1 //=-- lsan_common.cc ------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of LeakSanitizer. 11 // Implementation of common leak checking functionality. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "lsan_common.h" 16 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_flags.h" 19 #include "sanitizer_common/sanitizer_flag_parser.h" 20 #include "sanitizer_common/sanitizer_placement_new.h" 21 #include "sanitizer_common/sanitizer_procmaps.h" 22 #include "sanitizer_common/sanitizer_stackdepot.h" 23 #include "sanitizer_common/sanitizer_stacktrace.h" 24 #include "sanitizer_common/sanitizer_suppressions.h" 25 #include "sanitizer_common/sanitizer_report_decorator.h" 26 27 #if CAN_SANITIZE_LEAKS 28 namespace __lsan { 29 30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and 31 // also to protect the global list of root regions. 32 BlockingMutex global_mutex(LINKER_INITIALIZED); 33 34 THREADLOCAL int disable_counter; 35 bool DisabledInThisThread() { return disable_counter > 0; } 36 37 Flags lsan_flags; 38 39 void Flags::SetDefaults() { 40 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; 41 #include "lsan_flags.inc" 42 #undef LSAN_FLAG 43 } 44 45 void RegisterLsanFlags(FlagParser *parser, Flags *f) { 46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \ 47 RegisterFlag(parser, #Name, Description, &f->Name); 48 #include "lsan_flags.inc" 49 #undef LSAN_FLAG 50 } 51 52 #define LOG_POINTERS(...) \ 53 do { \ 54 if (flags()->log_pointers) Report(__VA_ARGS__); \ 55 } while (0); 56 57 #define LOG_THREADS(...) \ 58 do { \ 59 if (flags()->log_threads) Report(__VA_ARGS__); \ 60 } while (0); 61 62 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)]; 63 static SuppressionContext *suppression_ctx = nullptr; 64 static const char kSuppressionLeak[] = "leak"; 65 static const char *kSuppressionTypes[] = { kSuppressionLeak }; 66 67 void InitializeSuppressions() { 68 CHECK_EQ(nullptr, suppression_ctx); 69 suppression_ctx = new (suppression_placeholder) // NOLINT 70 SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes)); 71 suppression_ctx->ParseFromFile(flags()->suppressions); 72 if (&__lsan_default_suppressions) 73 suppression_ctx->Parse(__lsan_default_suppressions()); 74 } 75 76 static SuppressionContext *GetSuppressionContext() { 77 CHECK(suppression_ctx); 78 return suppression_ctx; 79 } 80 81 struct RootRegion { 82 const void *begin; 83 uptr size; 84 }; 85 86 InternalMmapVector<RootRegion> *root_regions; 87 88 void InitializeRootRegions() { 89 CHECK(!root_regions); 90 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)]; 91 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1); 92 } 93 94 void InitCommonLsan() { 95 InitializeRootRegions(); 96 if (common_flags()->detect_leaks) { 97 // Initialization which can fail or print warnings should only be done if 98 // LSan is actually enabled. 99 InitializeSuppressions(); 100 InitializePlatformSpecificModules(); 101 } 102 } 103 104 class Decorator: public __sanitizer::SanitizerCommonDecorator { 105 public: 106 Decorator() : SanitizerCommonDecorator() { } 107 const char *Error() { return Red(); } 108 const char *Leak() { return Blue(); } 109 const char *End() { return Default(); } 110 }; 111 112 static inline bool CanBeAHeapPointer(uptr p) { 113 // Since our heap is located in mmap-ed memory, we can assume a sensible lower 114 // bound on heap addresses. 115 const uptr kMinAddress = 4 * 4096; 116 if (p < kMinAddress) return false; 117 #if defined(__x86_64__) 118 // Accept only canonical form user-space addresses. 119 return ((p >> 47) == 0); 120 #elif defined(__mips64) 121 return ((p >> 40) == 0); 122 #elif defined(__aarch64__) 123 unsigned runtimeVMA = 124 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); 125 return ((p >> runtimeVMA) == 0); 126 #else 127 return true; 128 #endif 129 } 130 131 // Scans the memory range, looking for byte patterns that point into allocator 132 // chunks. Marks those chunks with |tag| and adds them to |frontier|. 