1 /* 2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. 3 * MD5 Message-Digest Algorithm (RFC 1321). 4 * 5 * Homepage: 6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 7 * 8 * Author: 9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> 10 * 11 * This software was written by Alexander Peslyak in 2001. No copyright is 12 * claimed, and the software is hereby placed in the public domain. 13 * In case this attempt to disclaim copyright and place the software in the 14 * public domain is deemed null and void, then the software is 15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the 16 * general public under the following terms: 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted. 20 * 21 * There's ABSOLUTELY NO WARRANTY, express or implied. 22 * 23 * (This is a heavily cut-down "BSD license".) 24 * 25 * This differs from Colin Plumb's older public domain implementation in that 26 * no exactly 32-bit integer data type is required (any 32-bit or wider 27 * unsigned integer data type will do), there's no compile-time endianness 28 * configuration, and the function prototypes match OpenSSL's. No code from 29 * Colin Plumb's implementation has been reused; this comment merely compares 30 * the properties of the two independent implementations. 31 * 32 * The primary goals of this implementation are portability and ease of use. 33 * It is meant to be fast, but not as fast as possible. Some known 34 * optimizations are not included to reduce source code size and avoid 35 * compile-time configuration. 36 */ 37 38 #ifndef HAVE_OPENSSL 39 40 #include <string.h> 41 42 #include "md5.h" 43 44 /* 45 * The basic MD5 functions. 46 * 47 * F and G are optimized compared to their RFC 1321 definitions for 48 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's 49 * implementation. 50 */ 51 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 52 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) 53 #define H(x, y, z) (((x) ^ (y)) ^ (z)) 54 #define H2(x, y, z) ((x) ^ ((y) ^ (z))) 55 #define I(x, y, z) ((y) ^ ((x) | ~(z))) 56 57 /* 58 * The MD5 transformation for all four rounds. 59 */ 60 #define STEP(f, a, b, c, d, x, t, s) \ 61 (a) += f((b), (c), (d)) + (x) + (t); \ 62 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ 63 (a) += (b); 64 65 /* 66 * SET reads 4 input bytes in little-endian byte order and stores them 67 * in a properly aligned word in host byte order. 68 * 69 * The check for little-endian architectures that tolerate unaligned 70 * memory accesses is just an optimization. Nothing will break if it 71 * doesn't work. 72 */ 73 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) 74 #define SET(n) \ 75 (*(MD5_u32plus *)&ptr[(n) * 4]) 76 #define GET(n) \ 77 SET(n) 78 #else 79 #define SET(n) \ 80 (ctx->block[(n)] = \ 81 (MD5_u32plus)ptr[(n) * 4] | \ 82 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \ 83 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \ 84 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24)) 85 #define GET(n) \ 86 (ctx->block[(n)]) 87 #endif 88 89 /* 90 * This processes one or more 64-byte data blocks, but does NOT update 91 * the bit counters. There are no alignment requirements. 92 */ 93 static const void *body(MD5_CTX *ctx, const void *data, unsigned long size) 94 { 95 const unsigned char *ptr; 96 MD5_u32plus a, b, c, d; 97 MD5_u32plus saved_a, saved_b, saved_c, saved_d; 98 99 ptr = (const unsigned char *)data; 100 101 a = ctx->a; 102 b = ctx->b; 103 c = ctx->c; 104 d = ctx->d; 105 106 do { 107 saved_a = a; 108 saved_b = b; 109 saved_c = c; 110 saved_d = d; 111 112 /* Round 1 */ 113 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) 114 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) 115 STEP(F, c, d, a, b, SET(2), 0x242070db, 17) 116 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) 117 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) 118 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) 119 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) 120 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) 121 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) 122 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) 123 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) 124 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) 125 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) 126 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) 127 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) 128 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) 129 130 /* Round 2 */ 131 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) 132 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) 133 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) 134 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) 135 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) 136 STEP(G, d, a, b, c, GET(10), 0x02441453, 9) 137 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) 