1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009, 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk> 5 // Copyright (C) 2011 Chen-Pang He <jdh8 (at) ms63.hinet.net> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_MATRIX_EXPONENTIAL 12 #define EIGEN_MATRIX_EXPONENTIAL 13 14 #include "StemFunction.h" 15 16 namespace Eigen { 17 18 /** \ingroup MatrixFunctions_Module 19 * \brief Class for computing the matrix exponential. 20 * \tparam MatrixType type of the argument of the exponential, 21 * expected to be an instantiation of the Matrix class template. 22 */ 23 template <typename MatrixType> 24 class MatrixExponential { 25 26 public: 27 28 /** \brief Constructor. 29 * 30 * The class stores a reference to \p M, so it should not be 31 * changed (or destroyed) before compute() is called. 32 * 33 * \param[in] M matrix whose exponential is to be computed. 34 */ 35 MatrixExponential(const MatrixType &M); 36 37 /** \brief Computes the matrix exponential. 38 * 39 * \param[out] result the matrix exponential of \p M in the constructor. 40 */ 41 template <typename ResultType> 42 void compute(ResultType &result); 43 44 private: 45 46 // Prevent copying 47 MatrixExponential(const MatrixExponential&); 48 MatrixExponential& operator=(const MatrixExponential&); 49 50 /** \brief Compute the (3,3)-Padé approximant to the exponential. 51 * 52 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 53 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 54 * 55 * \param[in] A Argument of matrix exponential 56 */ 57 void pade3(const MatrixType &A); 58 59 /** \brief Compute the (5,5)-Padé approximant to the exponential. 60 * 61 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 62 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 63 * 64 * \param[in] A Argument of matrix exponential 65 */ 66 void pade5(const MatrixType &A); 67 68 /** \brief Compute the (7,7)-Padé approximant to the exponential. 69 * 70 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 71 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 72 * 73 * \param[in] A Argument of matrix exponential 74 */ 75 void pade7(const MatrixType &A); 76 77 /** \brief Compute the (9,9)-Padé approximant to the exponential. 78 * 79 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 80 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 81 * 82 * \param[in] A Argument of matrix exponential 83 */ 84 void pade9(const MatrixType &A); 85 86 /** \brief Compute the (13,13)-Padé approximant to the exponential. 87 * 88 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 89 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 90 * 91 * \param[in] A Argument of matrix exponential 92 */ 93 void pade13(const MatrixType &A); 94 95 /** \brief Compute the (17,17)-Padé approximant to the exponential. 96 * 97 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 98 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 99 * 100 * This function activates only if your long double is double-double or quadruple. 101 * 102 * \param[in] A Argument of matrix exponential 103 */ 104 void pade17(const MatrixType &A); 105 106 /** \brief Compute Padé approximant to the exponential. 107 * 108 * Computes \c m_U, \c m_V and \c m_squarings such that 109 * \f$ (V+U)(V-U)^{-1} \f$ is a Padé of 110 * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The 111 * degree of the Padé approximant and the value of 112 * squarings are chosen such that the approximation error is no 113 * more than the round-off error. 114 * 115 * The argument of this function should correspond with the (real 116 * part of) the entries of \c m_M. It is used to select the 117 * correct implementation using overloading. 118 */ 119 void computeUV(double); 120 121 /** \brief Compute Padé approximant to the exponential. 122 * 123 * \sa computeUV(double); 124 */ 125 void computeUV(float); 126 127 /** \brief Compute Padé approximant to the exponential. 128 * 129 * \sa computeUV(double); 130 */ 131 void computeUV(long double); 132 133 typedef typename internal::traits<MatrixType>::Scalar Scalar; 134 typedef typename NumTraits<Scalar>::Real RealScalar; 135 typedef typename std::complex<RealScalar> ComplexScalar; 136 137 /** \brief Reference to matrix whose exponential is to be computed. */ 138 typename internal::nested<MatrixType>::type m_M; 139 140 /** \brief Odd-degree terms in numerator of Padé approximant. */ 141 MatrixType m_U; 142 143 /** \brief Even-degree terms in numerator of Padé approximant. */ 144 MatrixType m_V; 145 146 /** \brief Used for temporary storage. */ 147 MatrixType m_tmp1; 148 149 /** \brief Used for temporary storage. */ 150 MatrixType m_tmp2; 151 152 /** \brief Identity matrix of the same size as \c m_M. */ 153 MatrixType m_Id; 154 155 /** \brief Number of squarings required in the last step. */ 156 int m_squarings; 157 158 /** \brief L1 norm of m_M. */ 159 RealScalar m_l1norm; 160 }; 