1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1"> 6 <title>Clang - Expressive Diagnostics</title> 7 <link type="text/css" rel="stylesheet" href="menu.css"> 8 <link type="text/css" rel="stylesheet" href="content.css"> 9 <style type="text/css"> 10 .loc { font-weight: bold; } 11 .err { color:red; font-weight: bold; } 12 .warn { color:magenta; font-weight: bold; } 13 .note { color:gray; font-weight: bold; } 14 .msg { font-weight: bold; } 15 .cmd { font-style: italic; } 16 .snip { } 17 .point { color:green; font-weight: bold; } 18 </style> 19 </head> 20 <body> 21 22 <!--#include virtual="menu.html.incl"--> 23 24 <div id="content"> 25 26 27 <!--=======================================================================--> 28 <h1>Expressive Diagnostics</h1> 29 <!--=======================================================================--> 30 31 <p>In addition to being fast and functional, we aim to make Clang extremely user 32 friendly. As far as a command-line compiler goes, this basically boils down to 33 making the diagnostics (error and warning messages) generated by the compiler 34 be as useful as possible. There are several ways that we do this. This section 35 talks about the experience provided by the command line compiler, contrasting 36 Clang output to GCC 4.9's output in some cases. 37 </p> 38 39 <h2>Column Numbers and Caret Diagnostics</h2> 40 41 <p>First, all diagnostics produced by clang include full column number 42 information. The clang command-line compiler driver uses this information 43 to print "point diagnostics". 44 (IDEs can use the information to display in-line error markup.) 45 This is nice because it makes it very easy to understand exactly 46 what is wrong in a particular piece of code.</p> 47 48 <p>The point (the green "^" character) exactly shows where the problem is, even 49 inside of a string. This makes it really easy to jump to the problem and 50 helps when multiple instances of the same character occur on a line. (We'll 51 revisit this more in following examples.)</p> 52 53 <pre> 54 $ <span class="cmd">gcc-4.9 -fsyntax-only -Wformat format-strings.c</span> 55 format-strings.c: In function 'void f()': 56 format-strings.c:91:16: warning: field precision specifier '.*' expects a matching 'int' argument [-Wformat=] 57 printf("%.*d"); 58 ^ 59 format-strings.c:91:16: warning: format '%d' expects a matching 'int' argument [-Wformat=] 60 $ <span class="cmd">clang -fsyntax-only format-strings.c</span> 61 <span class="loc">format-strings.c:91:13:</span> <span class="warn">warning:</span> <span class="msg">'.*' specified field precision is missing a matching 'int' argument</span> 62 <span class="snip" > printf("%.*d");</span> 63 <span class="point"> ^</span> 64 </pre> 65 66 <p>Note that modern versions of GCC have followed Clang's lead, and are 67 now able to give a column for a diagnostic, and include a snippet of source 68 text in the result. However, Clang's column number is much more accurate, 69 pointing at the problematic format specifier, rather than the <tt>)</tt> 70 character the parser had reached when the problem was detected. 71 Also, Clang's diagnostic is colored by default, making it easier to 72 distinguish from nearby text.</p> 73 74 <h2>Range Highlighting for Related Text</h2> 75 76 <p>Clang captures and accurately tracks range information for expressions, 77 statements, and other constructs in your program and uses this to make 78 diagnostics highlight related information. In the following somewhat 79 nonsensical example you can see that you don't even need to see the original source code to 80 understand what is wrong based on the Clang error. Because clang prints a 81 point, you know exactly <em>which</em> plus it is complaining about. The range 82 information highlights the left and right side of the plus which makes it 83 immediately obvious what the compiler is talking about. 84 Range information is very useful for 85 cases involving precedence issues and many other cases.