Home | History | Annotate | Download | only in SparseCore
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_COMPRESSED_STORAGE_H
     11 #define EIGEN_COMPRESSED_STORAGE_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 /** \internal
     18   * Stores a sparse set of values as a list of values and a list of indices.
     19   *
     20   */
     21 template<typename _Scalar,typename _Index>
     22 class CompressedStorage
     23 {
     24   public:
     25 
     26     typedef _Scalar Scalar;
     27     typedef _Index Index;
     28 
     29   protected:
     30 
     31     typedef typename NumTraits<Scalar>::Real RealScalar;
     32 
     33   public:
     34 
     35     CompressedStorage()
     36       : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
     37     {}
     38 
     39     CompressedStorage(size_t size)
     40       : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
     41     {
     42       resize(size);
     43     }
     44 
     45     CompressedStorage(const CompressedStorage& other)
     46       : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
     47     {
     48       *this = other;
     49     }
     50 
     51     CompressedStorage& operator=(const CompressedStorage& other)
     52     {
     53       resize(other.size());
     54       internal::smart_copy(other.m_values,  other.m_values  + m_size, m_values);
     55       internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
     56       return *this;
     57     }
     58 
     59     void swap(CompressedStorage& other)
     60     {
     61       std::swap(m_values, other.m_values);
     62       std::swap(m_indices, other.m_indices);
     63       std::swap(m_size, other.m_size);
     64       std::swap(m_allocatedSize, other.m_allocatedSize);
     65     }
     66 
     67     ~CompressedStorage()
     68     {
     69       delete[] m_values;
     70       delete[] m_indices;
     71     }
     72 
     73     void reserve(size_t size)
     74     {
     75       size_t newAllocatedSize = m_size + size;
     76       if (newAllocatedSize > m_allocatedSize)
     77         reallocate(newAllocatedSize);
     78     }
     79 
     80     void squeeze()
     81     {
     82       if (m_allocatedSize>m_size)
     83         reallocate(m_size);
     84     }
     85 
     86     void resize(size_t size, double reserveSizeFactor = 0)
     87     {
     88       if (m_allocatedSize<size)
     89         reallocate(size + size_t(reserveSizeFactor*double(size)));
     90       m_size = size;
     91     }
     92 
     93     void append(const Scalar& v, Index i)
     94     {
     95       Index id = static_cast<Index>(m_size);
     96       resize(m_size+1, 1);
     97       m_values[id] = v;
     98       m_indices[id] = i;
     99     }
    100 
    101     inline size_t size() const { return m_size; }
    102     inline size_t allocatedSize() const { return m_allocatedSize; }
    103     inline void clear() { m_size = 0; }
    104 
    105     inline Scalar& value(size_t i) { return m_values[i]; }
    106     inline const Scalar& value(size_t i) const { return m_values[i]; }
    107 
    108     inline Index& index(size_t i) { return m_indices[i]; }
    109     inline const Index& index(size_t i) const { return m_indices[i]; }
    110 
    111     static CompressedStorage Map(Index* indices, Scalar* values, size_t size)
    112     {
    113       CompressedStorage res;
    114       res.m_indices = indices;
    115       res.m_values = values;
    116       res.m_allocatedSize = res.m_size = size;
    117       return res;
    118     }
    119 
    120     /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
    121     inline Index searchLowerIndex(Index key) const
    122     {
    123       return searchLowerIndex(0, m_size, key);
    124     }
    125 
    126     /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
    127     inline Index searchLowerIndex(size_t start, size_t end, Index key) const
    128     {
    129       while(end>start)
    130       {
    131         size_t mid = (end+start)>>1;
    132         if (m_indices[mid]<key)
    133           start = mid+1;
    134         else
    135           end = mid;
    136       }
    137       return static_cast<Index>(start);
    138     }
    139 
    140     /** \returns the stored value at index \a key
    141       * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
    142     inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
    143     {
    144       if (m_size==0)
    145         return defaultValue;
    146       else if (key==m_indices[m_size-1])
    147         return m_values[m_size-1];
    148       // ^^  optimization: let's first check if it is the last coefficient
    149       // (very common in high level algorithms)
    150       const size_t id = searchLowerIndex(0,m_size-1,key);
    151       return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    152     }
    153 
    154     /** Like at(), but the search is performed in the range [start,end) */
    155     inline Scalar atInRange(size_t start, size_t end, Index key, const Scalar& defaultValue = Scalar(0)) const
    156     {
    157       if (start>=end)
    158         return Scalar(0);
    159       else if (end>start && key==m_indices[end-1])
    160         return m_values[end-1];
    161       // ^^  optimization: let's first check if it is the last coefficient
    162       // (very common in high level algorithms)
    163       const size_t id = searchLowerIndex(start,end-1,key);
    164       return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    165     }
    166 
    167     /** \returns a reference to the value at index \a key
    168       * If the value does not exist, then the value \a defaultValue is inserted
    169       * such that the keys are sorted. */
    170     inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
    171     {
    172       size_t id = searchLowerIndex(0,m_size,key);
    173       if (id>=m_size || m_indices[id]!=key)
    174       {
    175         resize(m_size+1,1);
    176         for (size_t j=m_size-1; j>id; --j)
    177         {
    178           m_indices[j] = m_indices[j-1];
    179           m_values[j] = m_values[j-1];
    180         }
    181         m_indices[id] = key;
    182         m_values[id] = defaultValue;
    183       }
    184       return m_values[id];
    185     }
    186 
    187     void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    188     {
    189       size_t k = 0;
    190       size_t n = size();
    191       for (size_t i=0; i<n; ++i)
    192       {
    193         if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
    194         {
    195           value(k) = value(i);
    196           index(k) = index(i);
    197           ++k;
    198         }
    199       }
    200       resize(k,0);
    201     }
    202 
    203   protected:
    204 
    205     inline void reallocate(size_t size)
    206     {
    207       Scalar* newValues  = new Scalar[size];
    208       Index* newIndices = new Index[size];
    209       size_t copySize = (std::min)(size, m_size);
    210       // copy
    211       internal::smart_copy(m_values, m_values+copySize, newValues);
    212       internal::smart_copy(m_indices, m_indices+copySize, newIndices);
    213       // delete old stuff
    214       delete[] m_values;
    215       delete[] m_indices;
    216       m_values = newValues;
    217       m_indices = newIndices;
    218       m_allocatedSize = size;
    219     }
    220 
    221   protected:
    222     Scalar* m_values;
    223     Index* m_indices;
    224     size_t m_size;
    225     size_t m_allocatedSize;
    226 
    227 };
    228 
    229 } // end namespace internal
    230 
    231 } // end namespace Eigen
    232 
    233 #endif // EIGEN_COMPRESSED_STORAGE_H
    234