Home | History | Annotate | Download | only in processor
      1 // Copyright (c) 2010 Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // exploitability_win.cc: Windows specific exploitability engine.
     31 //
     32 // Provides a guess at the exploitability of the crash for the Windows
     33 // platform given a minidump and process_state.
     34 //
     35 // Author: Cris Neckar
     36 
     37 #include <vector>
     38 
     39 #include "processor/exploitability_win.h"
     40 
     41 #include "common/scoped_ptr.h"
     42 #include "google_breakpad/common/minidump_exception_win32.h"
     43 #include "google_breakpad/processor/minidump.h"
     44 #include "processor/disassembler_x86.h"
     45 #include "processor/logging.h"
     46 
     47 #include "third_party/libdisasm/libdis.h"
     48 
     49 namespace google_breakpad {
     50 
     51 // The cutoff that we use to judge if and address is likely an offset
     52 // from various interesting addresses.
     53 static const uint64_t kProbableNullOffset = 4096;
     54 static const uint64_t kProbableStackOffset = 8192;
     55 
     56 // The various cutoffs for the different ratings.
     57 static const size_t kHighCutoff        = 100;
     58 static const size_t kMediumCutoff      = 80;
     59 static const size_t kLowCutoff         = 50;
     60 static const size_t kInterestingCutoff = 25;
     61 
     62 // Predefined incremental values for conditional weighting.
     63 static const size_t kTinyBump          = 5;
     64 static const size_t kSmallBump         = 20;
     65 static const size_t kMediumBump        = 50;
     66 static const size_t kLargeBump         = 70;
     67 static const size_t kHugeBump          = 90;
     68 
     69 // The maximum number of bytes to disassemble past the program counter.
     70 static const size_t kDisassembleBytesBeyondPC = 2048;
     71 
     72 ExploitabilityWin::ExploitabilityWin(Minidump *dump,
     73                                      ProcessState *process_state)
     74     : Exploitability(dump, process_state) { }
     75 
     76 ExploitabilityRating ExploitabilityWin::CheckPlatformExploitability() {
     77   MinidumpException *exception = dump_->GetException();
     78   if (!exception) {
     79     BPLOG(INFO) << "Minidump does not have exception record.";
     80     return EXPLOITABILITY_ERR_PROCESSING;
     81   }
     82 
     83   const MDRawExceptionStream *raw_exception = exception->exception();
     84   if (!raw_exception) {
     85     BPLOG(INFO) << "Could not obtain raw exception info.";
     86     return EXPLOITABILITY_ERR_PROCESSING;
     87   }
     88 
     89   const MinidumpContext *context = exception->GetContext();
     90   if (!context) {
     91     BPLOG(INFO) << "Could not obtain exception context.";
     92     return EXPLOITABILITY_ERR_PROCESSING;
     93   }
     94 
     95   MinidumpMemoryList *memory_list = dump_->GetMemoryList();
     96   bool memory_available = true;
     97   if (!memory_list) {
     98     BPLOG(INFO) << "Minidump memory segments not available.";
     99     memory_available = false;
    100   }
    101   uint64_t address = process_state_->crash_address();
    102   uint32_t exception_code = raw_exception->exception_record.exception_code;
    103 
    104   uint32_t exploitability_weight = 0;
    105 
    106   uint64_t stack_ptr = 0;
    107   uint64_t instruction_ptr = 0;
    108 
    109   switch (context->GetContextCPU()) {
    110     case MD_CONTEXT_X86:
    111       stack_ptr = context->GetContextX86()->esp;
    112       instruction_ptr = context->GetContextX86()->eip;
    113       break;
    114     case MD_CONTEXT_AMD64:
    115       stack_ptr = context->GetContextAMD64()->rsp;
    116       instruction_ptr = context->GetContextAMD64()->rip;
    117       break;
    118     default:
    119       BPLOG(INFO) << "Unsupported architecture.";
    120       return EXPLOITABILITY_ERR_PROCESSING;
    121   }
    122 
    123   // Check if we are executing on the stack.