133 // There are two usage modes for this function: finding reachable chunks 134 // (|tag| = kReachable) and finding indirectly leaked chunks 135 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill, 136 // so |frontier| = 0. 137 void ScanRangeForPointers(uptr begin, uptr end, 138 Frontier *frontier, 139 const char *region_type, ChunkTag tag) { 140 CHECK(tag == kReachable || tag == kIndirectlyLeaked); 141 const uptr alignment = flags()->pointer_alignment(); 142 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end); 143 uptr pp = begin; 144 if (pp % alignment) 145 pp = pp + alignment - pp % alignment; 146 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT 147 void *p = *reinterpret_cast<void **>(pp); 148 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue; 149 uptr chunk = PointsIntoChunk(p); 150 if (!chunk) continue; 151 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked. 152 if (chunk == begin) continue; 153 LsanMetadata m(chunk); 154 if (m.tag() == kReachable || m.tag() == kIgnored) continue; 155 156 // Do this check relatively late so we can log only the interesting cases. 157 if (!flags()->use_poisoned && WordIsPoisoned(pp)) { 158 LOG_POINTERS( 159 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size " 160 "%zu.\n", 161 pp, p, chunk, chunk + m.requested_size(), m.requested_size()); 162 continue; 163 } 164 165 m.set_tag(tag); 166 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p, 167 chunk, chunk + m.requested_size(), m.requested_size()); 168 if (frontier) 169 frontier->push_back(chunk); 170 } 171 } 172 173 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) { 174 Frontier *frontier = reinterpret_cast<Frontier *>(arg); 175 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable); 176 } 177 178 // Scans thread data (stacks and TLS) for heap pointers. 179 static void ProcessThreads(SuspendedThreadsList const &suspended_threads, 180 Frontier *frontier) { 181 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount()); 182 uptr registers_begin = reinterpret_cast<uptr>(registers.data()); 183 uptr registers_end = registers_begin + registers.size(); 184 for (uptr i = 0; i < suspended_threads.thread_count(); i++) { 185 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i)); 186 LOG_THREADS("Processing thread %d.\n", os_id); 187 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end; 188 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end, 189 &tls_begin, &tls_end, 190 &cache_begin, &cache_end); 191 if (!thread_found) { 192 // If a thread can't be found in the thread registry, it's probably in the 193 // process of destruction. Log this event and move on. 194 LOG_THREADS("Thread %d not found in registry.\n", os_id); 195 continue; 196 } 197 uptr sp; 198 bool have_registers = 199 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0); 200 if (!have_registers) { 201 Report("Unable to get registers from thread %d.\n"); 202 // If unable to get SP, consider the entire stack to be reachable. 203 sp = stack_begin; 204 } 205 206 if (flags()->use_registers && have_registers) 207 ScanRangeForPointers(registers_begin, registers_end, frontier, 208 "REGISTERS", kReachable); 209 210 if (flags()->use_stacks) { 211 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp); 212 if (sp < stack_begin || sp >= stack_end) { 213 // SP is outside the recorded stack range (e.g. the thread is running a 214 // signal handler on alternate stack). Again, consider the entire stack 215 // range to be reachable. 216 LOG_THREADS("WARNING: stack pointer not in stack range.\n"); 217 } else { 218 // Shrink the stack range to ignore out-of-scope values. 219 stack_begin = sp; 220 } 221 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK", 222 kReachable); 223 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier); 224 } 225 226 if (flags()->use_tls) { 227 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end); 228 if (cache_begin == cache_end) { 229 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable); 230 } else { 231 // Because LSan should not be loaded with dlopen(), we can assume 232 // that allocator cache will be part of static TLS image. 