Home | History | Annotate | Download | only in common
      1 /*
      2 ******************************************************************************
      3 *
      4 *   Copyright (C) 2000-2015, International Business Machines
      5 *   Corporation and others.  All Rights Reserved.
      6 *
      7 ******************************************************************************
      8 *   file name:  ucnvmbcs.cpp
      9 *   encoding:   US-ASCII
     10 *   tab size:   8 (not used)
     11 *   indentation:4
     12 *
     13 *   created on: 2000jul03
     14 *   created by: Markus W. Scherer
     15 *
     16 *   The current code in this file replaces the previous implementation
     17 *   of conversion code from multi-byte codepages to Unicode and back.
     18 *   This implementation supports the following:
     19 *   - legacy variable-length codepages with up to 4 bytes per character
     20 *   - all Unicode code points (up to 0x10ffff)
     21 *   - efficient distinction of unassigned vs. illegal byte sequences
     22 *   - it is possible in fromUnicode() to directly deal with simple
     23 *     stateful encodings (used for EBCDIC_STATEFUL)
     24 *   - it is possible to convert Unicode code points
     25 *     to a single zero byte (but not as a fallback except for SBCS)
     26 *
     27 *   Remaining limitations in fromUnicode:
     28 *   - byte sequences must not have leading zero bytes
     29 *   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
     30 *   - limitation to up to 4 bytes per character
     31 *
     32 *   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
     33 *   limitations and adds m:n character mappings and other features.
     34 *   See ucnv_ext.h for details.
     35 *
     36 *   Change history:
     37 *
     38 *    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
     39 *                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
     40 *                             macros to ucnvmbcs.h file
     41 */
     42 
     43 #include "unicode/utypes.h"
     44 
     45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
     46 
     47 #include "unicode/ucnv.h"
     48 #include "unicode/ucnv_cb.h"
     49 #include "unicode/udata.h"
     50 #include "unicode/uset.h"
     51 #include "unicode/utf8.h"
     52 #include "unicode/utf16.h"
     53 #include "ucnv_bld.h"
     54 #include "ucnvmbcs.h"
     55 #include "ucnv_ext.h"
     56 #include "ucnv_cnv.h"
     57 #include "cmemory.h"
     58 #include "cstring.h"
     59 #include "umutex.h"
     60 
     61 /* control optimizations according to the platform */
     62 #define MBCS_UNROLL_SINGLE_TO_BMP 1
     63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
     64 
     65 /*
     66  * _MBCSHeader versions 5.3 & 4.3
     67  * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
     68  *
     69  * This version is optional. Version 5 is used for incompatible data format changes.
     70  * makeconv will continue to generate version 4 files if possible.
     71  *
     72  * Changes from version 4:
     73  *
     74  * The main difference is an additional _MBCSHeader field with
     75  * - the length (number of uint32_t) of the _MBCSHeader
     76  * - flags for further incompatible data format changes
     77  * - flags for further, backward compatible data format changes
     78  *
     79  * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
     80  * the file and needs to be reconstituted at load time.
     81  * This requires a utf8Friendly format with an additional mbcsIndex table for fast
     82  * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
     83  * (For details about these structures see below, and see ucnvmbcs.h.)
     84  *
     85  *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
     86  *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
     87  *   precision markers for all mappings.)
     88  *
     89  *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
     90  *   omitted data that can be reconstituted from the toUnicode data.
     91  *
     92  *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
     93  *   With only roundtrip mappings in the base fromUnicode data, this part is fully
     94  *   redundant with the mbcsIndex and will be reconstituted from that (also using the
     95  *   stage 1 table which contains the information about how stage 2 was compacted).
     96  *
     97  *   The rest of the stage 2 table, the part for code points above maxFastUChar,
     98  *   is stored in the file and will be appended to the reconstituted part.
     99  *
    100  *   The entire fromUBytes array is omitted from the file and will be reconstitued.
    101  *   This is done by enumerating all toUnicode roundtrip mappings, performing
    102  *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
    103  *   writing instead of reading the byte values.
    104  *
    105  * _MBCSHeader version 4.3
    106  *
    107  * Change from version 4.2:
    108  * - Optional utf8Friendly data structures, with 64-entry stage 3 block
    109  *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
    110  *   files which can be used instead of stages 1 & 2.
    111  *   Faster lookups for roundtrips from most commonly used characters,
    112  *   and lookups from UTF-8 byte sequences with a natural bit distribution.
    113  *   See ucnvmbcs.h for more details.
    114  *
    115  * Change from version 4.1:
    116  * - Added an optional extension table structure at the end of the .cnv file.
    117  *   It is present if the upper bits of the header flags field contains a non-zero
    118  *   byte offset to it.
    119  *   Files that contain only a conversion table and no base table
    120  *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
    121  *   These contain the base table name between the MBCS header and the extension
    122  *   data.
    123  *
    124  * Change from version 4.0:
    125  * - Replace header.reserved with header.fromUBytesLength so that all
    126  *   fields in the data have length.
    127  *
    128  * Changes from version 3 (for performance improvements):
    129  * - new bit distribution for state table entries
    130  * - reordered action codes
    131  * - new data structure for single-byte fromUnicode
    132  *   + stage 2 only contains indexes
    133  *   + stage 3 stores 16 bits per character with classification bits 15..8
    134  * - no multiplier for stage 1 entries
    135  * - stage 2 for non-single-byte codepages contains the index and the flags in
    136  *   one 32-bit value
    137  * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
    138  *
    139  * For more details about old versions of the MBCS data structure, see
    140  * the corresponding versions of this file.
    141  *
    142  * Converting stateless codepage data ---------------------------------------***
    143  * (or codepage data with simple states) to Unicode.
    144  *
    145  * Data structure and algorithm for converting from complex legacy codepages
    146  * to Unicode. (Designed before 2000-may-22.)
