1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_JACOBI_H 12 #define EIGEN_JACOBI_H 13 14 namespace Eigen { 15 16 /** \ingroup Jacobi_Module 17 * \jacobi_module 18 * \class JacobiRotation 19 * \brief Rotation given by a cosine-sine pair. 20 * 21 * This class represents a Jacobi or Givens rotation. 22 * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by 23 * its cosine \c c and sine \c s as follow: 24 * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ 25 * 26 * You can apply the respective counter-clockwise rotation to a column vector \c v by 27 * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: 28 * \code 29 * v.applyOnTheLeft(J.adjoint()); 30 * \endcode 31 * 32 * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 33 */ 34 template<typename Scalar> class JacobiRotation 35 { 36 public: 37 typedef typename NumTraits<Scalar>::Real RealScalar; 38 39 /** Default constructor without any initialization. */ 40 JacobiRotation() {} 41 42 /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ 43 JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} 44 45 Scalar& c() { return m_c; } 46 Scalar c() const { return m_c; } 47 Scalar& s() { return m_s; } 48 Scalar s() const { return m_s; } 49 50 /** Concatenates two planar rotation */ 51 JacobiRotation operator*(const JacobiRotation& other) 52 { 53 using numext::conj; 54 return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, 55 conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); 56 } 57 58 /** Returns the transposed transformation */ 59 JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } 60 61 /** Returns the adjoint transformation */ 62 JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } 63 64 template<typename Derived> 65 bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q); 66 bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); 67 68 void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); 69 70 protected: 71 void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type); 72 void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type); 73 74 Scalar m_c, m_s; 75 }; 76 77 /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix 78 * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ 79 * 80 * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 81 */ 82 template<typename Scalar> 83 bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) 84 { 85 using std::sqrt; 86 using std::abs; 87 typedef typename NumTraits<Scalar>::Real RealScalar; 88 if(y == Scalar(0)) 89 { 90 m_c = Scalar(1); 91 m_s = Scalar(0); 92 return false; 93 } 94 else 95 { 96 RealScalar tau = (x-z)/(RealScalar(2)*abs(y)); 97 RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); 98 RealScalar t; 99 if(tau>RealScalar(0)) 100 { 101 t = RealScalar(1) / (tau + w); 102 } 103 else 104 { 105 t = RealScalar(1) / (tau - w); 106 } 107 RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); 108 RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); 109 m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; 110 m_c = n; 111 return true; 112 } 113 } 114 115 /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix 116 * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields 117 * a diagonal matrix \f$ A = J^* B J \f$ 118 * 119 * Example: \include Jacobi_makeJacobi.cpp 120 * Output: \verbinclude Jacobi_makeJacobi.out 121 * 122 * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 123 */ 124 template<typename Scalar> 125 template<typename Derived> 126 inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q) 127 { 128 return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); 129 } 130 131 /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector 132 * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: 133 * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. 134 * 135 * The value of \a z is returned if \a z is not null (the default is null). 136 * Also note that G is built such that the cosine is always real. 137 * 138 * Example: \include Jacobi_makeGivens.cpp 139 * Output: \verbinclude Jacobi_makeGivens.out 140 * 141 * This function implements the continuous Givens rotation generation algorithm 142 * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. 143 * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. 144 * 145 * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 146 */ 147 template<typename Scalar> 148 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) 149 { 150 makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); 151 } 152 153 154 // specialization for complexes 155 template<typename Scalar> 156 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) 157 { 158 using std::sqrt; 159 using std::abs; 160 using numext::conj; 161 162 if(q==Scalar(0)) 163 { 164 m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); 165 m_s = 0; 166 if(r) *r = m_c * p; 167 } 168 else if(p==Scalar(0)) 169 { 170 m_c = 0; 171 m_s = -q/abs(q); 172 if(r) *r = abs(q); 173 } 174 else 175 { 176 RealScalar p1 = numext::norm1(p); 177 RealScalar q1 = numext::norm1(q); 178 if(p1>=q1) 179 { 180 Scalar ps = p / p1; 181 RealScalar p2 = numext::abs2(ps); 182 Scalar qs = q / p1; 183 RealScalar q2 = numext::abs2(qs); 184 185 RealScalar u = sqrt(RealScalar(1) + q2/p2); 186 if(numext::real(p)<RealScalar(0)) 187 u = -u; 188 189 m_c = Scalar(1)/u; 190 m_s = -qs*conj(ps)*(m_c/p2); 191 if(r) *r = p * u; 192 } 193 else 194 { 195 Scalar ps = p / q1; 196 RealScalar p2 = numext::abs2(ps); 197 Scalar qs = q / q1; 198 RealScalar q2 = numext::abs2(qs); 199 200 RealScalar u = q1 * sqrt(p2 + q2); 201 if(numext::real(p)<RealScalar(0)) 202 u = -u; 203 204 p1 = abs(p); 205 ps = p/p1; 206 m_c = p1/u; 207 m_s = -conj(ps) * (q/u); 208 if(r) *r = ps * u; 209 } 210 } 211 } 212 213 // specialization for reals 214 template<typename Scalar> 215 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) 216 { 217 using std::sqrt; 218 using std::abs; 219 if(q==Scalar(0)) 220 { 221 m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); 222 m_s = Scalar(0); 223 if(r) *r = abs(p); 224 } 225 else if(p==Scalar(0)) 226 { 227 m_c = Scalar(0); 228 m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); 229 if(r) *r = abs(q); 230 } 231 else