Home | History | Annotate | Download | only in bench
      1 
      2 // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2  ./a.out
      3 // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2  ./a.out
      4 
      5 #include <iostream>
      6 #include <Eigen/Core>
      7 #include <bench/BenchTimer.h>
      8 
      9 using namespace std;
     10 using namespace Eigen;
     11 
     12 #ifndef SCALAR
     13 // #define SCALAR std::complex<float>
     14 #define SCALAR float
     15 #endif
     16 
     17 typedef SCALAR Scalar;
     18 typedef NumTraits<Scalar>::Real RealScalar;
     19 typedef Matrix<RealScalar,Dynamic,Dynamic> A;
     20 typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B;
     21 typedef Matrix<Scalar,Dynamic,Dynamic> C;
     22 typedef Matrix<RealScalar,Dynamic,Dynamic> M;
     23 
     24 #ifdef HAVE_BLAS
     25 
     26 extern "C" {
     27   #include <Eigen/src/misc/blas.h>
     28 }
     29 
     30 static float fone = 1;
     31 static float fzero = 0;
     32 static double done = 1;
     33 static double szero = 0;
     34 static std::complex<float> cfone = 1;
     35 static std::complex<float> cfzero = 0;
     36 static std::complex<double> cdone = 1;
     37 static std::complex<double> cdzero = 0;
     38 static char notrans = 'N';
     39 static char trans = 'T';
     40 static char nonunit = 'N';
     41 static char lower = 'L';
     42 static char right = 'R';
     43 static int intone = 1;
     44 
     45 void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c)
     46 {
     47   int M = c.rows(); int N = c.cols(); int K = a.cols();
     48   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     49 
     50   sgemm_(&notrans,&notrans,&M,&N,&K,&fone,
     51          const_cast<float*>(a.data()),&lda,
     52          const_cast<float*>(b.data()),&ldb,&fone,
     53          c.data(),&ldc);
     54 }
     55 
     56 EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c)
     57 {
     58   int M = c.rows(); int N = c.cols(); int K = a.cols();
     59   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     60 
     61   dgemm_(&notrans,&notrans,&M,&N,&K,&done,
     62          const_cast<double*>(a.data()),&lda,
     63          const_cast<double*>(b.data()),&ldb,&done,
     64          c.data(),&ldc);
     65 }
     66 
     67 void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c)
     68 {
     69   int M = c.rows(); int N = c.cols(); int K = a.cols();
     70   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     71 
     72   cgemm_(&notrans,&notrans,&M,&N,&K,(float*)&cfone,
     73          const_cast<float*>((const float*)a.data()),&lda,
     74          const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone,
     75          (float*)c.data(),&ldc);
     76 }
     77 
     78 void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c)
     79 {
     80   int M = c.rows(); int N = c.cols(); int K = a.cols();
     81   int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
     82 
     83   zgemm_(&notrans,&notrans,&M,&N,&K,(double*)&cdone,
     84          const_cast<double*>((const double*)a.data()),&lda,
     85          const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone,
     86          (double*)c.data(),&ldc);
     87 }
     88 
     89 
     90 
     91 #endif
     92 
     93 void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci)
     94 {
     95   cr.noalias() += ar * br;
     96   cr.noalias() -= ai * bi;
     97   ci.noalias() += ar * bi;
     98   ci.noalias() += ai * br;
     99 }
    100 
    101 void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci)
    102 {
    103   cr.noalias() += a * br;
    104   ci.noalias() += a * bi;
    105 }
    106 
    107 void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci)
    108 {
    109   cr.noalias() += ar * b;
    110   ci.noalias() += ai * b;
    111 }
    112 
    113 template<typename A, typename B, typename C>
    114 EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c)
    115 {
    116  c.noalias() += a * b;
    117 }
    118 
    119 int main(int argc, char ** argv)
    120 {
    121   std::ptrdiff_t l1 = internal::queryL1CacheSize();
    122   std::ptrdiff_t l2 = internal::queryTopLevelCacheSize();
    123   std::cout << "L1 cache size     = " << (l1>0 ? l1/1024 : -1) << " KB\n";
    124   std::cout << "L2/L3 cache size  = " << (l2>0 ? l2/1024 : -1) << " KB\n";
    125   typedef internal::gebp_traits<Scalar,Scalar> Traits;
    126   std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n";
    127 
    128   int rep = 1;    // number of repetitions per try
    129   int tries = 2;  // number of tries, we keep the best
    130 
    131   int s = 2048;
    132   int cache_size = -1;
    133 
    134   bool need_help = false;
    135   for (int i=1; i<argc; ++i)
    136   {
    137     if(argv[i][0]=='s')
    138       s = atoi(argv[i]+1);
    139     else if(argv[i][0]=='c')
    140       cache_size = atoi(argv[i]+1);
    141     else if(argv[i][0]=='t')
    142       tries = atoi(argv[i]+1);