    147  *
    148  * The basic idea is that the structure of legacy codepages can be described
    149  * with state tables.
    150  * When reading a byte stream, each input byte causes a state transition.
    151  * Some transitions result in the output of a code point, some result in
    152  * "unassigned" or "illegal" output.
    153  * This is used here for character conversion.
    154  *
    155  * The data structure begins with a state table consisting of a row
    156  * per state, with 256 entries (columns) per row for each possible input
    157  * byte value.
    158  * Each entry is 32 bits wide, with two formats distinguished by
    159  * the sign bit (bit 31):
    160  *
    161  * One format for transitional entries (bit 31 not set) for non-final bytes, and
    162  * one format for final entries (bit 31 set).
    163  * Both formats contain the number of the next state in the same bit
    164  * positions.
    165  * State 0 is the initial state.
    166  *
    167  * Most of the time, the offset values of subsequent states are added
    168  * up to a scalar value. This value will eventually be the index of
    169  * the Unicode code point in a table that follows the state table.
    170  * The effect is that the code points for final state table rows
    171  * are contiguous. The code points of final state rows follow each other
    172  * in the order of the references to those final states by previous
    173  * states, etc.
    174  *
    175  * For some terminal states, the offset is itself the output Unicode
    176  * code point (16 bits for a BMP code point or 20 bits for a supplementary
    177  * code point (stored as code point minus 0x10000 so that 20 bits are enough).
    178  * For others, the code point in the Unicode table is stored with either
    179  * one or two code units: one for BMP code points, two for a pair of
    180  * surrogates.
    181  * All code points for a final state entry take up the same number of code
    182  * units, regardless of whether they all actually _use_ the same number
    183  * of code units. This is necessary for simple array access.
    184  *
    185  * An additional feature comes in with what in ICU is called "fallback"
    186  * mappings:
    187  *
    188  * In addition to round-trippable, precise, 1:1 mappings, there are often
    189  * mappings defined between similar, though not the same, characters.
    190  * Typically, such mappings occur only in fromUnicode mapping tables because
    191  * Unicode has a superset repertoire of most other codepages. However, it
    192  * is possible to provide such mappings in the toUnicode tables, too.
    193  * In this case, the fallback mappings are partly integrated into the
    194  * general state tables because the structure of the encoding includes their
    195  * byte sequences.
    196  * For final entries in an initial state, fallback mappings are stored in
    197  * the entry itself like with roundtrip mappings.
    198  * For other final entries, they are stored in the code units table if
    199  * the entry is for a pair of code units.
    200  * For single-unit results in the code units table, there is no space to
    201  * alternatively hold a fallback mapping; in this case, the code unit
    202  * is stored as U+fffe (unassigned), and the fallback mapping needs to
    203  * be looked up by the scalar offset value in a separate table.
    204  *
    205  * "Unassigned" state entries really mean "structurally unassigned",
    206  * i.e., such a byte sequence will never have a mapping result.
    207  *
    208  * The interpretation of the bits in each entry is as follows:
    209  *
    210  * Bit 31 not set, not a terminal entry ("transitional"):
    211  * 30..24 next state
    212  * 23..0  offset delta, to be added up
    213  *
    214  * Bit 31 set, terminal ("final") entry:
    215  * 30..24 next state (regardless of action code)
    216  * 23..20 action code:
    217  *        action codes 0 and 1 result in precise-mapping Unicode code points
    218  *        0  valid byte sequence
    219  *           19..16 not used, 0
    220  *           15..0  16-bit Unicode BMP code point
    221  *                  never U+fffe or U+ffff
    222  *        1  valid byte sequence
    223  *           19..0  20-bit Unicode supplementary code point
    224  *                  never U+fffe or U+ffff
    225  *
    226  *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
    227  *        2  valid byte sequence (fallback)
    228  *           19..16 not used, 0
    229  *           15..0  16-bit Unicode BMP code point as fallback result
    230  *        3  valid byte sequence (fallback)
    231  *           19..0  20-bit Unicode supplementary code point as fallback result
    232  *
    233  *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
    234  *        depending on the code units they result in
    235  *        4  valid byte sequence
    236  *           19..9  not used, 0
    237  *            8..0  final offset delta
    238  *                  pointing to one 16-bit code unit which may be
    239  *                  fffe  unassigned -- look for a fallback for this offset
    240  *                  ffff  illegal
    241  *        5  valid byte sequence
    242  *           19..9  not used, 0
    243  *            8..0  final offset delta
    244  *                  pointing to two 16-bit code units
    245  *                  (typically UTF-16 surrogates)
    246  *                  the result depends on the first code unit as follows:
    247  *                  0000..d7ff  roundtrip BMP code point (1st alone)
    248  *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
    249  *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
    250  *                  e000        roundtrip BMP code point (2nd alone)
    251  *                  e001        fallback BMP code point (2nd alone)
    252  *                  fffe        unassigned
    253  *                  ffff        illegal
    254  *           (the final offset deltas are at most 255 * 2,
    255  *            times 2 because of storing code unit pairs)
    256  *
    257  *        6  unassigned byte sequence
    258  *           19..16 not used, 0
    259  *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
    260  *                  this does not contain a final offset delta because the main
    261  *                  purpose of this action code is to save scalar offset values;
    262  *                  therefore, fallback values cannot be assigned to byte
    263  *                  sequences that result in this action code
    264  *        7  illegal byte sequence
    265  *           19..16 not used, 0
    266  *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
    267  *        8  state change only
    268  *           19..0  not used, 0
    269  *           useful for state changes in simple stateful encodings,
    270  *           at Shift-In/Shift-Out codes
    271  *
    272  *
    273  *        9..15 reserved for future use
    274  *           current implementations will only perform a state change
    275  *           and ignore bits 19..0
    276  *
    277  * An encoding with contiguous ranges of unassigned byte sequences, like
    278  * Shift-JIS and especially EUC-TW, can be stored efficiently by having
    279  * at least two states for the trail bytes:
    280  * One trail byte state that results in code points, and one that only
    281  * has "unassigned" and "illegal" terminal states.