</p> 86 87 <pre> 88 $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span> 89 t.c: In function 'int f(int, int)': 90 t.c:7:39: error: invalid operands to binary + (have 'int' and 'struct A') 91 return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X); 92 ^ 93 $ <span class="cmd">clang -fsyntax-only t.c</span> 94 <span class="loc">t.c:7:39:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('int' and 'struct A')</span> 95 <span class="snip" > return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);</span> 96 <span class="point"> ~~~~~~~~~~~~~~ ^ ~~~~~</span> 97 </pre> 98 99 <h2>Precision in Wording</h2> 100 101 <p>A detail is that we have tried really hard to make the diagnostics that come 102 out of clang contain exactly the pertinent information about what is wrong and 103 why. In the example above, we tell you what the inferred types are for 104 the left and right hand sides, and we don't repeat what is obvious from the 105 point (e.g., that this is a "binary +").</p> 106 107 <p>Many other examples abound. In the following example, not only do we tell you 108 that there is a problem with the <tt>*</tt> 109 and point to it, we say exactly why and tell you what the type is (in case it is 110 a complicated subexpression, such as a call to an overloaded function). This 111 sort of attention to detail makes it much easier to understand and fix problems 112 quickly.</p> 113 114 <pre> 115 $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span> 116 t.c:5:11: error: invalid type argument of unary '*' (have 'int') 117 return *SomeA.X; 118 ^ 119 $ <span class="cmd">clang -fsyntax-only t.c</span> 120 <span class="loc">t.c:5:11:</span> <span class="err">error:</span> <span class="msg">indirection requires pointer operand ('int' invalid)</span> 121 <span class="snip" > int y = *SomeA.X;</span> 122 <span class="point"> ^~~~~~~~</span> 123 </pre> 124 125 <h2>Typedef Preservation and Selective Unwrapping</h2> 126 127 <p>Many programmers use high-level user defined types, typedefs, and other 128 syntactic sugar to refer to types in their program. This is useful because they 129 can abbreviate otherwise very long types and it is useful to preserve the 130 typename in diagnostics. However, sometimes very simple typedefs can wrap 131 trivial types and it is important to strip off the typedef to understand what 132 is going on. Clang aims to handle both cases well.<p> 133 134 <p>The following example shows where it is important to preserve 135 a typedef in C.</p> 136 137 <pre> 138 $ <span class="cmd">clang -fsyntax-only t.c</span> 139 <span class="loc">t.c:15:11:</span> <span class="err">error:</span> <span class="msg">can't convert between vector values of different size ('__m128' and 'int const *')</span> 140 <span class="snip"> myvec[1]/P;</span> 141 <span class="point"> ~~~~~~~~^~</span> 142 </pre> 143 144 <p>The following example shows where it is useful for the compiler to expose 145 underlying details of a typedef. If the user was somehow confused about how the 146 system "pid_t" typedef is defined, Clang helpfully displays it with "aka".</p> 147 148 <pre> 149 $ <span class="cmd">clang -fsyntax-only t.c</span> 150 <span class="loc">t.c:13:9:</span> <span class="err">error:</span> <span class="msg">member reference base type 'pid_t' (aka 'int') is not a structure or union</span> 151 <span class="snip"> myvar = myvar.x;</span> 152 <span class="point"> ~~~~~ ^</span> 153 </pre> 154 155 <p>In C++, type preservation includes retaining any qualification written into type names. For example, if we take a small snippet of code such as: 156 157 <blockquote> 158 <pre> 159 namespace services { 160 struct WebService { }; 161 } 162 namespace myapp { 163 namespace servers { 164 struct Server { }; 165 } 166 } 167 168 using namespace myapp; 169 void addHTTPService(servers::Server const &server, ::services::WebService const *http) { 170 server += http; 171 } 172 </pre> 173 </blockquote> 174 175 <p>and then compile it, we see that Clang is both providing accurate information and is retaining the types as written by the user (e.g., "servers::Server", "::services::WebService"): 176 177 <pre> 178 $ <span class="cmd">clang -fsyntax-only t.cpp</span> 179 <span class="loc">t.cpp:9:10:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('servers::Server const' and '::services::WebService const *')</span> 180 <span class="snip">server += http;</span> 181 <span class="point">~~~~~~ ^ ~~~~</span> 182 </pre> 183 184 <p>Naturally, type preservation extends to uses of templates, and Clang retains information about how a particular