233 CHECK_LE(tls_begin, cache_begin); 234 CHECK_GE(tls_end, cache_end); 235 if (tls_begin < cache_begin) 236 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS", 237 kReachable); 238 if (tls_end > cache_end) 239 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable); 240 } 241 } 242 } 243 } 244 245 static void ProcessRootRegion(Frontier *frontier, uptr root_begin, 246 uptr root_end) { 247 MemoryMappingLayout proc_maps(/*cache_enabled*/true); 248 uptr begin, end, prot; 249 while (proc_maps.Next(&begin, &end, 250 /*offset*/ nullptr, /*filename*/ nullptr, 251 /*filename_size*/ 0, &prot)) { 252 uptr intersection_begin = Max(root_begin, begin); 253 uptr intersection_end = Min(end, root_end); 254 if (intersection_begin >= intersection_end) continue; 255 bool is_readable = prot & MemoryMappingLayout::kProtectionRead; 256 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n", 257 root_begin, root_end, begin, end, 258 is_readable ? "readable" : "unreadable"); 259 if (is_readable) 260 ScanRangeForPointers(intersection_begin, intersection_end, frontier, 261 "ROOT", kReachable); 262 } 263 } 264 265 // Scans root regions for heap pointers. 266 static void ProcessRootRegions(Frontier *frontier) { 267 if (!flags()->use_root_regions) return; 268 CHECK(root_regions); 269 for (uptr i = 0; i < root_regions->size(); i++) { 270 RootRegion region = (*root_regions)[i]; 271 uptr begin_addr = reinterpret_cast<uptr>(region.begin); 272 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size); 273 } 274 } 275 276 static void FloodFillTag(Frontier *frontier, ChunkTag tag) { 277 while (frontier->size()) { 278 uptr next_chunk = frontier->back(); 279 frontier->pop_back(); 280 LsanMetadata m(next_chunk); 281 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier, 282 "HEAP", tag); 283 } 284 } 285 286 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks 287 // which are reachable from it as indirectly leaked. 288 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) { 289 chunk = GetUserBegin(chunk); 290 LsanMetadata m(chunk); 291 if (m.allocated() && m.tag() != kReachable) { 292 ScanRangeForPointers(chunk, chunk + m.requested_size(), 293 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked); 294 } 295 } 296 297 // ForEachChunk callback. If chunk is marked as ignored, adds its address to 298 // frontier. 299 static void CollectIgnoredCb(uptr chunk, void *arg) { 300 CHECK(arg); 301 chunk = GetUserBegin(chunk); 302 LsanMetadata m(chunk); 303 if (m.allocated() && m.tag() == kIgnored) { 304 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", 305 chunk, chunk + m.requested_size(), m.requested_size()); 306 reinterpret_cast<Frontier *>(arg)->push_back(chunk); 307 } 308 } 309 310 // Sets the appropriate tag on each chunk. 311 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) { 312 // Holds the flood fill frontier. 313 Frontier frontier(1); 314 315 ForEachChunk(CollectIgnoredCb, &frontier); 316 ProcessGlobalRegions(&frontier); 317 ProcessThreads(suspended_threads, &frontier); 318 ProcessRootRegions(&frontier); 319 FloodFillTag(&frontier, kReachable); 320 321 // The check here is relatively expensive, so we do this in a separate flood 322 // fill. That way we can skip the check for chunks that are reachable 323 // otherwise. 324 LOG_POINTERS("Processing platform-specific allocations.\n"); 325 CHECK_EQ(0, frontier.size()); 326 ProcessPlatformSpecificAllocations(&frontier); 327 FloodFillTag(&frontier, kReachable); 328 329 // Iterate over leaked chunks and mark those that are reachable from other 330 // leaked chunks. 331 LOG_POINTERS("Scanning leaked chunks.\n"); 332 ForEachChunk(MarkIndirectlyLeakedCb, nullptr); 333 } 334 335 // ForEachChunk callback. Resets the tags to pre-leak-check state. 