    282  *
    283  * Note: partly by accident, this data structure supports simple stateful
    284  * encodings without any additional logic.
    285  * Currently, only simple Shift-In/Shift-Out schemes are handled with
    286  * appropriate state tables (especially EBCDIC_STATEFUL!).
    287  *
    288  * MBCS version 2 added:
    289  * unassigned and illegal action codes have U+fffe and U+ffff
    290  * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
    291  *
    292  * Converting from Unicode to codepage bytes --------------------------------***
    293  *
    294  * The conversion data structure for fromUnicode is designed for the known
    295  * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
    296  * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
    297  * a roundtrip mapping.
    298  *
    299  * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
    300  * like in the character properties table.
    301  * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
    302  * with the resulting bytes is at offsetFromUBytes.
    303  *
    304  * Beginning with version 4, single-byte codepages have a significantly different
    305  * trie compared to other codepages.
    306  * In all cases, the entry in stage 1 is directly the index of the block of
    307  * 64 entries in stage 2.
    308  *
    309  * Single-byte lookup:
    310  *
    311  * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
    312  * Stage 3 contains one 16-bit word per result:
    313  * Bits 15..8 indicate the kind of result:
    314  *    f  roundtrip result
    315  *    c  fallback result from private-use code point
    316  *    8  fallback result from other code points
    317  *    0  unassigned
    318  * Bits 7..0 contain the codepage byte. A zero byte is always possible.
    319  *
    320  * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
    321  * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
    322  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
    323  * ASCII code points can be looked up with a linear array access into stage 3.
    324  * See maxFastUChar and other details in ucnvmbcs.h.
    325  *
    326  * Multi-byte lookup:
    327  *
    328  * Stage 2 contains a 32-bit word for each 16-block in stage 3:
    329  * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
    330  *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
    331  *             If this test is false, then a non-zero result will be interpreted as
    332  *             a fallback mapping.
    333  * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
    334  *
    335  * Stage 3 contains 2, 3, or 4 bytes per result.
    336  * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
    337  * while 3 bytes are stored as bytes in big-endian order.
    338  * Leading zero bytes are ignored, and the number of bytes is counted.
    339  * A zero byte mapping result is possible as a roundtrip result.
    340  * For some output types, the actual result is processed from this;
    341  * see ucnv_MBCSFromUnicodeWithOffsets().
    342  *
    343  * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
    344  * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
    345  *
    346  * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
    347  * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
    348  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
    349  * ASCII code points can be looked up with a linear array access into stage 3.
    350  * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
    351  *
    352  * In version 3, stage 2 blocks may overlap by multiples of the multiplier
    353  * for compaction.
    354  * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
    355  * may overlap by any number of entries.
    356  *
    357  * MBCS version 2 added:
    358  * the converter checks for known output types, which allows
    359  * adding new ones without crashing an unaware converter
    360  */
    361 
    362 /**
    363  * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
    364  * consecutive sequences of bytes, starting from the one encoded in value,
    365  * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
    366  * Does not currently support m:n mappings or reverse fallbacks.
    367  * This function will not be called for sequences of bytes with leading zeros.
    368  *
    369  * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
    370  * @param value contains 1..4 bytes of the first byte sequence, right-aligned
    371  * @param codePoints resulting Unicode code points, or negative if a byte sequence does
    372  *        not map to anything
    373  * @return TRUE to continue enumeration, FALSE to stop
    374  */
    375 typedef UBool U_CALLCONV
    376 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
    377 
    378 static void
    379 ucnv_MBCSLoad(UConverterSharedData *sharedData,
    380           UConverterLoadArgs *pArgs,
    381           const uint8_t *raw,
    382           UErrorCode *pErrorCode);
    383 
    384 static void
    385 ucnv_MBCSUnload(UConverterSharedData *sharedData);
    386 
    387 static void
    388 ucnv_MBCSOpen(UConverter *cnv,
    389               UConverterLoadArgs *pArgs,
    390               UErrorCode *pErrorCode);
    391 
    392 static UChar32
    393 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
    394                   UErrorCode *pErrorCode);
    395 
    396 static void
    397 ucnv_MBCSGetStarters(const UConverter* cnv,
    398                  UBool starters[256],
    399                  UErrorCode *pErrorCode);
    400 
    401 static const char *
    402 ucnv_MBCSGetName(const UConverter *cnv);
    403 
    404 static void
    405 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
    406               int32_t offsetIndex,
    407               UErrorCode *pErrorCode);
    408 
    409 static UChar32
    410 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
    411                   UErrorCode *pErrorCode);
    412 
    413 static void
    414 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
    415                   UConverterToUnicodeArgs *pToUArgs,
    416                   UErrorCode *pErrorCode);
    417 
    418 static void
    419 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
    420                    const USetAdder *sa,
    421                    UConverterUnicodeSet which,
    422                    UErrorCode *pErrorCode);
    423 
    424 static void
    425 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
    426                   UConverterToUnicodeArgs *pToUArgs,
    427                   UErrorCode *pErrorCode);
    428 
    429 static const UConverterImpl _SBCSUTF8Impl={
    430     UCNV_MBCS,
    431 
    432     ucnv_MBCSLoad,
    433     ucnv_MBCSUnload,
    434 
    435     ucnv_MBCSOpen,
    436     NULL,
    437     NULL,
