Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 // work around "uninitialized" warnings and give that option some testing
     12 #define EIGEN_INITIALIZE_MATRICES_BY_ZERO
     13 
     14 #ifndef EIGEN_NO_STATIC_ASSERT
     15 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
     16 #endif
     17 
     18 // #ifndef EIGEN_DONT_VECTORIZE
     19 // #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
     20 // #endif
     21 
     22 #include "main.h"
     23 
     24 using namespace std;
     25 
     26 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
     27 {
     28   typedef std::complex<float>   CF;
     29   typedef std::complex<double>  CD;
     30   typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
     31   typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
     32   typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
     33   typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
     34   typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
     35   typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
     36   typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
     37   typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
     38 
     39   Mat_f mf    = Mat_f::Random(size,size);
     40   Mat_d md    = mf.template cast<double>();
     41   Mat_cf mcf  = Mat_cf::Random(size,size);
     42   Mat_cd mcd  = mcf.template cast<complex<double> >();
     43   Vec_f vf    = Vec_f::Random(size,1);
     44   Vec_d vd    = vf.template cast<double>();
     45   Vec_cf vcf  = Vec_cf::Random(size,1);
     46   Vec_cd vcd  = vcf.template cast<complex<double> >();
     47   float           sf  = internal::random<float>();
     48   double          sd  = internal::random<double>();
     49   complex<float>  scf = internal::random<complex<float> >();
     50   complex<double> scd = internal::random<complex<double> >();
     51 
     52 
     53   mf+mf;
     54   VERIFY_RAISES_ASSERT(mf+md);
     55   VERIFY_RAISES_ASSERT(mf+mcf);
     56   VERIFY_RAISES_ASSERT(vf=vd);
     57   VERIFY_RAISES_ASSERT(vf+=vd);
     58   VERIFY_RAISES_ASSERT(mcd=md);
     59 
     60   // check scalar products
     61   VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
     62   VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
     63   VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
     64   VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());
     65 
     66   // check dot product
     67   vf.dot(vf);
     68 #if 0 // we get other compilation errors here than just static asserts
     69   VERIFY_RAISES_ASSERT(vd.dot(vf));
     70 #endif
     71   VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
     72 
     73   // check diagonal product
     74   VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
     75   VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
     76   VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
     77   VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
     78 //   vd.asDiagonal() * mf;    // does not even compile
     79 //   vcd.asDiagonal() * mf;   // does not even compile
     80 
     81   // check inner product
     82   VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
     83 
     84   // check outer product
     85   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
     86 
     87   // coeff wise product
     88 
     89   VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
     90 
     91   Mat_cd mcd2 = mcd;
     92   VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
     93 
     94   // check matrix-matrix products
     95 
     96   VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
     97   VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
     98   VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
     99   VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
    100 
    101   VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
    102   VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
    103   VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
    104   VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
    105 
    106   VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
    107   VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
    108   VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
    109   VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
    110 
    111   VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
    112   VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
    113   VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
    114   VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
    115 
    116   VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
    117   VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
    118   VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
    119   VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
    120 
    121   VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
    122   VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
    123   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
    124   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
    125 }
    126 
    127 void test_mixingtypes()
    128 {
    129   CALL_SUBTEST_1(mixingtypes<3>());
    130   CALL_SUBTEST_2(mixingtypes<4>());
    131   CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
    132 }
    133