    124   if (instruction_ptr <= (stack_ptr + kProbableStackOffset) &&
    125       instruction_ptr >= (stack_ptr - kProbableStackOffset))
    126     exploitability_weight += kHugeBump;
    127 
    128   switch (exception_code) {
    129     // This is almost certainly recursion.
    130     case MD_EXCEPTION_CODE_WIN_STACK_OVERFLOW:
    131       exploitability_weight += kTinyBump;
    132       break;
    133 
    134     // These exceptions tend to be benign and we can generally ignore them.
    135     case MD_EXCEPTION_CODE_WIN_INTEGER_DIVIDE_BY_ZERO:
    136     case MD_EXCEPTION_CODE_WIN_INTEGER_OVERFLOW:
    137     case MD_EXCEPTION_CODE_WIN_FLOAT_DIVIDE_BY_ZERO:
    138     case MD_EXCEPTION_CODE_WIN_FLOAT_INEXACT_RESULT:
    139     case MD_EXCEPTION_CODE_WIN_FLOAT_OVERFLOW:
    140     case MD_EXCEPTION_CODE_WIN_FLOAT_UNDERFLOW:
    141     case MD_EXCEPTION_CODE_WIN_IN_PAGE_ERROR:
    142       exploitability_weight += kTinyBump;
    143       break;
    144 
    145     // These exceptions will typically mean that we have jumped where we
    146     // shouldn't.
    147     case MD_EXCEPTION_CODE_WIN_ILLEGAL_INSTRUCTION:
    148     case MD_EXCEPTION_CODE_WIN_FLOAT_INVALID_OPERATION:
    149     case MD_EXCEPTION_CODE_WIN_PRIVILEGED_INSTRUCTION:
    150       exploitability_weight += kLargeBump;
    151       break;
    152 
    153     // These represent bugs in exception handlers.
    154     case MD_EXCEPTION_CODE_WIN_INVALID_DISPOSITION:
    155     case MD_EXCEPTION_CODE_WIN_NONCONTINUABLE_EXCEPTION:
    156       exploitability_weight += kSmallBump;
    157       break;
    158 
    159     case MD_EXCEPTION_CODE_WIN_HEAP_CORRUPTION:
    160     case MD_EXCEPTION_CODE_WIN_STACK_BUFFER_OVERRUN:
    161       exploitability_weight += kHugeBump;
    162       break;
    163 
    164     case MD_EXCEPTION_CODE_WIN_GUARD_PAGE_VIOLATION:
    165       exploitability_weight += kLargeBump;
    166       break;
    167 
    168     case MD_EXCEPTION_CODE_WIN_ACCESS_VIOLATION:
    169       bool near_null = (address <= kProbableNullOffset);
    170       bool bad_read = false;
    171       bool bad_write = false;
    172       if (raw_exception->exception_record.number_parameters >= 1) {
    173         MDAccessViolationTypeWin av_type =
    174             static_cast<MDAccessViolationTypeWin>
    175             (raw_exception->exception_record.exception_information[0]);
    176         switch (av_type) {
    177           case MD_ACCESS_VIOLATION_WIN_READ:
    178             bad_read = true;
    179             if (near_null)
    180               exploitability_weight += kSmallBump;
    181             else
    182               exploitability_weight += kMediumBump;
    183             break;
    184           case MD_ACCESS_VIOLATION_WIN_WRITE:
    185             bad_write = true;
    186             if (near_null)
    187               exploitability_weight += kSmallBump;
    188             else
    189               exploitability_weight += kHugeBump;
    190             break;
    191           case MD_ACCESS_VIOLATION_WIN_EXEC:
    192             if (near_null)
    193               exploitability_weight += kSmallBump;
    194             else
    195               exploitability_weight += kHugeBump;
    196             break;
    197           default:
    198             BPLOG(INFO) << "Unrecognized access violation type.";
    199             return EXPLOITABILITY_ERR_PROCESSING;
    200             break;
    201         }
    202         MinidumpMemoryRegion *instruction_region = 0;
    203         if (memory_available) {
    204           instruction_region =
    205               memory_list->GetMemoryRegionForAddress(instruction_ptr);
    206         }
    207         if (!near_null && instruction_region &&
    208             context->GetContextCPU() == MD_CONTEXT_X86 &&
    209             (bad_read || bad_write)) {
    210           // Perform checks related to memory around instruction pointer.
