision is missing a matching 'int' argument</span>
     62   <span class="snip" >  printf("%.*d");</span>
     63   <span class="point">            ^</span>
     64 </pre>
     65 
     66 <p>Note that modern versions of GCC have followed Clang's lead, and are
     67 now able to give a column for a diagnostic, and include a snippet of source
     68 text in the result. However, Clang's column number is much more accurate,
     69 pointing at the problematic format specifier, rather than the <tt>)</tt>
     70 character the parser had reached when the problem was detected.
     71 Also, Clang's diagnostic is colored by default, making it easier to
     72 distinguish from nearby text.</p>
     73 
     74 <h2>Range Highlighting for Related Text</h2>
     75 
     76 <p>Clang captures and accurately tracks range information for expressions,
     77 statements, and other constructs in your program and uses this to make
     78 diagnostics highlight related information.  In the following somewhat
     79 nonsensical example you can see that you don't even need to see the original source code to
     80 understand what is wrong based on the Clang error. Because clang prints a
     81 point, you know exactly <em>which</em> plus it is complaining about.  The range
     82 information highlights the left and right side of the plus which makes it
     83 immediately obvious what the compiler is talking about.
     84 Range information is very useful for
     85 cases involving precedence issues and many other cases.</p>
     86 
     87 <pre>
     88   $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
     89   t.c: In function 'int f(int, int)':
     90   t.c:7:39: error: invalid operands to binary + (have 'int' and 'struct A')
     91      return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
     92                                          ^
     93   $ <span class="cmd">clang -fsyntax-only t.c</span>
     94   <span class="loc">t.c:7:39:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('int' and 'struct A')</span>
     95   <span class="snip" >  return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);</span>
     96   <span class="point">                       ~~~~~~~~~~~~~~ ^ ~~~~~</span>
     97 </pre>
     98 
     99 <h2>Precision in Wording</h2>
    100 
    101 <p>A detail is that we have tried really hard to make the diagnostics that come
    102 out of clang contain exactly the pertinent information about what is wrong and
    103 why.  In the example above, we tell you what the inferred types are for
    104 the left and right hand sides, and we don't repeat what is obvious from the
    105 point (e.g., that this is a "binary +").</p>
    106 
    107 <p>Many other examples abound. In the following example, not only do we tell you
    108 that there is a problem with the <tt>*</tt>
    109 and point to it, we say exactly why and tell you what the type is (in case it is
    110 a complicated subexpression, such as a call to an overloaded function).  This
    111 sort of attention to detail makes it much easier to understand and fix problems
    112 quickly.</p>
    113 
    114 <pre>
    115   $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
    116   t.c:5:11: error: invalid type argument of unary '*' (have 'int')
    117     return *SomeA.X;
    118            ^
    119   $ <span class="cmd">clang -fsyntax-only t.c</span>
    120   <span class="loc">t.c:5:11:</span> <span class="err">error:</span> <span class="msg">indirection requires pointer operand ('int' invalid)</span>
    121   <span class="snip" >  int y = *SomeA.X;</span>
    122   <span class="point">          ^~~~~~~~</span>
    123 </pre>
    124 
    125 <h2>Typedef Preservation and Selective Unwrapping</h2>
    126 
    127 <p>Many programmers use high-level user defined types, typedefs, and other
    128 syntactic sugar to refer to types in their program.  This is useful because they
    129 can abbreviate otherwise very long types and it is useful to preserve the
    130 typename in diagnostics.  However, sometimes very simple typedefs can wrap
    131 trivial types and it is important to strip off the typedef to understand what
    132 is going on.  Clang aims to handle both cases well.<p>
    133 
    134 <p>The following example shows where it is important to preserve
    135 a typedef in C.</p>
    136 
    137 <pre>
    138   $ <span class="cmd">clang -fsyntax-only t.c</span>
    139   <span class="loc">t.c:15:11:</span> <span class="err">error:</span> <span class="msg">can't convert between vector values of different size ('__m128' and 'int const *')</span>
    140   <span class="snip">  myvec[1]/P;</span>
    141   <span class="point">  ~~~~~~~~^~</span>
    142 </pre>
    143 
    144 <p>The following example shows where it is useful for the compiler to expose
    145 underlying details of a typedef. If the user was somehow confused about how the
    146 system "pid_t" typedef is defined, Clang helpfully displays it with "aka".</p>
    147 
    148 <pre>
    149   $ <span class="cmd">clang -fsyntax-only t.c</span>
    150   <span class="loc">t.c:13:9:</span> <span class="err">error:</span> <span class="msg">member reference base type 'pid_t' (aka 'int') is not a structure or union</span>
    151   <span class="snip">  myvar = myvar.x;</span>
    152   <span class="point">          ~~~~~ ^</span>
    153 </pre>
    154 
    155 <p>In C++, type preservation includes retaining any qualification written into type names. For example, if we take a small snippet of code such as:
    156 
    157 <blockquote>
    158 <pre>
    159 namespace services {
    160   struct WebService {  };
    161 }
    162 namespace myapp {
    163   namespace servers {
    164     struct Server {  };
    165   }
    166 }
    167 
    168 using namespace myapp;
    169 void addHTTPService(servers::Server const &amp;server, ::services::WebService const *http) {
    170   server += http;
    171 }
    172 </pre>
    173 </blockquote>
    174 
    175 <p>and then compile it, we see that Clang is both providing accurate information and is retaining the types as written by the user (e.g., "servers::Server", "::services::WebService"):
    176 
    177 <pre>
    178   $ <span class="cmd">clang -fsyntax-only t.cpp</span>
    179   <span class="loc">t.cpp:9:10:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('servers::Server const' and '::services::WebService const *')</span>
    180     <span class="snip">server += http;</span>
    181     <span class="point">~~~~~~ ^  ~~~~</span>
    182 </pre>
    183 
    184 <p>Naturally, type preservation extends to uses of templates, and Clang retains information about how a particular template specialization (like <code>std::vector&lt;Real&gt;</code>) was spelled within the source code. For example:</p>
    185 
    186 <pre>
    187   $ <span class="cmd">clang -fsyntax-only t.cpp</span>
    188   <span class="loc">t.cpp:12:7:</span> <span class="err">error:</span> <span class="msg">incompatible type assigning 'vector&lt;Real&gt;', expected 'std::string' (aka 'class std::basic_string&lt;char&gt;')</span>
    189     <span class="snip">str = vec</span>;
    190         <span class="point">^ ~~~</span>
    191 </pre>
    192 
    193 <h2>Fix-it Hints</h2>
    194 
    195 <p>"Fix-it" hints provide advice for fixing small, localized problems
    196 in source code. When Clang produces a diagnostic about a particular
    197 problem that it can work around (e.g., non-standard or redundant
    198 syntax, missing keywords, common mistakes, etc.), it may also provide
    199 specific guidance in the form of a code transformation to correct the
    200 problem. In the following example, Clang warns about the use of a GCC
    201 extension that has been considered obsolete since 1993. The underlined
    202 code should be removed, then replaced with the code below the
    203 point line (".x =" or ".y =", respectively).</p>
    204 
    205 <pre>
    206   $ <span class="cmd">clang t.c</span>
    207   <span class="loc">t.c:5:28:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
    208   <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
    209                           <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
    210                           <span class="snip">.x = </span>
    211   <span class="loc">t.c:5:36:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
    212   <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
    213                                   <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
    214                                   <span class="snip">.y = </span>
    215 </pre>
    216 
    217 <p>"Fix-it" hints are most useful for
    218 working around common user errors and misconceptions. For example, C++ users
    219 commonly forget the syntax for explicit specialization of class templates,
    220 as in the error in the following example. Again, after describing the problem,
    221 Clang provides the fix--add <code>template&lt;&gt;</code>--as part of the
    222 diagnostic.<p>
    223 
    224 <pre>
    225   $ <span class="cmd">clang t.cpp</span>
    226   <span class="loc">t.cpp:9:3:</span> <span class="err">error:</span> <span class="msg">template specialization requires 'template&lt;&gt;'</span>
    227     struct iterator_traits&lt;file_iterator&gt; {
    228     <span class="point">^</span>
    229     <span class="snip">template&lt;&gt; </span>
    230 </pre>
    231 
    232 <h2>Template Type Diffing</h2>
    233 
    234 <p>Templates types can be long and difficult to read.  Moreso when part of an
    235 error message.  Instead of just printing out the type name, Clang has enough
    236 information to remove the common elements and highlight the differences.  To
    237 show the template structure more clearly, the templated type can also be
    238 printed as an indented text tree.</p>
    239 
    240 Default: template diff with type elision
    241 <pre>
    242 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;[...], <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;[...], <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
    243 </pre>
    244 -fno-elide-type: template diff without elision
    245 <pre>
    246 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;int, <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;int, <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
    247 </pre>
    248 -fdiagnostics-show-template-tree: template tree printing with elision
    249 <pre>
    250 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
    251   vector&lt;
    252     map&lt;
    253       [...], 
    254       [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
    255 </pre>
    256 -fdiagnostics-show-template-tree -fno-elide-type: template tree printing with no elision
    257 <pre>
    258 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
    259   vector&lt;
    260     map&lt;
    261       int, 
    262       [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
    263 </pre>
    264 
