Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 
      3 /** \eigenManualPage TutorialGeometry Space transformations
      4 
      5 In this page, we will introduce the many possibilities offered by the \ref Geometry_Module "geometry module" to deal with 2D and 3D rotations and projective or affine transformations.
      6 
      7 \eigenAutoToc
      8 
      9 Eigen's Geometry module provides two different kinds of geometric transformations:
     10   - Abstract transformations, such as rotations (represented by \ref AngleAxis "angle and axis" or by a \ref Quaternion "quaternion"), \ref Translation "translations", \ref Scaling "scalings". These transformations are NOT represented as matrices, but you can nevertheless mix them with matrices and vectors in expressions, and convert them to matrices if you wish.
     11   - Projective or affine transformation matrices: see the Transform class. These are really matrices.
     12 
     13 \note If you are working with OpenGL 4x4 matrices then Affine3f and Affine3d are what you want. Since Eigen defaults to column-major storage, you can directly use the Transform::data() method to pass your transformation matrix to OpenGL.
     14 
     15 You can construct a Transform from an abstract transformation, like this:
     16 \code
     17   Transform t(AngleAxis(angle,axis));
     18 \endcode
     19 or like this:
     20 \code
     21   Transform t;
     22   t = AngleAxis(angle,axis);
     23 \endcode
     24 But note that unfortunately, because of how C++ works, you can \b not do this:
     25 \code
     26   Transform t = AngleAxis(angle,axis);
     27 \endcode
     28 <span class="note">\b Explanation: In the C++ language, this would require Transform to have a non-explicit conversion constructor from AngleAxis, but we really don't want to allow implicit casting here.
     29 </span>
     30 
     31 \section TutorialGeoElementaryTransformations Transformation types
     32 
     33 <table class="manual">
     34 <tr><th>Transformation type</th><th>Typical initialization code</th></tr>
     35 <tr><td>
     36 \ref Rotation2D "2D rotation" from an angle</td><td>\code
     37 Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr>
     38 <tr class="alt"><td>
     39 3D rotation as an \ref AngleAxis "angle + axis"</td><td>\code
     40 AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode
     41 <span class="note">The axis vector must be normalized.</span></td></tr>
     42 <tr><td>
     43 3D rotation as a \ref Quaternion "quaternion"</td><td>\code
     44 Quaternion<float> q;  q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr>
     45 <tr class="alt"><td>
     46 N-D Scaling</td><td>\code
     47 Scaling(sx, sy)
     48 Scaling(sx, sy, sz)
     49 Scaling(s)
     50 Scaling(vecN)\endcode</td></tr>
     51 <tr><td>
     52 N-D Translation</td><td>\code
     53 Translation<float,2>(tx, ty)
     54 Translation<float,3>(tx, ty, tz)
     55 Translation<float,N>(s)
     56 Translation<float,N>(vecN)\endcode</td></tr>
     57 <tr class="alt"><td>
     58 N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code
     59 Transform<float,N,Affine> t = concatenation_of_any_transformations;
     60 Transform<float,3,Affine> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
     61 <tr><td>
     62 N-D Linear transformations \n
     63 <em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code
     64 Matrix<float,N> t = concatenation_of_rotations_and_scalings;
     65 Matrix<float,2> t = Rotation2Df(a) * Scaling(s);
     66 Matrix<float,3> t = AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
     67 </table>
     68 
     69 <strong>Notes on rotations</strong>\n To transform more than a single vector the preferred
     70 representations are rotation matrices, while for other usages Quaternion is the
     71 representation of choice as they are compact, fast and stable. Finally Rotation2D and
     72 AngleAxis are mainly convenient types to create other rotation objects.
     73 
     74 <strong>Notes on Translation and Scaling</strong>\n Like AngleAxis, these classes were
     75 designed to simplify the creation/initialization of linear (Matrix) and affine (Transform)
     76 transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes
     77 might still be interesting to write generic and efficient algorithms taking as input any
     78 kind of transformations.
     79 
     80 Any of the above transformation types can be converted to any other types of the same nature,
     81 or to a more generic type. Here are some additional examples:
     82 <table class="manual">
     83 <tr><td>\code
     84 Rotation2Df r;  r  = Matrix2f(..);       // assumes a pure rotation matrix
     85 AngleAxisf aa;  aa = Quaternionf(..);
     86 AngleAxisf aa;  aa = Matrix3f(..);       // assumes a pure rotation matrix
     87 Matrix2f m;     m  = Rotation2Df(..);
     88 Matrix3f m;     m  = Quaternionf(..);       Matrix3f m;   m = Scaling(..);
     89 Affine3f m;     m  = AngleAxis3f(..);       Affine3f m;   m = Scaling(..);
     90 Affine3f m;     m  = Translation3f(..);     Affine3f m;   m = Matrix3f(..);
     91 \endcode</td></tr>
     92 </table>
     93 
     94 
     95 <a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types
     96 
     97 To some extent, Eigen's \ref Geometry_Module "geometry module" allows you to write
     98 generic algorithms working on any kind of transformation representations:
     99 <table class="manual">
    100 <tr><td>
    101 Concatenation of two transformations</td><td>\code
    102 gen1 * gen2;\endcode</td></tr>
    103 <tr class="alt"><td>Apply the transformation to a vector</td><td>\code
    104 vec2 = gen1 * vec1;\endcode</td></tr>
    105 <tr><td>Get the inverse of the transformation</td><td>\code
    106 gen2 = gen1.inverse();\endcode</td></tr>
    107 <tr class="alt"><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code
    108 rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr>
    109 </table>
    110 
    111 
    112 
    113 <a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations
    114 Generic affine transformations are represented by the Transform class which internaly
    115 is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and
    116 vectors such that all points are actually represented by displacement vectors from the
    117 origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and
    118 vector distinguish when the transformation is applied.