    143     else if(argv[i][0]=='p')
    144       rep = atoi(argv[i]+1);
    145     else
    146       need_help = true;
    147   }
    148 
    149   if(need_help)
    150   {
    151     std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n";
    152     return 1;
    153   }
    154 
    155   if(cache_size>0)
    156     setCpuCacheSizes(cache_size,96*cache_size);
    157 
    158   int m = s;
    159   int n = s;
    160   int p = s;
    161   A a(m,p); a.setRandom();
    162   B b(p,n); b.setRandom();
    163   C c(m,n); c.setOnes();
    164   C rc = c;
    165 
    166   std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
    167   std::ptrdiff_t mc(m), nc(n), kc(p);
    168   internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
    169   std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n";
    170 
    171   C r = c;
    172 
    173   // check the parallel product is correct
    174   #if defined EIGEN_HAS_OPENMP
    175   int procs = omp_get_max_threads();
    176   if(procs>1)
    177   {
    178     #ifdef HAVE_BLAS
    179     blas_gemm(a,b,r);
    180     #else
    181     omp_set_num_threads(1);
    182     r.noalias() += a * b;
    183     omp_set_num_threads(procs);
    184     #endif
    185     c.noalias() += a * b;
    186     if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n";
    187   }
    188   #elif defined HAVE_BLAS
    189     blas_gemm(a,b,r);
    190     c.noalias() += a * b;
    191     if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n";
    192   #else
    193     gemm(a,b,c);
    194     r.noalias() += a.cast<Scalar>() * b.cast<Scalar>();
    195     if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n";
    196   #endif
    197 
    198   #ifdef HAVE_BLAS
    199   BenchTimer tblas;
    200   c = rc;
    201   BENCH(tblas, tries, rep, blas_gemm(a,b,c));
    202   std::cout << "blas  cpu         " << tblas.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tblas.total(CPU_TIMER)  << "s)\n";
    203   std::cout << "blas  real        " << tblas.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n";
    204   #endif
    205 
    206   BenchTimer tmt;
    207   c = rc;
    208   BENCH(tmt, tries, rep, gemm(a,b,c));
    209   std::cout << "eigen cpu         " << tmt.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmt.total(CPU_TIMER)  << "s)\n";
    210   std::cout << "eigen real        " << tmt.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
    211 
    212   #ifdef EIGEN_HAS_OPENMP
    213   if(procs>1)
    214   {
    215     BenchTimer tmono;
    216     omp_set_num_threads(1);
    217     Eigen::internal::setNbThreads(1);
    218     c = rc;
    219     BENCH(tmono, tries, rep, gemm(a,b,c));
    220     std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << tmono.total(CPU_TIMER)  << "s)\n";
    221     std::cout << "eigen mono real   " << tmono.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n";
    222     std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)  << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n";
    223   }
    224   #endif
    225 
    226   #ifdef DECOUPLED
    227   if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
    228   {
    229     M ar(m,p); ar.setRandom();
    230     M ai(m,p); ai.setRandom();
    231     M br(p,n); br.setRandom();
    232     M bi(p,n); bi.setRandom();
    233     M cr(m,n); cr.setRandom();
    234     M ci(m,n); ci.setRandom();
    235 
    236     BenchTimer t;
    237     BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci));
    238     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    239     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    240   }
    241   if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
    242   {
    243     M a(m,p);  a.setRandom();
    244     M br(p,n); br.setRandom();
    245     M bi(p,n); bi.setRandom();
    246     M cr(m,n); cr.setRandom();
    247     M ci(m,n); ci.setRandom();
    248 
    249     BenchTimer t;
    250     BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci));
    251     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    252     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    253   }
    254   if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex))
    255   {
    256     M ar(m,p); ar.setRandom();
    257     M ai(m,p); ai.setRandom();
    258     M b(p,n);  b.setRandom();
    259     M cr(m,n); cr.setRandom();
    260     M ci(m,n); ci.setRandom();
    261 
    262     BenchTimer t;
    263     BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci));
    264     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER)/rep  << "s  \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9  <<  " GFLOPS \t(" << t.total(CPU_TIMER)  << "s)\n";
    265     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER)/rep << "s  \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 <<  " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
    266   }
    267   #endif
    268 
    269   return 0;
    270 }
    271 
    272