336 static void ResetTagsCb(uptr chunk, void *arg) { 337 (void)arg; 338 chunk = GetUserBegin(chunk); 339 LsanMetadata m(chunk); 340 if (m.allocated() && m.tag() != kIgnored) 341 m.set_tag(kDirectlyLeaked); 342 } 343 344 static void PrintStackTraceById(u32 stack_trace_id) { 345 CHECK(stack_trace_id); 346 StackDepotGet(stack_trace_id).Print(); 347 } 348 349 // ForEachChunk callback. Aggregates information about unreachable chunks into 350 // a LeakReport. 351 static void CollectLeaksCb(uptr chunk, void *arg) { 352 CHECK(arg); 353 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg); 354 chunk = GetUserBegin(chunk); 355 LsanMetadata m(chunk); 356 if (!m.allocated()) return; 357 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) { 358 u32 resolution = flags()->resolution; 359 u32 stack_trace_id = 0; 360 if (resolution > 0) { 361 StackTrace stack = StackDepotGet(m.stack_trace_id()); 362 stack.size = Min(stack.size, resolution); 363 stack_trace_id = StackDepotPut(stack); 364 } else { 365 stack_trace_id = m.stack_trace_id(); 366 } 367 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(), 368 m.tag()); 369 } 370 } 371 372 static void PrintMatchedSuppressions() { 373 InternalMmapVector<Suppression *> matched(1); 374 GetSuppressionContext()->GetMatched(&matched); 375 if (!matched.size()) 376 return; 377 const char *line = "-----------------------------------------------------"; 378 Printf("%s\n", line); 379 Printf("Suppressions used:\n"); 380 Printf(" count bytes template\n"); 381 for (uptr i = 0; i < matched.size(); i++) 382 Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed( 383 &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ); 384 Printf("%s\n\n", line); 385 } 386 387 struct CheckForLeaksParam { 388 bool success; 389 LeakReport leak_report; 390 }; 391 392 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads, 393 void *arg) { 394 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg); 395 CHECK(param); 396 CHECK(!param->success); 397 ClassifyAllChunks(suspended_threads); 398 ForEachChunk(CollectLeaksCb, ¶m->leak_report); 399 // Clean up for subsequent leak checks. This assumes we did not overwrite any 400 // kIgnored tags. 401 ForEachChunk(ResetTagsCb, nullptr); 402 param->success = true; 403 } 404 405 static bool CheckForLeaks() { 406 if (&__lsan_is_turned_off && __lsan_is_turned_off()) 407 return false; 408 EnsureMainThreadIDIsCorrect(); 409 CheckForLeaksParam param; 410 param.success = false; 411 LockThreadRegistry(); 412 LockAllocator(); 413 DoStopTheWorld(CheckForLeaksCallback, ¶m); 414 UnlockAllocator(); 415 UnlockThreadRegistry(); 416 417 if (!param.success) { 418 Report("LeakSanitizer has encountered a fatal error.\n"); 419 Die(); 420 } 421 param.leak_report.ApplySuppressions(); 422 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount(); 423 if (unsuppressed_count > 0) { 424 Decorator d; 425 Printf("\n" 426 "=================================================================" 427 "\n"); 428 Printf("%s", d.Error()); 429 Report("ERROR: LeakSanitizer: detected memory leaks\n"); 430 Printf("%s", d.End()); 431 param.leak_report.ReportTopLeaks(flags()->max_leaks); 432 } 433 if (common_flags()->print_suppressions) 434 PrintMatchedSuppressions(); 435 if (unsuppressed_count > 0) { 436 param.leak_report.PrintSummary(); 437 return true; 438 } 439 return false; 440 } 441 442 void DoLeakCheck() { 443 BlockingMutexLock l(&global_mutex); 444 static bool already_done; 445 if (already_done) return; 446 already_done = true; 447 bool have_leaks = CheckForLeaks(); 448 if (!have_leaks) { 449 return; 450 } 451 if (common_flags()->exitcode) { 452 Die(); 453 } 454 } 455 456 static int DoRecoverableLeakCheck() { 457 BlockingMutexLock l(&global_mutex); 458 bool have_leaks = CheckForLeaks(); 459 return have_leaks ? 