    438 
    439     ucnv_MBCSToUnicodeWithOffsets,
    440     ucnv_MBCSToUnicodeWithOffsets,
    441     ucnv_MBCSFromUnicodeWithOffsets,
    442     ucnv_MBCSFromUnicodeWithOffsets,
    443     ucnv_MBCSGetNextUChar,
    444 
    445     ucnv_MBCSGetStarters,
    446     ucnv_MBCSGetName,
    447     ucnv_MBCSWriteSub,
    448     NULL,
    449     ucnv_MBCSGetUnicodeSet,
    450 
    451     NULL,
    452     ucnv_SBCSFromUTF8
    453 };
    454 
    455 static const UConverterImpl _DBCSUTF8Impl={
    456     UCNV_MBCS,
    457 
    458     ucnv_MBCSLoad,
    459     ucnv_MBCSUnload,
    460 
    461     ucnv_MBCSOpen,
    462     NULL,
    463     NULL,
    464 
    465     ucnv_MBCSToUnicodeWithOffsets,
    466     ucnv_MBCSToUnicodeWithOffsets,
    467     ucnv_MBCSFromUnicodeWithOffsets,
    468     ucnv_MBCSFromUnicodeWithOffsets,
    469     ucnv_MBCSGetNextUChar,
    470 
    471     ucnv_MBCSGetStarters,
    472     ucnv_MBCSGetName,
    473     ucnv_MBCSWriteSub,
    474     NULL,
    475     ucnv_MBCSGetUnicodeSet,
    476 
    477     NULL,
    478     ucnv_DBCSFromUTF8
    479 };
    480 
    481 static const UConverterImpl _MBCSImpl={
    482     UCNV_MBCS,
    483 
    484     ucnv_MBCSLoad,
    485     ucnv_MBCSUnload,
    486 
    487     ucnv_MBCSOpen,
    488     NULL,
    489     NULL,
    490 
    491     ucnv_MBCSToUnicodeWithOffsets,
    492     ucnv_MBCSToUnicodeWithOffsets,
    493     ucnv_MBCSFromUnicodeWithOffsets,
    494     ucnv_MBCSFromUnicodeWithOffsets,
    495     ucnv_MBCSGetNextUChar,
    496 
    497     ucnv_MBCSGetStarters,
    498     ucnv_MBCSGetName,
    499     ucnv_MBCSWriteSub,
    500     NULL,
    501     ucnv_MBCSGetUnicodeSet,
    502     NULL,
    503     NULL
    504 };
    505 
    506 
    507 /* Static data is in tools/makeconv/ucnvstat.c for data-based
    508  * converters. Be sure to update it as well.
    509  */
    510 
    511 const UConverterSharedData _MBCSData={
    512     sizeof(UConverterSharedData), 1,
    513     NULL, NULL, FALSE, TRUE, &_MBCSImpl,
    514     0, UCNV_MBCS_TABLE_INITIALIZER
    515 };
    516 
    517 
    518 /* GB 18030 data ------------------------------------------------------------ */
    519 
    520 /* helper macros for linear values for GB 18030 four-byte sequences */
    521 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
    522 
    523 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
    524 
    525 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
    526 
    527 /*
    528  * Some ranges of GB 18030 where both the Unicode code points and the
    529  * GB four-byte sequences are contiguous and are handled algorithmically by
    530  * the special callback functions below.
    531  * The values are start & end of Unicode & GB codes.
    532  *
    533  * Note that single surrogates are not mapped by GB 18030
    534  * as of the re-released mapping tables from 2000-nov-30.
    535  */
    536 static const uint32_t
    537 gb18030Ranges[14][4]={
    538     {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
    539     {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
    540     {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
    541     {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
    542     {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
    543     {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
    544     {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
    545     {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
    546     {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
    547     {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
    548     {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
    549     {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
    550     {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
    551     {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
    552 };
    553 
    554 /* bit flag for UConverter.options indicating GB 18030 special handling */
    555 #define _MBCS_OPTION_GB18030 0x8000
    556 
    557 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
    558 #define _MBCS_OPTION_KEIS 0x01000
    559 #define _MBCS_OPTION_JEF  0x02000
    560 #define _MBCS_OPTION_JIPS 0x04000
    561 
    562 #define KEIS_SO_CHAR_1 0x0A
    563 #define KEIS_SO_CHAR_2 0x42
    564 #define KEIS_SI_CHAR_1 0x0A
    565 #define KEIS_SI_CHAR_2 0x41
    566 
    567 #define JEF_SO_CHAR 0x28
    568 #define JEF_SI_CHAR 0x29
    569 
    570 #define JIPS_SO_CHAR_1 0x1A
    571 #define JIPS_SO_CHAR_2 0x70
    572 #define JIPS_SI_CHAR_1 0x1A
    573 #define JIPS_SI_CHAR_2 0x71
    574 
    575 enum SISO_Option {
    576     SI,
    577     SO
    578 };
    579 typedef enum SISO_Option SISO_Option;
    580 
    581 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
    582     int32_t SISOLength = 0;
    583 
    584     switch (option) {
    585         case SI:
    586             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
    587                 value[0] = KEIS_SI_CHAR_1;
    588                 value[1] = KEIS_SI_CHAR_2;
    589                 SISOLength = 2;
    590             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
    591                 value[0] = JEF_SI_CHAR;
    592                 SISOLength = 1;
    593             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
    594                 value[0] = JIPS_SI_CHAR_1;
    595                 value[1] = JIPS_SI_CHAR_2;
    596                 SISOLength = 2;
    597             } else {
    598                 value[0] = UCNV_SI;
    599                 SISOLength = 1;
    600             }
    601             break;
    602         case SO:
    603             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
    604                 value[0] = KEIS_SO_CHAR_1;
    605                 value[1] = KEIS_SO_CHAR_2;
    606                 SISOLength = 2;
    607             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
    608                 value[0] = JEF_SO_CHAR;
    609                 SISOLength = 1;
    610             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
    611                 value[0] = JIPS_SO_CHAR_1;
    612                 value[1] = JIPS_SO_CHAR_2;
    613                 SISOLength = 2;
    614             } else {
    615                 value[0] = UCNV_SO;
    616                 SISOLength = 1;
    617             }
    618             break;
    619         default:
    620             /* Should never happen. */
    621             break;
    622     }
    623 
    624     return SISOLength;
    625 }
    626 
    627 /* Miscellaneous ------------------------------------------------------------ */
    628 
    629 /* similar to ucnv_MBCSGetNextUChar() but recursive */
    630 static UBool
    631 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