161 162 template <typename MatrixType> 163 MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) : 164 m_M(M), 165 m_U(M.rows(),M.cols()), 166 m_V(M.rows(),M.cols()), 167 m_tmp1(M.rows(),M.cols()), 168 m_tmp2(M.rows(),M.cols()), 169 m_Id(MatrixType::Identity(M.rows(), M.cols())), 170 m_squarings(0), 171 m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff()) 172 { 173 /* empty body */ 174 } 175 176 template <typename MatrixType> 177 template <typename ResultType> 178 void MatrixExponential<MatrixType>::compute(ResultType &result) 179 { 180 #if LDBL_MANT_DIG > 112 // rarely happens 181 if(sizeof(RealScalar) > 14) { 182 result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp); 183 return; 184 } 185 #endif 186 computeUV(RealScalar()); 187 m_tmp1 = m_U + m_V; // numerator of Pade approximant 188 m_tmp2 = -m_U + m_V; // denominator of Pade approximant 189 result = m_tmp2.partialPivLu().solve(m_tmp1); 190 for (int i=0; i<m_squarings; i++) 191 result *= result; // undo scaling by repeated squaring 192 } 193 194 template <typename MatrixType> 195 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A) 196 { 197 const RealScalar b[] = {120., 60., 12., 1.}; 198 m_tmp1.noalias() = A * A; 199 m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id; 200 m_U.noalias() = A * m_tmp2; 201 m_V = b[2]*m_tmp1 + b[0]*m_Id; 202 } 203 204 template <typename MatrixType> 205 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A) 206 { 207 const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.}; 208 MatrixType A2 = A * A; 209 m_tmp1.noalias() = A2 * A2; 210 m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id; 211 m_U.noalias() = A * m_tmp2; 212 m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id; 213 } 214 215 template <typename MatrixType> 216 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A) 217 { 218 const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; 219 MatrixType A2 = A * A; 220 MatrixType A4 = A2 * A2; 221 m_tmp1.noalias() = A4 * A2; 222 m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; 223 m_U.noalias() = A * m_tmp2; 224 m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; 225 } 226 227 template <typename MatrixType> 228 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A) 229 { 230 const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., 231 2162160., 110880., 3960., 90., 1.}; 232 MatrixType A2 = A * A; 233 MatrixType A4 = A2 * A2; 234 MatrixType A6 = A4 * A2; 235 m_tmp1.noalias() = A6 * A2; 236 m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; 237 m_U.noalias() = A * m_tmp2; 238 m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; 239 } 240 241 template <typename MatrixType> 242 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A) 243 { 244 const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 245 1187353796428800., 129060195264000., 10559470521600., 670442572800., 246 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; 247 MatrixType A2 = A * A; 248 MatrixType A4 = A2 * A2; 249 m_tmp1.noalias() = A4 * A2; 250 m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage 251 m_tmp2.noalias() = m_tmp1 * m_V; 252 m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; 253 m_U.noalias() = A * m_tmp2; 254 m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2; 255 m_V.noalias() = m_tmp1 * m_tmp2; 256 m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; 257 } 258 259 #if LDBL_MANT_DIG > 64 260 template <typename MatrixType> 261 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A) 262 { 263 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, 264 100610229646136770560000.L, 15720348382208870400000.L, 265 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, 266 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, 267 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, 268 46512.L, 306.L, 1.L}; 269 MatrixType A2 = A * A; 270 MatrixType A4 = A2 * A2; 271 MatrixType A6 = A4 * A2; 272 m_tmp1.noalias() = A4 * A4; 273 m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage 274 m_tmp2.noalias() = m_tmp1 * m_V; 275 m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; 276 m_U.noalias() = A * m_tmp2; 277 m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2; 278 m_V.noalias() = m_tmp1 * m_tmp2; 279 m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; 280 } 281 #endif 282 283 template <typename MatrixType> 284 void MatrixExponential<MatrixType>::computeUV(float) 285 { 286 using std::frexp; 287 using std::pow; 288 if (m_l1norm < 4.258730016922831e-001) { 289 pade3(m_M); 290 } else if (m_l1norm < 1.880152677804762e+000) { 291 pade5(m_M); 292 } else { 293 const float maxnorm = 3.925724783138660f; 294 frexp(m_l1norm / maxnorm, &m_squarings); 295 if (m_squarings < 0) m_squarings = 0; 296 MatrixType A = m_M / pow(Scalar(2), m_squarings); 297 pade7(A); 298 } 299 } 300 301 template <typename MatrixType> 302 void MatrixExponential<MatrixType>::computeUV(double) 