    119 <table class="manual">
    120 <tr><td>
    121 Apply the transformation to a \b point </td><td>\code
    122 VectorNf p1, p2;
    123 p2 = t * p1;\endcode</td></tr>
    124 <tr class="alt"><td>
    125 Apply the transformation to a \b vector </td><td>\code
    126 VectorNf vec1, vec2;
    127 vec2 = t.linear() * vec1;\endcode</td></tr>
    128 <tr><td>
    129 Apply a \em general transformation \n to a \b normal \b vector
    130 (<a href="http://femto.cs.uiuc.edu/faqs/cga-faq.html#S5.27">explanations</a>)</td><td>\code
    131 VectorNf n1, n2;
    132 MatrixNf normalMatrix = t.linear().inverse().transpose();
    133 n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
    134 <tr class="alt"><td>
    135 Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
    136 (no scaling, no shear)</td><td>\code
    137 n2 = t.linear() * n1;\endcode</td></tr>
    138 <tr><td>
    139 OpenGL compatibility \b 3D </td><td>\code
    140 glLoadMatrixf(t.data());\endcode</td></tr>
    141 <tr class="alt"><td>
    142 OpenGL compatibility \b 2D </td><td>\code
    143 Affine3f aux(Affine3f::Identity());
    144 aux.linear().topLeftCorner<2,2>() = t.linear();
    145 aux.translation().start<2>() = t.translation();
    146 glLoadMatrixf(aux.data());\endcode</td></tr>
    147 </table>
    148 
    149 \b Component \b accessors
    150 <table class="manual">
    151 <tr><td>
    152 full read-write access to the internal matrix</td><td>\code
    153 t.matrix() = matN1xN1;    // N1 means N+1
    154 matN1xN1 = t.matrix();
    155 \endcode</td></tr>
    156 <tr class="alt"><td>
    157 coefficient accessors</td><td>\code
    158 t(i,j) = scalar;   <=>   t.matrix()(i,j) = scalar;
    159 scalar = t(i,j);   <=>   scalar = t.matrix()(i,j);
    160 \endcode</td></tr>
    161 <tr><td>
    162 translation part</td><td>\code
    163 t.translation() = vecN;
    164 vecN = t.translation();
    165 \endcode</td></tr>
    166 <tr class="alt"><td>
    167 linear part</td><td>\code
    168 t.linear() = matNxN;
    169 matNxN = t.linear();
    170 \endcode</td></tr>
    171 <tr><td>
    172 extract the rotation matrix</td><td>\code
    173 matNxN = t.rotation();
    174 \endcode</td></tr>
    175 </table>
    176 
    177 
    178 \b Transformation \b creation \n
    179 While transformation objects can be created and updated concatenating elementary transformations,
    180 the Transform class also features a procedural API:
    181 <table class="manual">
    182 <tr><th></th><th>procedural API</th><th>equivalent natural API </th></tr>
    183 <tr><td>Translation</td><td>\code
    184 t.translate(Vector_(tx,ty,..));
    185 t.pretranslate(Vector_(tx,ty,..));
    186 \endcode</td><td>\code
    187 t *= Translation_(tx,ty,..);
    188 t = Translation_(tx,ty,..) * t;
    189 \endcode</td></tr>
    190 <tr class="alt"><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can also \n be an angle in radian</em></td><td>\code
    191 t.rotate(any_rotation);
    192 t.prerotate(any_rotation);
    193 \endcode</td><td>\code
    194 t *= any_rotation;
    195 t = any_rotation * t;
    196 \endcode</td></tr>
    197 <tr><td>Scaling</td><td>\code
    198 t.scale(Vector_(sx,sy,..));
    199 t.scale(s);
    200 t.prescale(Vector_(sx,sy,..));
    201 t.prescale(s);
    202 \endcode</td><td>\code
    203 t *= Scaling(sx,sy,..);
    204 t *= Scaling(s);
    205 t = Scaling(sx,sy,..) * t;
    206 t = Scaling(s) * t;
    207 \endcode</td></tr>
    208 <tr class="alt"><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code
    209 t.shear(sx,sy);
    210 t.preshear(sx,sy);
    211 \endcode</td><td></td></tr>
    212 </table>
    213 
    214 Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples:
    215 <table class="manual">
    216 <tr><td>\code
    217 t.pretranslate(..).rotate(..).translate(..).scale(..);
    218 \endcode</td></tr>
    219 <tr><td>\code
    220 t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling(..);
    221 \endcode</td></tr>
    222 </table>
    223 
    224 
    225 
    226 <a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles
    227 <table class="manual">
    228 <tr><td style="max-width:30em;">
    229 Euler angles might be convenient to create rotation objects.
    230 On the other hand, since there exist 24 different conventions, they are pretty confusing to use. This example shows how
    231 to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
    232 Matrix3f m;
    233 m = AngleAxisf(angle1, Vector3f::UnitZ())
    234 *  * AngleAxisf(angle2, Vector3f::UnitY())
    235 *  * AngleAxisf(angle3, Vector3f::UnitZ());
    236 \endcode</td></tr>
    237 </table>
    238 
    239 */
    240 
    241 }
    242