    632         int32_t state, uint32_t offset,
    633         uint32_t value,
    634         UConverterEnumToUCallback *callback, const void *context,
    635         UErrorCode *pErrorCode) {
    636     UChar32 codePoints[32];
    637     const int32_t *row;
    638     const uint16_t *unicodeCodeUnits;
    639     UChar32 anyCodePoints;
    640     int32_t b, limit;
    641 
    642     row=mbcsTable->stateTable[state];
    643     unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
    644 
    645     value<<=8;
    646     anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
    647 
    648     b=(stateProps[state]&0x38)<<2;
    649     if(b==0 && stateProps[state]>=0x40) {
    650         /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
    651         codePoints[0]=U_SENTINEL;
    652         b=1;
    653     }
    654     limit=((stateProps[state]&7)+1)<<5;
    655     while(b<limit) {
    656         int32_t entry=row[b];
    657         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
    658             int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
    659             if(stateProps[nextState]>=0) {
    660                 /* recurse to a state with non-ignorable actions */
    661                 if(!enumToU(
    662                         mbcsTable, stateProps, nextState,
    663                         offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
    664                         value|(uint32_t)b,
    665                         callback, context,
    666                         pErrorCode)) {
    667                     return FALSE;
    668                 }
    669             }
    670             codePoints[b&0x1f]=U_SENTINEL;
    671         } else {
    672             UChar32 c;
    673             int32_t action;
    674 
    675             /*
    676              * An if-else-if chain provides more reliable performance for
    677              * the most common cases compared to a switch.
    678              */
    679             action=MBCS_ENTRY_FINAL_ACTION(entry);
    680             if(action==MBCS_STATE_VALID_DIRECT_16) {
    681                 /* output BMP code point */
    682                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
    683             } else if(action==MBCS_STATE_VALID_16) {
    684                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
    685                 c=unicodeCodeUnits[finalOffset];
    686                 if(c<0xfffe) {
    687                     /* output BMP code point */
    688                 } else {
    689                     c=U_SENTINEL;
    690                 }
    691             } else if(action==MBCS_STATE_VALID_16_PAIR) {
    692                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
    693                 c=unicodeCodeUnits[finalOffset++];
    694                 if(c<0xd800) {
    695                     /* output BMP code point below 0xd800 */
    696                 } else if(c<=0xdbff) {
    697                     /* output roundtrip or fallback supplementary code point */
    698                     c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
    699                 } else if(c==0xe000) {
    700                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
    701                     c=unicodeCodeUnits[finalOffset];
    702                 } else {
    703                     c=U_SENTINEL;
    704                 }
    705             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
    706                 /* output supplementary code point */
    707                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
    708             } else {
    709                 c=U_SENTINEL;
    710             }
    711 
    712             codePoints[b&0x1f]=c;
    713             anyCodePoints&=c;
    714         }
    715         if(((++b)&0x1f)==0) {
    716             if(anyCodePoints>=0) {
    717                 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
    718                     return FALSE;
    719                 }
    720                 anyCodePoints=-1;
    721             }
    722         }
    723     }
    724     return TRUE;
    725 }
    726 
    727 /*
    728  * Only called if stateProps[state]==-1.
    729  * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
    730  * MBCS_STATE_CHANGE_ONLY.
    731  */
    732 static int8_t
    733 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
    734     const int32_t *row;
    735     int32_t min, max, entry, nextState;
    736 
    737     row=stateTable[state];
    738     stateProps[state]=0;
    739 
    740     /* find first non-ignorable state */
    741     for(min=0;; ++min) {
    742         entry=row[min];
    743         nextState=MBCS_ENTRY_STATE(entry);
    744         if(stateProps[nextState]==-1) {
    745             getStateProp(stateTable, stateProps, nextState);
    746         }
    747         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
    748             if(stateProps[nextState]>=0) {
    749                 break;
    750             }
    751         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
    752             break;
    753         }
    754         if(min==0xff) {
    755             stateProps[state]=-0x40;  /* (int8_t)0xc0 */
    756             return stateProps[state];
    757         }
    758     }
    759     stateProps[state]|=(int8_t)((min>>5)<<3);
    760 
    761     /* find last non-ignorable state */
    762     for(max=0xff; min<max; --max) {
    763         entry=row[max];
    764         nextState=MBCS_ENTRY_STATE(entry);
    765         if(stateProps[nextState]==-1) {
    766             getStateProp(stateTable, stateProps, nextState);
    767         }
    768         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
    769             if(stateProps[nextState]>=0) {
    770                 break;
    771             }
    772         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
    773             break;
    774         }
    775     }
    776     stateProps[state]|=(int8_t)(max>>5);
    777 
    778     /* recurse further and collect direct-state information */
    779     while(min<=max) {
    780         entry=row[min];
    781         nextState=MBCS_ENTRY_STATE(entry);
    782         if(stateProps[nextState]==-1) {
    783             getStateProp(stateTable, stateProps, nextState);
    784         }
    785         if(MBCS_ENTRY_IS_FINAL(entry)) {
    786             stateProps[nextState]|=0x40;
    787             if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
    788                 stateProps[state]|=0x40;
    789             }
    790         }
    791         ++min;
    792     }
    793     return stateProps[state];
    794 }
    795 
    796 /*
    797  * Internal function enumerating the toUnicode data of an MBCS converter.