303 { 304 using std::frexp; 305 using std::pow; 306 if (m_l1norm < 1.495585217958292e-002) { 307 pade3(m_M); 308 } else if (m_l1norm < 2.539398330063230e-001) { 309 pade5(m_M); 310 } else if (m_l1norm < 9.504178996162932e-001) { 311 pade7(m_M); 312 } else if (m_l1norm < 2.097847961257068e+000) { 313 pade9(m_M); 314 } else { 315 const double maxnorm = 5.371920351148152; 316 frexp(m_l1norm / maxnorm, &m_squarings); 317 if (m_squarings < 0) m_squarings = 0; 318 MatrixType A = m_M / pow(Scalar(2), m_squarings); 319 pade13(A); 320 } 321 } 322 323 template <typename MatrixType> 324 void MatrixExponential<MatrixType>::computeUV(long double) 325 { 326 using std::frexp; 327 using std::pow; 328 #if LDBL_MANT_DIG == 53 // double precision 329 computeUV(double()); 330 #elif LDBL_MANT_DIG <= 64 // extended precision 331 if (m_l1norm < 4.1968497232266989671e-003L) { 332 pade3(m_M); 333 } else if (m_l1norm < 1.1848116734693823091e-001L) { 334 pade5(m_M); 335 } else if (m_l1norm < 5.5170388480686700274e-001L) { 336 pade7(m_M); 337 } else if (m_l1norm < 1.3759868875587845383e+000L) { 338 pade9(m_M); 339 } else { 340 const long double maxnorm = 4.0246098906697353063L; 341 frexp(m_l1norm / maxnorm, &m_squarings); 342 if (m_squarings < 0) m_squarings = 0; 343 MatrixType A = m_M / pow(Scalar(2), m_squarings); 344 pade13(A); 345 } 346 #elif LDBL_MANT_DIG <= 106 // double-double 347 if (m_l1norm < 3.2787892205607026992947488108213e-005L) { 348 pade3(m_M); 349 } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) { 350 pade5(m_M); 351 } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) { 352 pade7(m_M); 353 } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) { 354 pade9(m_M); 355 } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) { 356 pade13(m_M); 357 } else { 358 const long double maxnorm = 3.2579440895405400856599663723517L; 359 frexp(m_l1norm / maxnorm, &m_squarings); 360 if (m_squarings < 0) m_squarings = 0; 361 MatrixType A = m_M / pow(Scalar(2), m_squarings); 362 pade17(A); 363 } 364 #elif LDBL_MANT_DIG <= 112 // quadruple precison 365 if (m_l1norm < 1.639394610288918690547467954466970e-005L) { 366 pade3(m_M); 367 } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) { 368 pade5(m_M); 369 } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) { 370 pade7(m_M); 371 } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) { 372 pade9(m_M); 373 } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) { 374 pade13(m_M); 375 } else { 376 const long double maxnorm = 2.884233277829519311757165057717815L; 377 frexp(m_l1norm / maxnorm, &m_squarings); 378 if (m_squarings < 0) m_squarings = 0; 379 MatrixType A = m_M / pow(Scalar(2), m_squarings); 380 pade17(A); 381 } 382 #else 383 // this case should be handled in compute() 384 eigen_assert(false && "Bug in MatrixExponential"); 385 #endif // LDBL_MANT_DIG 386 } 387 388 /** \ingroup MatrixFunctions_Module 389 * 390 * \brief Proxy for the matrix exponential of some matrix (expression). 391 * 392 * \tparam Derived Type of the argument to the matrix exponential. 393 * 394 * This class holds the argument to the matrix exponential until it 395 * is assigned or evaluated for some other reason (so the argument 396 * should not be changed in the meantime). It is the return type of 397 * MatrixBase::exp() and most of the time this is the only way it is 398 * used. 399 */ 400 template<typename Derived> struct MatrixExponentialReturnValue 401 : public ReturnByValue<MatrixExponentialReturnValue<Derived> > 402 { 403 typedef typename Derived::Index Index; 404 public: 405 /** \brief Constructor. 406 * 407 * \param[in] src %Matrix (expression) forming the argument of the 408 * matrix exponential. 409 */ 410 MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } 411 412 /** \brief Compute the matrix exponential. 413 * 414 * \param[out] result the matrix exponential of \p src in the 415 * constructor. 416 */ 417 template <typename ResultType> 418 inline void evalTo(ResultType& result) const 419 { 420 const typename Derived::PlainObject srcEvaluated = m_src.eval(); 421 MatrixExponential<typename Derived::PlainObject> me(srcEvaluated); 422 me.compute(result); 423 } 424 425 Index rows() const { return m_src.rows(); } 426 Index cols() const { return m_src.cols(); } 427 428 protected: 429 const Derived& m_src; 430 private: 431 MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&); 432 }; 433 434 namespace internal { 435 template<typename Derived> 436 struct traits<MatrixExponentialReturnValue<Derived> > 437 { 438 typedef typename Derived::PlainObject ReturnType; 439 }; 440 } 441 442 template <typename Derived> 443 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const 444 { 445 eigen_assert(rows() == cols()); 446 return MatrixExponentialReturnValue<Derived>(derived()); 447 } 448 449 } // end namespace Eigen 450 451 #endif // EIGEN_MATRIX_EXPONENTIAL 452