    211           uint32_t memory_offset =
    212               instruction_ptr - instruction_region->GetBase();
    213           uint32_t available_memory =
    214               instruction_region->GetSize() - memory_offset;
    215           available_memory = available_memory > kDisassembleBytesBeyondPC ?
    216               kDisassembleBytesBeyondPC : available_memory;
    217           if (available_memory) {
    218             const uint8_t *raw_memory =
    219                 instruction_region->GetMemory() + memory_offset;
    220             DisassemblerX86 disassembler(raw_memory,
    221                                          available_memory,
    222                                          instruction_ptr);
    223             disassembler.NextInstruction();
    224             if (bad_read)
    225               disassembler.setBadRead();
    226             else
    227               disassembler.setBadWrite();
    228             if (disassembler.currentInstructionValid()) {
    229               // Check if the faulting instruction falls into one of
    230               // several interesting groups.
    231               switch (disassembler.currentInstructionGroup()) {
    232                 case libdis::insn_controlflow:
    233                   exploitability_weight += kLargeBump;
    234                   break;
    235                 case libdis::insn_string:
    236                   exploitability_weight += kHugeBump;
    237                   break;
    238                 default:
    239                   break;
    240               }
    241               // Loop the disassembler through the code and check if it
    242               // IDed any interesting conditions in the near future.
    243               // Multiple flags may be set so treat each equally.
    244               while (disassembler.NextInstruction() &&
    245                      disassembler.currentInstructionValid() &&
    246                      !disassembler.endOfBlock())
    247                 continue;
    248               if (disassembler.flags() & DISX86_BAD_BRANCH_TARGET)
    249                 exploitability_weight += kLargeBump;
    250               if (disassembler.flags() & DISX86_BAD_ARGUMENT_PASSED)
    251                 exploitability_weight += kTinyBump;
    252               if (disassembler.flags() & DISX86_BAD_WRITE)
    253                 exploitability_weight += kMediumBump;
    254               if (disassembler.flags() & DISX86_BAD_BLOCK_WRITE)
    255                 exploitability_weight += kMediumBump;
    256               if (disassembler.flags() & DISX86_BAD_READ)
    257                 exploitability_weight += kTinyBump;
    258               if (disassembler.flags() & DISX86_BAD_BLOCK_READ)
    259                 exploitability_weight += kTinyBump;
    260               if (disassembler.flags() & DISX86_BAD_COMPARISON)
    261                 exploitability_weight += kTinyBump;
    262             }
    263           }
    264         }
    265         if (!near_null && AddressIsAscii(address))
    266           exploitability_weight += kMediumBump;
    267       } else {
    268         BPLOG(INFO) << "Access violation type parameter missing.";
    269         return EXPLOITABILITY_ERR_PROCESSING;
    270       }
    271   }
    272 
    273   // Based on the calculated weight we return a simplified classification.
    274   BPLOG(INFO) << "Calculated exploitability weight: " << exploitability_weight;
    275   if (exploitability_weight >= kHighCutoff)
    276     return EXPLOITABILITY_HIGH;
    277   if (exploitability_weight >= kMediumCutoff)
    278     return EXPLOITABLITY_MEDIUM;
    279   if (exploitability_weight >= kLowCutoff)
    280     return EXPLOITABILITY_LOW;
    281   if (exploitability_weight >= kInterestingCutoff)
    282     return EXPLOITABILITY_INTERESTING;
    283 
    284   return EXPLOITABILITY_NONE;
    285 }
    286 
    287 }  // namespace google_breakpad
    288