    798  * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
    799  * table, but could also be used for a future ucnv_getUnicodeSet() option
    800  * that includes reverse fallbacks (after updating this function's implementation).
    801  * Currently only handles roundtrip mappings.
    802  * Does not currently handle extensions.
    803  */
    804 static void
    805 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
    806                        UConverterEnumToUCallback *callback, const void *context,
    807                        UErrorCode *pErrorCode) {
    808     /*
    809      * Properties for each state, to speed up the enumeration.
    810      * Ignorable actions are unassigned/illegal/state-change-only:
    811      * They do not lead to mappings.
    812      *
    813      * Bits 7..6:
    814      * 1 direct/initial state (stateful converters have multiple)
    815      * 0 non-initial state with transitions or with non-ignorable result actions
    816      * -1 final state with only ignorable actions
    817      *
    818      * Bits 5..3:
    819      * The lowest byte value with non-ignorable actions is
    820      * value<<5 (rounded down).
    821      *
    822      * Bits 2..0:
    823      * The highest byte value with non-ignorable actions is
    824      * (value<<5)&0x1f (rounded up).
    825      */
    826     int8_t stateProps[MBCS_MAX_STATE_COUNT];
    827     int32_t state;
    828 
    829     uprv_memset(stateProps, -1, sizeof(stateProps));
    830 
    831     /* recurse from state 0 and set all stateProps */
    832     getStateProp(mbcsTable->stateTable, stateProps, 0);
    833 
    834     for(state=0; state<mbcsTable->countStates; ++state) {
    835         /*if(stateProps[state]==-1) {
    836             printf("unused/unreachable <icu:state> %d\n", state);
    837         }*/
    838         if(stateProps[state]>=0x40) {
    839             /* start from each direct state */
    840             enumToU(
    841                 mbcsTable, stateProps, state, 0, 0,
    842                 callback, context,
    843                 pErrorCode);
    844         }
    845     }
    846 }
    847 
    848 U_CFUNC void
    849 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
    850                                          const USetAdder *sa,
    851                                          UConverterUnicodeSet which,
    852                                          UConverterSetFilter filter,
    853                                          UErrorCode *pErrorCode) {
    854     const UConverterMBCSTable *mbcsTable;
    855     const uint16_t *table;
    856 
    857     uint32_t st3;
    858     uint16_t st1, maxStage1, st2;
    859 
    860     UChar32 c;
    861 
    862     /* enumerate the from-Unicode trie table */
    863     mbcsTable=&sharedData->mbcs;
    864     table=mbcsTable->fromUnicodeTable;
    865     if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
    866         maxStage1=0x440;
    867     } else {
    868         maxStage1=0x40;
    869     }
    870 
    871     c=0; /* keep track of the current code point while enumerating */
    872 
    873     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
    874         const uint16_t *stage2, *stage3, *results;
    875         uint16_t minValue;
    876 
    877         results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
    878 
    879         /*
    880          * Set a threshold variable for selecting which mappings to use.
    881          * See ucnv_MBCSSingleFromBMPWithOffsets() and
    882          * MBCS_SINGLE_RESULT_FROM_U() for details.
    883          */
    884         if(which==UCNV_ROUNDTRIP_SET) {
    885             /* use only roundtrips */
    886             minValue=0xf00;
    887         } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
    888             /* use all roundtrip and fallback results */
    889             minValue=0x800;
    890         }
    891 
    892         for(st1=0; st1<maxStage1; ++st1) {
    893             st2=table[st1];
    894             if(st2>maxStage1) {
    895                 stage2=table+st2;
    896                 for(st2=0; st2<64; ++st2) {
    897                     if((st3=stage2[st2])!=0) {
    898                         /* read the stage 3 block */
    899                         stage3=results+st3;
    900 
    901                         do {
    902                             if(*stage3++>=minValue) {
    903                                 sa->add(sa->set, c);
    904                             }
    905                         } while((++c&0xf)!=0);
    906                     } else {
    907                         c+=16; /* empty stage 3 block */
    908                     }
    909                 }
    910             } else {
    911                 c+=1024; /* empty stage 2 block */
    912             }
    913         }
    914     } else {
    915         const uint32_t *stage2;
    916         const uint8_t *stage3, *bytes;
    917         uint32_t st3Multiplier;
    918         uint32_t value;
    919         UBool useFallback;
    920 
    921         bytes=mbcsTable->fromUnicodeBytes;
    922 
    923         useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
    924 
    925         switch(mbcsTable->outputType) {
    926         case MBCS_OUTPUT_3:
    927         case MBCS_OUTPUT_4_EUC:
    928             st3Multiplier=3;
    929             break;
    930         case MBCS_OUTPUT_4:
    931             st3Multiplier=4;
    932             break;
    933         default:
    934             st3Multiplier=2;
    935             break;
    936         }
    937 
    938         for(st1=0; st1<maxStage1; ++st1) {
    939             st2=table[st1];
    940             if(st2>(maxStage1>>1)) {
    941                 stage2=(const uint32_t *)table+st2;
    942                 for(st2=0; st2<64; ++st2) {
    943                     if((st3=stage2[st2])!=0) {
    944                         /* read the stage 3 block */
    945                         stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
    946 
    947                         /* get the roundtrip flags for the stage 3 block */
    948                         st3>>=16;
    949 
    950                         /*
    951                          * Add code points for which the roundtrip flag is set,
    952                          * or which map to non-zero bytes if we use fallbacks.
    953                          * See ucnv_MBCSFromUnicodeWithOffsets() for details.
