Home | History | Annotate | Download | only in safestack
      1 //===-- safestack.cc ------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the runtime support for the safe stack protection
     11 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
     12 // for the main thread, as well as all pthreads that are created/destroyed
     13 // during program execution.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include <limits.h>
     18 #include <pthread.h>
     19 #include <stddef.h>
     20 #include <stdint.h>
     21 #include <unistd.h>
     22 #include <sys/resource.h>
     23 #include <sys/types.h>
     24 #include <sys/user.h>
     25 
     26 #include "interception/interception.h"
     27 #include "sanitizer_common/sanitizer_common.h"
     28 
     29 // TODO: The runtime library does not currently protect the safe stack beyond
     30 // relying on the system-enforced ASLR. The protection of the (safe) stack can
     31 // be provided by three alternative features:
     32 //
     33 // 1) Protection via hardware segmentation on x86-32 and some x86-64
     34 // architectures: the (safe) stack segment (implicitly accessed via the %ss
     35 // segment register) can be separated from the data segment (implicitly
     36 // accessed via the %ds segment register). Dereferencing a pointer to the safe
     37 // segment would result in a segmentation fault.
     38 //
     39 // 2) Protection via software fault isolation: memory writes that are not meant
     40 // to access the safe stack can be prevented from doing so through runtime
     41 // instrumentation. One way to do it is to allocate the safe stack(s) in the
     42 // upper half of the userspace and bitmask the corresponding upper bit of the
     43 // memory addresses of memory writes that are not meant to access the safe
     44 // stack.
     45 //
     46 // 3) Protection via information hiding on 64 bit architectures: the location
     47 // of the safe stack(s) can be randomized through secure mechanisms, and the
     48 // leakage of the stack pointer can be prevented. Currently, libc can leak the
     49 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
     50 // context switching related functions, etc.). These can be fixed in libc and
     51 // in other low-level libraries, by either eliminating the escaping/dumping of
     52 // the stack pointer (i.e., %rsp) when that's possible, or by using
     53 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
     54 // we control and protect better, as is already done for setjmp in glibc.)
     55 // Furthermore, a static machine code level verifier can be ran after code
     56 // generation to make sure that the stack pointer is never written to memory,
     57 // or if it is, its written on the safe stack.
     58 //
     59 // Finally, while the Unsafe Stack pointer is currently stored in a thread
     60 // local variable, with libc support it could be stored in the TCB (thread
     61 // control block) as well, eliminating another level of indirection and making
     62 // such accesses faster. Alternatively, dedicating a separate register for
     63 // storing it would also be possible.
     64 
     65 /// Minimum stack alignment for the unsafe stack.
     66 const unsigned kStackAlign = 16;
     67 
     68 /// Default size of the unsafe stack. This value is only used if the stack
     69 /// size rlimit is set to infinity.
     70 const unsigned kDefaultUnsafeStackSize = 0x2800000;
     71 
     72 /// Runtime page size obtained through sysconf
     73 static unsigned pageSize;
     74 
     75 // TODO: To make accessing the unsafe stack pointer faster, we plan to
     76 // eventually store it directly in the thread control block data structure on
     77 // platforms where this structure is pointed to by %fs or %gs. This is exactly
     78 // the same mechanism as currently being used by the traditional stack
     79 // protector pass to store the stack guard (see getStackCookieLocation()
     80 // function above). Doing so requires changing the tcbhead_t struct in glibc
     81 // on Linux and tcb struct in libc on FreeBSD.
     82 //
     83 // For now, store it in a thread-local variable.
     84 extern "C" {
     85 __attribute__((visibility(
     86     "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
     87 }
     88 
     89 // Per-thread unsafe stack information. It's not frequently accessed, so there
     90 // it can be kept out of the tcb in normal thread-local variables.
     91 static __thread void *unsafe_stack_start = nullptr;
     92 static __thread size_t unsafe_stack_size = 0;
     93 static __thread size_t unsafe_stack_guard = 0;
     94 
     95 static inline void *unsafe_stack_alloc(size_t size, size_t guard) {
     96   CHECK_GE(size + guard, size);
     97   void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc");
     98   MprotectNoAccess((uptr)addr, (uptr)guard);
     99   return (char *)addr + guard;
    100 }
    101 
    102 static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
    103   CHECK_GE((char *)start + size, (char *)start);
    104   CHECK_GE((char *)start + guard, (char *)start);
    105   void *stack_ptr = (char *)start + size;
    106   CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0);
    107 
    108   __safestack_unsafe_stack_ptr = stack_ptr;
    109   unsafe_stack_start = start;
    110   unsafe_stack_size = size;
    111   unsafe_stack_guard = guard;
    112 }
    113 
    114 static void unsafe_stack_free() {
    115   if (unsafe_stack_start) {
    116     UnmapOrDie((char *)unsafe_stack_start - unsafe_stack_guard,
    117                unsafe_stack_size + unsafe_stack_guard);
    118   }
    119   unsafe_stack_start = nullptr;
    120 }
    121 
    122 /// Thread data for the cleanup handler
    123 static pthread_key_t thread_cleanup_key;
    124 
    125 /// Safe stack per-thread information passed to the thread_start function
    126 struct tinfo {
    127   void *(*start_routine)(void *);
    128   void *start_routine_arg;
    129 
    130   void *unsafe_stack_start;
    131   size_t unsafe_stack_size;
    132   size_t unsafe_stack_guard;
    133 };
    134 
    135 /// Wrap the thread function in order to deallocate the unsafe stack when the
    136 /// thread terminates by returning from its main function.