138 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) 139 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) 140 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) 141 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) 142 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) 143 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) 144 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) 145 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) 146 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) 147 148 /* Round 3 */ 149 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) 150 STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11) 151 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) 152 STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23) 153 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) 154 STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11) 155 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) 156 STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23) 157 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) 158 STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11) 159 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) 160 STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23) 161 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) 162 STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11) 163 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) 164 STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23) 165 166 /* Round 4 */ 167 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) 168 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) 169 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) 170 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) 171 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) 172 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) 173 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) 174 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) 175 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) 176 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) 177 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) 178 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) 179 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) 180 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) 181 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) 182 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) 183 184 a += saved_a; 185 b += saved_b; 186 c += saved_c; 187 d += saved_d; 188 189 ptr += 64; 190 } while (size -= 64); 191 192 ctx->a = a; 193 ctx->b = b; 194 ctx->c = c; 195 ctx->d = d; 196 197 return ptr; 198 } 199 200 void MD5_Init(MD5_CTX *ctx) 201 { 202 ctx->a = 0x67452301; 203 ctx->b = 0xefcdab89; 204 ctx->c = 0x98badcfe; 205 ctx->d = 0x10325476; 206 207 ctx->lo = 0; 208 ctx->hi = 0; 209 } 210 211 void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size) 212 { 213 MD5_u32plus saved_lo; 214 unsigned long used, available; 215 216 saved_lo = ctx->lo; 217 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) 218 ctx->hi++; 219 ctx->hi += size >> 29; 220 221 used = saved_lo & 0x3f; 222 223 if (used) { 224 available = 64 - used; 225 226 if (size < available) { 227 memcpy(&ctx->buffer[used], data, size); 228 return; 229 } 230 231 memcpy(&ctx->buffer[used], data, available); 232 data = (const unsigned char *)data + available; 233 size -= available; 234 body(ctx, ctx->buffer, 64); 235 } 236 237 if (size >= 64) { 238 data = body(ctx, data, size & ~(unsigned long)0x3f); 239 size &= 0x3f; 240 } 241 242 memcpy(ctx->buffer, data, size); 243 } 244 245 void MD5_Final(unsigned char *result, MD5_CTX *ctx) 246 { 247 unsigned long used, available; 248 249 used = ctx->lo & 0x3f; 250 251 ctx->buffer[used++] = 0x80; 252 253 available = 64 - used; 254 255 if (available < 8) { 256 memset(&ctx->buffer[used], 0, available); 257 body(ctx, ctx->buffer, 64); 258 used = 0; 259 available = 64; 260 } 261 262 memset(&ctx->buffer[used], 0, available - 8); 263 264 ctx->lo <<= 3; 265 ctx->buffer[56] = ctx->lo; 266 ctx->buffer[57] = ctx->lo >> 8; 267 ctx->buffer[58] = ctx->lo >> 16; 268 ctx->buffer[59] = ctx->lo >> 24; 269 ctx->buffer[60] = ctx->hi; 270 ctx->buffer[61] = ctx->hi >> 8; 271 ctx->buffer[62] = ctx->hi >> 16; 272 ctx->buffer[63] = ctx->hi >> 24; 273 274 body(ctx, ctx->buffer, 64); 275 276 result[0] = ctx->a; 277 result[1] = ctx->a >> 8; 278 result[2] = ctx->a >> 16; 279 result[3] = ctx->a >> 24; 280 result[4] = ctx->b; 281 result[5] = ctx->b >> 8; 282 result[6] = ctx->b >> 16; 283 result[7] = ctx->b >> 24; 284 result[8] = ctx->c; 285 result[9] = ctx->c >> 8; 286 result[10] = ctx->c >> 16; 287 result[11] = ctx->c >> 24; 288 result[12] = ctx->d; 289 result[13] = ctx->d >> 8; 290 result[14] = ctx->d >> 16; 291 result[15] = ctx->d >> 24; 292 293 memset(ctx, 0, sizeof(*ctx)); 294 } 295 296 #endif 297