    954                          */
    955                         switch(filter) {
    956                         case UCNV_SET_FILTER_NONE:
    957                             do {
    958                                 if(st3&1) {
    959                                     sa->add(sa->set, c);
    960                                     stage3+=st3Multiplier;
    961                                 } else if(useFallback) {
    962                                     uint8_t b=0;
    963                                     switch(st3Multiplier) {
    964                                     case 4:
    965                                         b|=*stage3++;
    966                                     case 3: /*fall through*/
    967                                         b|=*stage3++;
    968                                     case 2: /*fall through*/
    969                                         b|=stage3[0]|stage3[1];
    970                                         stage3+=2;
    971                                     default:
    972                                         break;
    973                                     }
    974                                     if(b!=0) {
    975                                         sa->add(sa->set, c);
    976                                     }
    977                                 }
    978                                 st3>>=1;
    979                             } while((++c&0xf)!=0);
    980                             break;
    981                         case UCNV_SET_FILTER_DBCS_ONLY:
    982                              /* Ignore single-byte results (<0x100). */
    983                             do {
    984                                 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
    985                                     sa->add(sa->set, c);
    986                                 }
    987                                 st3>>=1;
    988                                 stage3+=2;  /* +=st3Multiplier */
    989                             } while((++c&0xf)!=0);
    990                             break;
    991                         case UCNV_SET_FILTER_2022_CN:
    992                              /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
    993                             do {
    994                                 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
    995                                     sa->add(sa->set, c);
    996                                 }
    997                                 st3>>=1;
    998                                 stage3+=3;  /* +=st3Multiplier */
    999                             } while((++c&0xf)!=0);
   1000                             break;
   1001                         case UCNV_SET_FILTER_SJIS:
   1002                              /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
   1003                             do {
   1004                                 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
   1005                                     sa->add(sa->set, c);
   1006                                 }
   1007                                 st3>>=1;
   1008                                 stage3+=2;  /* +=st3Multiplier */
   1009                             } while((++c&0xf)!=0);
   1010                             break;
   1011                         case UCNV_SET_FILTER_GR94DBCS:
   1012                             /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
   1013                             do {
   1014                                 if( ((st3&1)!=0 || useFallback) &&
   1015                                     (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
   1016                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
   1017                                 ) {
   1018                                     sa->add(sa->set, c);
   1019                                 }
   1020                                 st3>>=1;
   1021                                 stage3+=2;  /* +=st3Multiplier */
   1022                             } while((++c&0xf)!=0);
   1023                             break;
   1024                         case UCNV_SET_FILTER_HZ:
   1025                             /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
   1026                             do {
   1027                                 if( ((st3&1)!=0 || useFallback) &&
   1028                                     (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
   1029                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
   1030                                 ) {
   1031                                     sa->add(sa->set, c);
   1032                                 }
   1033                                 st3>>=1;
   1034                                 stage3+=2;  /* +=st3Multiplier */
   1035                             } while((++c&0xf)!=0);
   1036                             break;
   1037                         default:
   1038                             *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
   1039                             return;
   1040                         }
   1041                     } else {
   1042                         c+=16; /* empty stage 3 block */
   1043                     }
   1044                 }
   1045             } else {
   1046                 c+=1024; /* empty stage 2 block */
   1047             }
   1048         }
   1049     }
   1050 
   1051     ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
   1052 }
   1053 
   1054 U_CFUNC void
   1055 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
   1056                                  const USetAdder *sa,
   1057                                  UConverterUnicodeSet which,
   1058                                  UErrorCode *pErrorCode) {
   1059     ucnv_MBCSGetFilteredUnicodeSetForUnicode(
   1060         sharedData, sa, which,
   1061         sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
   1062             UCNV_SET_FILTER_DBCS_ONLY :
   1063             UCNV_SET_FILTER_NONE,
   1064         pErrorCode);
   1065 }
   1066 
   1067 static void
   1068 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
   1069                    const USetAdder *sa,
   1070                    UConverterUnicodeSet which,
   1071                    UErrorCode *pErrorCode) {
   1072     if(cnv->options&_MBCS_OPTION_GB18030) {
   1073         sa->addRange(sa->set, 0, 0xd7ff);
   1074         sa->addRange(sa->set, 0xe000, 0x10ffff);
   1075     } else {
   1076         ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
   1077     }
   1078 }
   1079 
   1080 /* conversion extensions for input not in the main table -------------------- */
   1081 
   1082 /*
   1083  * Hardcoded extension handling for GB 18030.
   1084  * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
   1085  *
   1086  * In the future, conversion extensions may handle m:n mappings and delta tables,
   1087  * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
   1088  *
   1089  * If an input character cannot be mapped, then these functions set an error
   1090  * code. The framework will then call the callback function.