template specialization (like <code>std::vector<Real></code>) was spelled within the source code. For example:</p> 185 186 <pre> 187 $ <span class="cmd">clang -fsyntax-only t.cpp</span> 188 <span class="loc">t.cpp:12:7:</span> <span class="err">error:</span> <span class="msg">incompatible type assigning 'vector<Real>', expected 'std::string' (aka 'class std::basic_string<char>')</span> 189 <span class="snip">str = vec</span>; 190 <span class="point">^ ~~~</span> 191 </pre> 192 193 <h2>Fix-it Hints</h2> 194 195 <p>"Fix-it" hints provide advice for fixing small, localized problems 196 in source code. When Clang produces a diagnostic about a particular 197 problem that it can work around (e.g., non-standard or redundant 198 syntax, missing keywords, common mistakes, etc.), it may also provide 199 specific guidance in the form of a code transformation to correct the 200 problem. In the following example, Clang warns about the use of a GCC 201 extension that has been considered obsolete since 1993. The underlined 202 code should be removed, then replaced with the code below the 203 point line (".x =" or ".y =", respectively).</p> 204 205 <pre> 206 $ <span class="cmd">clang t.c</span> 207 <span class="loc">t.c:5:28:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span> 208 <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span> 209 <span class="err">~~</span> <span class="msg"><span class="point">^</span></span> 210 <span class="snip">.x = </span> 211 <span class="loc">t.c:5:36:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span> 212 <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span> 213 <span class="err">~~</span> <span class="msg"><span class="point">^</span></span> 214 <span class="snip">.y = </span> 215 </pre> 216 217 <p>"Fix-it" hints are most useful for 218 working around common user errors and misconceptions. For example, C++ users 219 commonly forget the syntax for explicit specialization of class templates, 220 as in the error in the following example. Again, after describing the problem, 221 Clang provides the fix--add <code>template<></code>--as part of the 222 diagnostic.<p> 223 224 <pre> 225 $ <span class="cmd">clang t.cpp</span> 226 <span class="loc">t.cpp:9:3:</span> <span class="err">error:</span> <span class="msg">template specialization requires 'template<>'</span> 227 struct iterator_traits<file_iterator> { 228 <span class="point">^</span> 229 <span class="snip">template<> </span> 230 </pre> 231 232 <h2>Template Type Diffing</h2> 233 234 <p>Templates types can be long and difficult to read. Moreso when part of an 235 error message. Instead of just printing out the type name, Clang has enough 236 information to remove the common elements and highlight the differences. To 237 show the template structure more clearly, the templated type can also be 238 printed as an indented text tree.</p> 239 240 Default: template diff with type elision 241 <pre> 242 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector<map<[...], <span class="template-highlight">float</span>>>' to 'vector<map<[...], <span class="template-highlight">double</span>>>' for 1st argument; 243 </pre> 244 -fno-elide-type: template diff without elision 245 <pre> 246 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector<map<int, <span class="template-highlight">float</span>>>' to 'vector<map<int, <span class="template-highlight">double</span>>>' for 1st argument; 247 </pre> 248 -fdiagnostics-show-template-tree: template tree printing with elision 249 <pre> 250 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument; 251 vector< 252 map< 253 [...], 254 [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]>> 255 </pre> 256 -fdiagnostics-show-template-tree -fno-elide-type: template tree printing with no elision 257 <pre> 258 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument; 259 vector< 260 map< 261 int, 262 [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]>> 263 </pre> 264 265 <h2>Automatic Macro Expansion</h2> 266 267 <p>Many errors happen in macros that are sometimes deeply nested. With 268 traditional compilers, you need to dig deep into the definition of the macro to 269 understand how you got into trouble. The following simple example shows how 270 Clang helps you out by automatically printing instantiation information and 271 nested range information for diagnostics as they are instantiated through macros 272 and also shows how some of the other pieces work in a bigger example.