    137 static void *thread_start(void *arg) {
    138   struct tinfo *tinfo = (struct tinfo *)arg;
    139 
    140   void *(*start_routine)(void *) = tinfo->start_routine;
    141   void *start_routine_arg = tinfo->start_routine_arg;
    142 
    143   // Setup the unsafe stack; this will destroy tinfo content
    144   unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
    145                      tinfo->unsafe_stack_guard);
    146 
    147   // Make sure out thread-specific destructor will be called
    148   // FIXME: we can do this only any other specific key is set by
    149   // intercepting the pthread_setspecific function itself
    150   pthread_setspecific(thread_cleanup_key, (void *)1);
    151 
    152   return start_routine(start_routine_arg);
    153 }
    154 
    155 /// Thread-specific data destructor
    156 static void thread_cleanup_handler(void *_iter) {
    157   // We want to free the unsafe stack only after all other destructors
    158   // have already run. We force this function to be called multiple times.
    159   // User destructors that might run more then PTHREAD_DESTRUCTOR_ITERATIONS-1
    160   // times might still end up executing after the unsafe stack is deallocated.
    161   size_t iter = (size_t)_iter;
    162   if (iter < PTHREAD_DESTRUCTOR_ITERATIONS) {
    163     pthread_setspecific(thread_cleanup_key, (void *)(iter + 1));
    164   } else {
    165     // This is the last iteration
    166     unsafe_stack_free();
    167   }
    168 }
    169 
    170 /// Intercept thread creation operation to allocate and setup the unsafe stack
    171 INTERCEPTOR(int, pthread_create, pthread_t *thread,
    172             const pthread_attr_t *attr,
    173             void *(*start_routine)(void*), void *arg) {
    174 
    175   size_t size = 0;
    176   size_t guard = 0;
    177 
    178   if (attr) {
    179     pthread_attr_getstacksize(attr, &size);
    180     pthread_attr_getguardsize(attr, &guard);
    181   } else {
    182     // get pthread default stack size
    183     pthread_attr_t tmpattr;
    184     pthread_attr_init(&tmpattr);
    185     pthread_attr_getstacksize(&tmpattr, &size);
    186     pthread_attr_getguardsize(&tmpattr, &guard);
    187     pthread_attr_destroy(&tmpattr);
    188   }
    189 
    190   CHECK_NE(size, 0);
    191   CHECK_EQ((size & (kStackAlign - 1)), 0);
    192   CHECK_EQ((guard & (pageSize - 1)), 0);
    193 
    194   void *addr = unsafe_stack_alloc(size, guard);
    195   struct tinfo *tinfo =
    196       (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
    197   tinfo->start_routine = start_routine;
    198   tinfo->start_routine_arg = arg;
    199   tinfo->unsafe_stack_start = addr;
    200   tinfo->unsafe_stack_size = size;
    201   tinfo->unsafe_stack_guard = guard;
    202 
    203   return REAL(pthread_create)(thread, attr, thread_start, tinfo);
    204 }
    205 
    206 extern "C" __attribute__((visibility("default")))
    207 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
    208 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
    209 __attribute__((constructor(0)))
    210 #endif
    211 void __safestack_init() {
    212   // Determine the stack size for the main thread.
    213   size_t size = kDefaultUnsafeStackSize;
    214   size_t guard = 4096;
    215 
    216   struct rlimit limit;
    217   if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
    218     size = limit.rlim_cur;
    219 
    220   // Allocate unsafe stack for main thread
    221   void *addr = unsafe_stack_alloc(size, guard);
    222 
    223   unsafe_stack_setup(addr, size, guard);
    224   pageSize = sysconf(_SC_PAGESIZE);
    225 
    226   // Initialize pthread interceptors for thread allocation
    227   INTERCEPT_FUNCTION(pthread_create);
    228 
    229   // Setup the cleanup handler
    230   pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
    231 }
    232 
    233 #if SANITIZER_CAN_USE_PREINIT_ARRAY
    234 // On ELF platforms, run safestack initialization before any other constructors.
    235 // On other platforms we use the constructor attribute to arrange to run our
    236 // initialization early.
    237 extern "C" {
    238 __attribute__((section(".preinit_array"),
    239                used)) void (*__safestack_preinit)(void) = __safestack_init;
    240 }
    241 #endif
    242 
    243 extern "C"
    244     __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
    245   return unsafe_stack_start;
    246 }
    247 
    248 extern "C"
    249     __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
    250   return __safestack_unsafe_stack_ptr;
    251 }
    252