1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "main.h" 11 12 template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m) 13 { 14 typedef typename VectorType::Index Index; 15 typedef typename VectorType::Scalar Scalar; 16 17 Index size = m.size(); 18 19 VectorType v = VectorType::Random(size); 20 21 Index arraysize = 3*size; 22 23 Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); 24 Scalar* array = a_array; 25 if(Alignment!=Aligned) 26 array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); 27 28 { 29 Map<VectorType, Alignment, InnerStride<3> > map(array, size); 30 map = v; 31 for(int i = 0; i < size; ++i) 32 { 33 VERIFY(array[3*i] == v[i]); 34 VERIFY(map[i] == v[i]); 35 } 36 } 37 38 { 39 Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); 40 map = v; 41 for(int i = 0; i < size; ++i) 42 { 43 VERIFY(array[2*i] == v[i]); 44 VERIFY(map[i] == v[i]); 45 } 46 } 47 48 internal::aligned_delete(a_array, arraysize+1); 49 } 50 51 template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m) 52 { 53 typedef typename MatrixType::Index Index; 54 typedef typename MatrixType::Scalar Scalar; 55 56 Index rows = _m.rows(), cols = _m.cols(); 57 58 MatrixType m = MatrixType::Random(rows,cols); 59 60 Index arraysize = 2*(rows+4)*(cols+4); 61 62 Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); 63 Scalar* array = a_array; 64 if(Alignment!=Aligned) 65 array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); 66 67 // test no inner stride and some dynamic outer stride 68 { 69 Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); 70 map = m; 71 VERIFY(map.outerStride() == map.innerSize()+1); 72 for(int i = 0; i < m.outerSize(); ++i) 73 for(int j = 0; j < m.innerSize(); ++j) 74 { 75 VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); 76 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); 77 } 78 } 79 80 // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, 81 // this allows to hit the special case where it's vectorizable. 82 { 83 enum { 84 InnerSize = MatrixType::InnerSizeAtCompileTime, 85 OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 86 }; 87 Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > 88 map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); 89 map = m; 90 VERIFY(map.outerStride() == map.innerSize()+4); 91 for(int i = 0; i < m.outerSize(); ++i) 92 for(int j = 0; j < m.innerSize(); ++j) 93 { 94 VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); 95 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); 96 } 97 } 98 99 // test both inner stride and outer stride 100 { 101 Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); 102 map = m; 103 VERIFY(map.outerStride() == 2*map.innerSize()+1); 104 VERIFY(map.innerStride() == 2); 105 for(int i = 0; i < m.outerSize(); ++i) 106 for(int j = 0; j < m.innerSize(); ++j) 107 { 108 VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); 109 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); 110 } 111 } 112 113 internal::aligned_delete(a_array, arraysize+1); 114 } 115 116 void test_mapstride() 117 { 118 for(int i = 0; i < g_repeat; i++) { 119 int maxn = 30; 120 CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) ); 121 CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) ); 122 CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) ); 123 CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) ); 124 CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) ); 125 CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) ); 126 CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) ); 127 CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) ); 128 CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) ); 129 CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) ); 130 131 CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) ); 132 CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) ); 133 CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) ); 134 CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) ); 135 CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) ); 136 CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) ); 137 CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) ); 138 CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) ); 139 CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 140 CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 141 CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 142 CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 143 CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 144 CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); 145 146 TEST_SET_BUT_UNUSED_VARIABLE(maxn); 147 } 148 } 149