</p> 273 274 <pre> 275 $ <span class="cmd">clang -fsyntax-only t.c</span> 276 <span class="loc">t.c:80:3:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))</span> 277 <span class="snip"> X = MYMAX(P, F);</span> 278 <span class="point"> ^~~~~~~~~~~</span> 279 <span class="loc">t.c:76:94:</span> <span class="note">note:</span> expanded from: 280 <span class="snip">#define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })</span> 281 <span class="point"> ~~~ ^ ~~~</span> 282 </pre> 283 284 <p>Here's another real world warning that occurs in the "window" Unix package (which 285 implements the "wwopen" class of APIs):</p> 286 287 <pre> 288 $ <span class="cmd">clang -fsyntax-only t.c</span> 289 <span class="loc">t.c:22:2:</span> <span class="warn">warning:</span> <span class="msg">type specifier missing, defaults to 'int'</span> 290 <span class="snip"> ILPAD();</span> 291 <span class="point"> ^</span> 292 <span class="loc">t.c:17:17:</span> <span class="note">note:</span> expanded from: 293 <span class="snip">#define ILPAD() PAD((NROW - tt.tt_row) * 10) /* 1 ms per char */</span> 294 <span class="point"> ^</span> 295 <span class="loc">t.c:14:2:</span> <span class="note">note:</span> expanded from: 296 <span class="snip"> register i; \</span> 297 <span class="point"> ^</span> 298 </pre> 299 300 <p>In practice, we've found that Clang's treatment of macros is actually more useful in multiply nested 301 macros that in simple ones.</p> 302 303 <h2>Quality of Implementation and Attention to Detail</h2> 304 305 <p>Finally, we have put a lot of work polishing the little things, because 306 little things add up over time and contribute to a great user experience.</p> 307 308 <p>The following example shows that we recover from the simple case of 309 forgetting a ; after a struct definition much better than GCC.</p> 310 311 <pre> 312 $ <span class="cmd">cat t.cc</span> 313 template<class T> 314 class a {}; 315 struct b {} 316 a<int> c; 317 $ <span class="cmd">gcc-4.9 t.cc</span> 318 t.cc:4:8: error: invalid declarator before 'c' 319 a<int> c; 320 ^ 321 $ <span class="cmd">clang t.cc</span> 322 <span class="loc">t.cc:3:12:</span> <span class="err">error:</span> <span class="msg">expected ';' after struct</span> 323 <span class="snip" >struct b {}</span> 324 <span class="point"> ^</span> 325 <span class="point"> ;</span> 326 </pre> 327 328 <p>The following example shows that we diagnose and recover from a missing 329 <tt>typename</tt> keyword well, even in complex circumstances where GCC 330 cannot cope.</p> 331 332 <pre> 333 $ <span class="cmd">cat t.cc</span> 334 template<class T> void f(T::type) { } 335 struct A { }; 336 void g() 337 { 338 A a; 339 f<A>(a); 340 } 341 $ <span class="cmd">gcc-4.9 t.cc</span> 342 t.cc:1:33: error: variable or field 'f' declared void 343 template<class T> void f(T::type) { } 344 ^ 345 t.cc: In function 'void g()': 346 t.cc:6:5: error: 'f' was not declared in this scope 347 f<A>(a); 348 ^ 349 t.cc:6:8: error: expected primary-expression before '>' token 350 f<A>(a); 351 ^ 352 $ <span class="cmd">clang t.cc</span> 353 <span class="loc">t.cc:1:26:</span> <span class="err">error:</span> <span class="msg">missing 'typename' prior to dependent type name 'T::type'</span> 354 <span class="snip" >template<class T> void f(T::type) { }</span> 355 <span class="point"> ^~~~~~~</span> 356 <span class="point"> typename </span> 357 <span class="loc">t.cc:6:5:</span> <span class="err">error:</span> <span class="msg">no matching function for call to 'f'</span> 358 <span class="snip" > f<A>(a);</span> 359 <span class="point"> ^~~~</span> 360 <span class="loc">t.cc:1:24:</span> <span class="note">note:</span> <span class="msg">candidate template ignored: substitution failure [with T = A]: no type named 'type' in 'A'</span> 361 <span class="snip" >template<class T> void f(T::type) { }</span> 362 <span class="point"> ^ ~~~~</span> 363 </pre> 364 365 366 367 <p>While each of these details is minor, we feel that they all add up to provide 368 a much more polished experience.</p> 369 370 </div> 371 </body> 372 </html> 373