if(abs(p) > abs(q)) 232 { 233 Scalar t = q/p; 234 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); 235 if(p<Scalar(0)) 236 u = -u; 237 m_c = Scalar(1)/u; 238 m_s = -t * m_c; 239 if(r) *r = p * u; 240 } 241 else 242 { 243 Scalar t = p/q; 244 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); 245 if(q<Scalar(0)) 246 u = -u; 247 m_s = -Scalar(1)/u; 248 m_c = -t * m_s; 249 if(r) *r = q * u; 250 } 251 252 } 253 254 /**************************************************************************************** 255 * Implementation of MatrixBase methods 256 ****************************************************************************************/ 257 258 /** \jacobi_module 259 * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: 260 * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ 261 * 262 * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 263 */ 264 namespace internal { 265 template<typename VectorX, typename VectorY, typename OtherScalar> 266 void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j); 267 } 268 269 /** \jacobi_module 270 * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, 271 * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. 272 * 273 * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() 274 */ 275 template<typename Derived> 276 template<typename OtherScalar> 277 inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) 278 { 279 RowXpr x(this->row(p)); 280 RowXpr y(this->row(q)); 281 internal::apply_rotation_in_the_plane(x, y, j); 282 } 283 284 /** \ingroup Jacobi_Module 285 * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J 286 * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. 287 * 288 * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() 289 */ 290 template<typename Derived> 291 template<typename OtherScalar> 292 inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) 293 { 294 ColXpr x(this->col(p)); 295 ColXpr y(this->col(q)); 296 internal::apply_rotation_in_the_plane(x, y, j.transpose()); 297 } 298 299 namespace internal { 300 template<typename VectorX, typename VectorY, typename OtherScalar> 301 void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j) 302 { 303 typedef typename VectorX::Index Index; 304 typedef typename VectorX::Scalar Scalar; 305 enum { PacketSize = packet_traits<Scalar>::size }; 306 typedef typename packet_traits<Scalar>::type Packet; 307 eigen_assert(_x.size() == _y.size()); 308 Index size = _x.size(); 309 Index incrx = _x.innerStride(); 310 Index incry = _y.innerStride(); 311 312 Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); 313 Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); 314 315 OtherScalar c = j.c(); 316 OtherScalar s = j.s(); 317 if (c==OtherScalar(1) && s==OtherScalar(0)) 318 return; 319 320 /*** dynamic-size vectorized paths ***/ 321 322 if(VectorX::SizeAtCompileTime == Dynamic && 323 (VectorX::Flags & VectorY::Flags & PacketAccessBit) && 324 ((incrx==1 && incry==1) || PacketSize == 1)) 325 { 326 // both vectors are sequentially stored in memory => vectorization 327 enum { Peeling = 2 }; 328 329 Index alignedStart = internal::first_aligned(y, size); 330 Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; 331 332 const Packet pc = pset1<Packet>(c); 333 const Packet ps = pset1<Packet>(s); 334 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; 335 336 for(Index i=0; i<alignedStart; ++i) 337 { 338 Scalar xi = x[i]; 339 Scalar yi = y[i]; 340 x[i] = c * xi + numext::conj(s) * yi; 341 y[i] = -s * xi + numext::conj(c) * yi; 342 } 343 344 Scalar* EIGEN_RESTRICT px = x + alignedStart; 345 Scalar* EIGEN_RESTRICT py = y + alignedStart; 346 347 if(internal::first_aligned(x, size)==alignedStart) 348 { 349 for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) 350 { 351 Packet xi = pload<Packet>(px); 352 Packet yi = pload<Packet>(py); 353 pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); 354 pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); 355 px += PacketSize; 356 py += PacketSize; 357 } 358 } 359 else 360 { 361 Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); 362 for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) 363 { 364 Packet xi = ploadu<Packet>(px); 365 Packet xi1 = ploadu<Packet>(px+PacketSize); 366 Packet yi = pload <Packet>(py); 367 Packet yi1 = pload <Packet>(py+PacketSize); 368 pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); 369 pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1))); 370 pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); 371 pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1))); 372 px += Peeling*PacketSize; 373 py += Peeling*PacketSize; 374 } 375 if(alignedEnd!=peelingEnd) 376 { 377 Packet xi = ploadu<Packet>(x+peelingEnd); 378 Packet yi = pload <Packet>(y+peelingEnd); 379 pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi))); 380 pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi))); 381 } 382 } 383 384 for(Index i=alignedEnd; i<size; ++i) 385 { 386 Scalar xi = x[i]; 387 Scalar yi = y[i]; 388 x[i] = c * xi + numext::conj(s) * yi; 389 y[i] = -s * xi + numext::conj(c) * yi; 390 } 391 } 392 393 /*** fixed-size vectorized path ***/ 394 else if(VectorX::SizeAtCompileTime != Dynamic && 395 (VectorX::Flags & VectorY::Flags & PacketAccessBit) && 396 (VectorX::Flags & VectorY::Flags & AlignedBit)) 397 { 398 const Packet pc = pset1<Packet>(c); 399 const Packet ps = pset1<Packet>(s); 400 conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; 401 Scalar* EIGEN_RESTRICT px = x; 402 Scalar* EIGEN_RESTRICT py = y; 403 for(Index i=0; i<size; i+=PacketSize) 404 { 405 Packet xi = pload<Packet>(px); 406 Packet yi = pload<Packet>(py); 407 pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); 408 pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); 409 px += PacketSize; 410 py += PacketSize; 411 } 412 } 413 414 /*** non-vectorized path ***/ 415 else 416 { 417 for(Index i=0; i<size; ++i) 418 { 419 Scalar xi = *x; 420 Scalar yi = *y; 421 *x = c * xi + numext::conj(s) * yi; 422 *y = -s * xi + numext::conj(c) * yi; 423 x += incrx; 424 y += incry; 425 } 426 } 427 } 428 429 } // end namespace internal 430 431 } // end namespace Eigen 432 433 #endif // EIGEN_JACOBI_H 434