Home | History | Annotate | Download | only in math
      1 /*
      2  * Copyright (C) 2011 The Guava Authors
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  * http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.google.common.math;
     18 
     19 import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
     20 import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
     21 import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
     22 import static java.math.RoundingMode.CEILING;
     23 
     24 import com.google.caliper.BeforeExperiment;
     25 import com.google.caliper.Benchmark;
     26 import com.google.caliper.Param;
     27 import com.google.common.math.BigIntegerMath;
     28 import com.google.common.math.IntMath;
     29 import com.google.common.math.LongMath;
     30 
     31 import java.math.BigInteger;
     32 
     33 /**
     34  * Benchmarks for the non-rounding methods of {@code BigIntegerMath}.
     35  *
     36  * @author Louis Wasserman
     37  */
     38 public class BigIntegerMathBenchmark {
     39   private static final int[] factorials = new int[ARRAY_SIZE];
     40   private static final int[] slowFactorials = new int[ARRAY_SIZE];
     41   private static final int[] binomials = new int[ARRAY_SIZE];
     42 
     43   @Param({"50", "1000", "10000"})
     44   int factorialBound;
     45 
     46   @BeforeExperiment
     47   void setUp() {
     48     for (int i = 0; i < ARRAY_SIZE; i++) {
     49       factorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
     50       slowFactorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
     51       binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1);
     52     }
     53   }
     54 
     55   /**
     56    * Previous version of BigIntegerMath.factorial, kept for timing purposes.
     57    */
     58   private static BigInteger oldSlowFactorial(int n) {
     59     if (n <= 20) {
     60       return BigInteger.valueOf(LongMath.factorial(n));
     61     } else {
     62       int k = 20;
     63       return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n));
     64     }
     65   }
     66 
     67   /**
     68    * Returns the product of {@code n1} exclusive through {@code n2} inclusive.
     69    */
     70   private static BigInteger oldSlowFactorial(int n1, int n2) {
     71     assert n1 <= n2;
     72     if (IntMath.log2(n2, CEILING) * (n2 - n1) < Long.SIZE - 1) {
     73       // the result will definitely fit into a long
     74       long result = 1;
     75       for (int i = n1 + 1; i <= n2; i++) {
     76         result *= i;
     77       }
     78       return BigInteger.valueOf(result);
     79     }
     80 
     81     /*
     82      * We want each multiplication to have both sides with approximately the same number of digits.
     83      * Currently, we just divide the range in half.
     84      */
     85     int mid = (n1 + n2) >>> 1;
     86     return oldSlowFactorial(n1, mid).multiply(oldSlowFactorial(mid, n2));
     87   }
     88 
     89   @Benchmark int slowFactorial(int reps) {
     90     int tmp = 0;
     91     for (int i = 0; i < reps; i++) {
     92       int j = i & ARRAY_MASK;
     93       tmp += oldSlowFactorial(slowFactorials[j]).intValue();
     94     }
     95     return tmp;
     96   }
     97 
     98   @Benchmark int factorial(int reps) {
     99     int tmp = 0;
    100     for (int i = 0; i < reps; i++) {
    101       int j = i & ARRAY_MASK;
    102       tmp += BigIntegerMath.factorial(factorials[j]).intValue();
    103     }
    104     return tmp;
    105   }
    106 
    107   @Benchmark int binomial(int reps) {
    108     int tmp = 0;
    109     for (int i = 0; i < reps; i++) {
    110       int j = i & 0xffff;
    111       tmp += BigIntegerMath.binomial(factorials[j], binomials[j]).intValue();
    112     }
    113     return tmp;
    114   }
    115 }
    116