    265 <h2>Automatic Macro Expansion</h2>
    266 
    267 <p>Many errors happen in macros that are sometimes deeply nested.  With
    268 traditional compilers, you need to dig deep into the definition of the macro to
    269 understand how you got into trouble.  The following simple example shows how
    270 Clang helps you out by automatically printing instantiation information and
    271 nested range information for diagnostics as they are instantiated through macros
    272 and also shows how some of the other pieces work in a bigger example.</p>
    273 
    274 <pre>
    275   $ <span class="cmd">clang -fsyntax-only t.c</span>
    276   <span class="loc">t.c:80:3:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))</span>
    277   <span class="snip">  X = MYMAX(P, F);</span>
    278   <span class="point">      ^~~~~~~~~~~</span>
    279   <span class="loc">t.c:76:94:</span> <span class="note">note:</span> expanded from:
    280   <span class="snip">#define MYMAX(A,B)    __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a &lt; __b ? __b : __a; })</span>
    281   <span class="point">                                                                                         ~~~ ^ ~~~</span>
    282 </pre>
    283 
    284 <p>Here's another real world warning that occurs in the "window" Unix package (which
    285 implements the "wwopen" class of APIs):</p>
    286 
    287 <pre>
    288   $ <span class="cmd">clang -fsyntax-only t.c</span>
    289   <span class="loc">t.c:22:2:</span> <span class="warn">warning:</span> <span class="msg">type specifier missing, defaults to 'int'</span>
    290   <span class="snip">        ILPAD();</span>
    291   <span class="point">        ^</span>
    292   <span class="loc">t.c:17:17:</span> <span class="note">note:</span> expanded from:
    293   <span class="snip">#define ILPAD() PAD((NROW - tt.tt_row) * 10)    /* 1 ms per char */</span>
    294   <span class="point">                ^</span>
    295   <span class="loc">t.c:14:2:</span> <span class="note">note:</span> expanded from:
    296   <span class="snip">        register i; \</span>
    297   <span class="point">        ^</span>
    298 </pre>
    299 
    300 <p>In practice, we've found that Clang's treatment of macros is actually more useful in multiply nested
    301 macros that in simple ones.</p>
    302 
    303 <h2>Quality of Implementation and Attention to Detail</h2>
    304 
    305 <p>Finally, we have put a lot of work polishing the little things, because
    306 little things add up over time and contribute to a great user experience.</p>
    307 
    308 <p>The following example shows that we recover from the simple case of
    309 forgetting a ; after a struct definition much better than GCC.</p>
    310 
    311 <pre>
    312   $ <span class="cmd">cat t.cc</span>
    313   template&lt;class T&gt;
    314   class a {};
    315   struct b {}
    316   a&lt;int&gt; c;
    317   $ <span class="cmd">gcc-4.9 t.cc</span>
    318   t.cc:4:8: error: invalid declarator before 'c'
    319    a&lt;int&gt; c;
    320            ^
    321   $ <span class="cmd">clang t.cc</span>
    322   <span class="loc">t.cc:3:12:</span> <span class="err">error:</span> <span class="msg">expected ';' after struct</span>
    323   <span class="snip" >struct b {}</span>
    324   <span class="point">           ^</span>
    325   <span class="point">           ;</span>
    326 </pre>
    327 
    328 <p>The following example shows that we diagnose and recover from a missing
    329 <tt>typename</tt> keyword well, even in complex circumstances where GCC
    330 cannot cope.</p>
    331 
    332 <pre>
    333   $ <span class="cmd">cat t.cc</span>
    334   template&lt;class T&gt; void f(T::type) { }
    335   struct A { };
    336   void g()
    337   {
    338       A a;
    339       f&lt;A&gt;(a);
    340   }
    341   $ <span class="cmd">gcc-4.9 t.cc</span>
    342   t.cc:1:33: error: variable or field 'f' declared void
    343    template&lt;class T&gt; void f(T::type) { }
    344                                    ^
    345   t.cc: In function 'void g()':
    346   t.cc:6:5: error: 'f' was not declared in this scope
    347        f&lt;A&gt;(a);
    348        ^
    349   t.cc:6:8: error: expected primary-expression before '>' token
    350        f&lt;A&gt;(a);
    351           ^
    352   $ <span class="cmd">clang t.cc</span>
    353   <span class="loc">t.cc:1:26:</span> <span class="err">error:</span> <span class="msg">missing 'typename' prior to dependent type name 'T::type'</span>
    354   <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
    355   <span class="point">                         ^~~~~~~</span>
    356   <span class="point">                         typename </span>
    357   <span class="loc">t.cc:6:5:</span> <span class="err">error:</span> <span class="msg">no matching function for call to 'f'</span>
    358   <span class="snip" >    f&lt;A&gt;(a);</span>
    359   <span class="point">    ^~~~</span>
    360   <span class="loc">t.cc:1:24:</span> <span class="note">note:</span> <span class="msg">candidate template ignored: substitution failure [with T = A]: no type named 'type' in 'A'</span>
    361   <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
    362   <span class="point">                       ^    ~~~~</span>
    363 </pre>
    364 
    365 
    366 
    367 <p>While each of these details is minor, we feel that they all add up to provide
    368 a much more polished experience.</p>
    369 
    370 </div>
    371 </body>
    372 </html>
    373