1 : 0; 460 } 461 462 static Suppression *GetSuppressionForAddr(uptr addr) { 463 Suppression *s = nullptr; 464 465 // Suppress by module name. 466 SuppressionContext *suppressions = GetSuppressionContext(); 467 if (const char *module_name = 468 Symbolizer::GetOrInit()->GetModuleNameForPc(addr)) 469 if (suppressions->Match(module_name, kSuppressionLeak, &s)) 470 return s; 471 472 // Suppress by file or function name. 473 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr); 474 for (SymbolizedStack *cur = frames; cur; cur = cur->next) { 475 if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) || 476 suppressions->Match(cur->info.file, kSuppressionLeak, &s)) { 477 break; 478 } 479 } 480 frames->ClearAll(); 481 return s; 482 } 483 484 static Suppression *GetSuppressionForStack(u32 stack_trace_id) { 485 StackTrace stack = StackDepotGet(stack_trace_id); 486 for (uptr i = 0; i < stack.size; i++) { 487 Suppression *s = GetSuppressionForAddr( 488 StackTrace::GetPreviousInstructionPc(stack.trace[i])); 489 if (s) return s; 490 } 491 return nullptr; 492 } 493 494 ///// LeakReport implementation. ///// 495 496 // A hard limit on the number of distinct leaks, to avoid quadratic complexity 497 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks 498 // in real-world applications. 499 // FIXME: Get rid of this limit by changing the implementation of LeakReport to 500 // use a hash table. 501 const uptr kMaxLeaksConsidered = 5000; 502 503 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id, 504 uptr leaked_size, ChunkTag tag) { 505 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked); 506 bool is_directly_leaked = (tag == kDirectlyLeaked); 507 uptr i; 508 for (i = 0; i < leaks_.size(); i++) { 509 if (leaks_[i].stack_trace_id == stack_trace_id && 510 leaks_[i].is_directly_leaked == is_directly_leaked) { 511 leaks_[i].hit_count++; 512 leaks_[i].total_size += leaked_size; 513 break; 514 } 515 } 516 if (i == leaks_.size()) { 517 if (leaks_.size() == kMaxLeaksConsidered) return; 518 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id, 519 is_directly_leaked, /* is_suppressed */ false }; 520 leaks_.push_back(leak); 521 } 522 if (flags()->report_objects) { 523 LeakedObject obj = {leaks_[i].id, chunk, leaked_size}; 524 leaked_objects_.push_back(obj); 525 } 526 } 527 528 static bool LeakComparator(const Leak &leak1, const Leak &leak2) { 529 if (leak1.is_directly_leaked == leak2.is_directly_leaked) 530 return leak1.total_size > leak2.total_size; 531 else 532 return leak1.is_directly_leaked; 533 } 534 535 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) { 536 CHECK(leaks_.size() <= kMaxLeaksConsidered); 537 Printf("\n"); 538 if (leaks_.size() == kMaxLeaksConsidered) 539 Printf("Too many leaks! Only the first %zu leaks encountered will be " 540 "reported.\n", 541 kMaxLeaksConsidered); 542 543 uptr unsuppressed_count = UnsuppressedLeakCount(); 544 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count) 545 Printf("The %zu top leak(s):\n", num_leaks_to_report); 546 InternalSort(&leaks_, leaks_.size(), LeakComparator); 547 uptr leaks_reported = 0; 548 for (uptr i = 0; i < leaks_.size(); i++) { 549 if (leaks_[i].is_suppressed) continue; 550 PrintReportForLeak(i); 551 leaks_reported++; 552 if (leaks_reported == num_leaks_to_report) break; 553 } 554 if (leaks_reported < unsuppressed_count) { 555 uptr remaining = unsuppressed_count - leaks_reported; 556 Printf("Omitting %zu more leak(s).\n", remaining); 557 } 558 } 559 560 void LeakReport::PrintReportForLeak(uptr index) { 561 Decorator d; 562 Printf("%s", d.Leak()); 563 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n", 564 leaks_[index].is_directly_leaked ? "Direct" : "Indirect", 565 leaks_[index].total_size, leaks_[index].hit_count); 566 Printf("%s", d.End()); 567 568 PrintStackTraceById(leaks_[index].stack_trace_id); 569 570 if (flags()->report_objects) { 571 Printf("Objects leaked above:\n"); 572 PrintLeakedObjectsForLeak(index); 573 Printf("\n"); 574 } 575 } 576 577 void LeakReport::PrintLeakedObjectsForLeak(uptr index) { 578 u32 leak_id = leaks_[index].id; 579 for (uptr j = 0; j < leaked_objects_.size(); j++) { 580 if (leaked_objects_[j].leak_id == leak_id) 581 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr, 582 leaked_objects_[j].size); 583 } 584 } 585 586 void LeakReport::PrintSummary() { 587 CHECK(leaks_.size() <= kMaxLeaksConsidered); 588 uptr bytes = 0, allocations = 0; 589 for (uptr i = 0; i < leaks_.size(); i++) { 590 if (leaks_[i].is_suppressed) continue; 591 bytes += leaks_[i].total_size; 592 allocations += leaks_[i].hit_count; 593 } 594 InternalScopedString summary(kMaxSummaryLength); 595 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes, 596 allocations); 597 ReportErrorSummary(summary.data()); 598 } 599 600 void LeakReport::ApplySuppressions() { 601 for (uptr i = 0; i < leaks_.size(); i++) { 602 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id); 603 if (s) { 604 s->weight += leaks_[i].total_size; 605 atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) + 606 leaks_[i].hit_count); 607 leaks_[i].is_suppressed = true; 608 } 609 } 610 } 611 612 uptr LeakReport::UnsuppressedLeakCount() { 613 uptr result = 0; 614 for (uptr i = 0; i < leaks_.size(); i++) 615 if (!leaks_[i].is_suppressed) result++; 616 return result; 617 } 618 619 } // namespace __lsan 620 #endif // CAN_SANITIZE_LEAKS 621 622 using namespace __lsan; // NOLINT 623 624 extern "C" { 625 SANITIZER_INTERFACE_ATTRIBUTE 626 void __lsan_ignore_object(const void *p) { 627 #if CAN_SANITIZE_LEAKS 628 if (!common_flags()->detect_leaks) 629 return; 630 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not 631 // locked. 632 BlockingMutexLock l(&global_mutex); 633 IgnoreObjectResult res = IgnoreObjectLocked(p); 634 if (res == kIgnoreObjectInvalid) 635 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p); 636 if (res == kIgnoreObjectAlreadyIgnored) 637 VReport(1, "__lsan_ignore_object(): " 638 "heap object at %p is already being ignored\n", p); 639 if (res == kIgnoreObjectSuccess) 640 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p); 641 #endif // CAN_SANITIZE_LEAKS 642 } 643 644 SANITIZER_INTERFACE_ATTRIBUTE 645 void __lsan_register_root_region(const void *begin, uptr size) { 646 #if CAN_SANITIZE_LEAKS 647 BlockingMutexLock l(&global_mutex); 648 CHECK(root_regions); 649 RootRegion region = {begin, size}; 650 root_regions->push_back(region); 651 VReport(1, "Registered root region at %p of size %llu\n", begin, size); 652 #endif // CAN_SANITIZE_LEAKS 653 } 654 655 SANITIZER_INTERFACE_ATTRIBUTE 656 void __lsan_unregister_root_region(const void *begin, uptr size) { 657 #if CAN_SANITIZE_LEAKS 658 BlockingMutexLock l(&global_mutex); 659 CHECK(root_regions); 660 bool removed = false; 661 for (uptr i = 0; i < root_regions->size(); i++) { 662 RootRegion region = (*root_regions)[i]; 663 if (region.begin == begin && region.size == size) { 664 removed = true; 665 uptr last_index = root_regions->size() - 1; 666 (*root_regions)[i] = (*root_regions)[last_index]; 667 root_regions->pop_back(); 668 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size); 669 break; 670 } 671 } 672 if (!removed) { 673 Report( 674 "__lsan_unregister_root_region(): region at %p of size %llu has not " 675 "been registered.\n", 676 begin, size); 677 Die(); 678 } 679 #endif // CAN_SANITIZE_LEAKS 680 } 681 682 SANITIZER_INTERFACE_ATTRIBUTE 683 void __lsan_disable() { 684 #if CAN_SANITIZE_LEAKS 685 __lsan::disable_counter++; 686 #endif 687 } 688 689 SANITIZER_INTERFACE_ATTRIBUTE 690 void __lsan_enable() { 691 #if CAN_SANITIZE_LEAKS 692 if (!__lsan::disable_counter && common_flags()->detect_leaks) { 693 Report("Unmatched call to __lsan_enable().\n"); 694 Die(); 695 } 696 __lsan::disable_counter--; 697 #endif 698 } 699 700 SANITIZER_INTERFACE_ATTRIBUTE 701 void __lsan_do_leak_check() { 702 #if CAN_SANITIZE_LEAKS 703 if (common_flags()->detect_leaks) 704 __lsan::DoLeakCheck(); 705 #endif // CAN_SANITIZE_LEAKS 706 } 707 708 SANITIZER_INTERFACE_ATTRIBUTE 709 int __lsan_do_recoverable_leak_check() { 710 #if CAN_SANITIZE_LEAKS 711 if (common_flags()->detect_leaks) 712 return __lsan::DoRecoverableLeakCheck(); 713 #endif // CAN_SANITIZE_LEAKS 714 return 0; 715 } 716 717 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 718 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE 719 int __lsan_is_turned_off() { 720 return 0; 721 } 722 #endif 723 } // extern "C" 724