   1091  */
   1092 
   1093 /*
   1094  * @return if(U_FAILURE) return the code point for cnv->fromUChar32
   1095  *         else return 0 after output has been written to the target
   1096  */
   1097 static UChar32
   1098 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
   1099           UChar32 cp,
   1100           const UChar **source, const UChar *sourceLimit,
   1101           uint8_t **target, const uint8_t *targetLimit,
   1102           int32_t **offsets, int32_t sourceIndex,
   1103           UBool flush,
   1104           UErrorCode *pErrorCode) {
   1105     const int32_t *cx;
   1106 
   1107     cnv->useSubChar1=FALSE;
   1108 
   1109     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
   1110         ucnv_extInitialMatchFromU(
   1111             cnv, cx,
   1112             cp, source, sourceLimit,
   1113             (char **)target, (char *)targetLimit,
   1114             offsets, sourceIndex,
   1115             flush,
   1116             pErrorCode)
   1117     ) {
   1118         return 0; /* an extension mapping handled the input */
   1119     }
   1120 
   1121     /* GB 18030 */
   1122     if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
   1123         const uint32_t *range;
   1124         int32_t i;
   1125 
   1126         range=gb18030Ranges[0];
   1127         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
   1128             if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
   1129                 /* found the Unicode code point, output the four-byte sequence for it */
   1130                 uint32_t linear;
   1131                 char bytes[4];
   1132 
   1133                 /* get the linear value of the first GB 18030 code in this range */
   1134                 linear=range[2]-LINEAR_18030_BASE;
   1135 
   1136                 /* add the offset from the beginning of the range */
   1137                 linear+=((uint32_t)cp-range[0]);
   1138 
   1139                 /* turn this into a four-byte sequence */
   1140                 bytes[3]=(char)(0x30+linear%10); linear/=10;
   1141                 bytes[2]=(char)(0x81+linear%126); linear/=126;
   1142                 bytes[1]=(char)(0x30+linear%10); linear/=10;
   1143                 bytes[0]=(char)(0x81+linear);
   1144 
   1145                 /* output this sequence */
   1146                 ucnv_fromUWriteBytes(cnv,
   1147                                      bytes, 4, (char **)target, (char *)targetLimit,
   1148                                      offsets, sourceIndex, pErrorCode);
   1149                 return 0;
   1150             }
   1151         }
   1152     }
   1153 
   1154     /* no mapping */
   1155     *pErrorCode=U_INVALID_CHAR_FOUND;
   1156     return cp;
   1157 }
   1158 
   1159 /*
   1160  * Input sequence: cnv->toUBytes[0..length[
   1161  * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
   1162  *         else return 0 after output has been written to the target
   1163  */
   1164 static int8_t
   1165 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
   1166         int8_t length,
   1167         const uint8_t **source, const uint8_t *sourceLimit,
   1168         UChar **target, const UChar *targetLimit,
   1169         int32_t **offsets, int32_t sourceIndex,
   1170         UBool flush,
   1171         UErrorCode *pErrorCode) {
   1172     const int32_t *cx;
   1173 
   1174     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
   1175         ucnv_extInitialMatchToU(
   1176             cnv, cx,
   1177             length, (const char **)source, (const char *)sourceLimit,
   1178             target, targetLimit,
   1179             offsets, sourceIndex,
   1180             flush,
   1181             pErrorCode)
   1182     ) {
   1183         return 0; /* an extension mapping handled the input */
   1184     }
   1185 
   1186     /* GB 18030 */
   1187     if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
   1188         const uint32_t *range;
   1189         uint32_t linear;
   1190         int32_t i;
   1191 
   1192         linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
   1193         range=gb18030Ranges[0];
   1194         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
   1195             if(range[2]<=linear && linear<=range[3]) {
   1196                 /* found the sequence, output the Unicode code point for it */
   1197                 *pErrorCode=U_ZERO_ERROR;
   1198 
   1199                 /* add the linear difference between the input and start sequences to the start code point */
   1200                 linear=range[0]+(linear-range[2]);
   1201 
   1202                 /* output this code point */
   1203                 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
   1204 
   1205                 return 0;
   1206             }
   1207         }
   1208     }
   1209 
   1210     /* no mapping */
   1211     *pErrorCode=U_INVALID_CHAR_FOUND;
   1212     return length;
   1213 }
   1214 
   1215 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
   1216 
   1217 /*
   1218  * This code modifies a standard EBCDIC<->Unicode mapping table for
   1219  * OS/390 (z/OS) Unix System Services (Open Edition).
   1220  * The difference is in the mapping of Line Feed and New Line control codes:
   1221  * Standard EBCDIC maps
   1222  *
   1223  *   <U000A> \x25 |0
   1224  *   <U0085> \x15 |0
   1225  *
   1226  * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
   1227  * mapping
   1228  *
   1229  *   <U000A> \x15 |0
   1230  *   <U0085> \x25 |0
   1231  *
   1232  * This code modifies a loaded standard EBCDIC<->Unicode mapping table
   1233  * by copying it into allocated memory and swapping the LF and NL values.
   1234  * It allows to support the same EBCDIC charset in both versions without
   1235  * duplicating the entire installed table.
   1236  */
   1237 
   1238 /* standard EBCDIC codes */
   1239 #define EBCDIC_LF 0x25
   1240 #define EBCDIC_NL 0x15
   1241 
   1242 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
   1243 #define EBCDIC_RT_LF 0xf25
   1244 #define EBCDIC_RT_NL 0xf15
   1245 
   1246 /* Unicode code points */
   1247 #define U_LF 0x0a
   1248 #define U_NL 0x85
   1249 
   1250 static UBool
   1251 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
   1252     UConverterMBCSTable *mbcsTable;
   1253 
   1254     const uint16_t *table, *results;
   1255     const uint8_t *bytes;
   1256 
   1257     int32_t (*newStateTable)[256];
   1258     uint16_t *newResults;
   1259     uint8_t *p;
   1260     char *name;
   1261 
   1262     uint32_t stage2Entry;
   1263     uint32_t size, sizeofFromUBytes;
   1264 
   1265     mbcsTable=&sharedData->mbcs;
   1266 
   1267     table=mbcsTable->fromUnicodeTable;
   1268     bytes=mbcsTable->fromUnicodeBytes;
   1269     results=(const uint16_t *)bytes;
   1270 
   1271     /*
   1272      * Check that this is an EBCDIC table with SBCS portion -
   1273      * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
   1274      *
   1275      * If not, ignore the option. Options are always ignored if they do not apply.
   1276      */
   1277     if(!(
   1278          (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
   1279          mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
   1280          mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
   1281     )) {
   1282         return FALSE;
   1283     }
   1284 
   1285     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
   1286         if(!(
   1287              EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
   1288              EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
   1289         )) {
   1290             return FALSE;
   1291         }
   1292     } else /* MBCS_OUTPUT_2_SISO */ {
   1293         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
   1294         if(!(
   1295              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
   1296              EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
   1297         )) {
   1298             return FALSE;
   1299         }
   1300 
   1301         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
   1302         if(!(
   1303              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
   1304              EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
   1305         )) {
   1306             return FALSE;
   1307         }
   1308     }
   1309 
   1310     if(mbcsTable->fromUBytesLength>0) {
   1311         /*
   1312          * We _know_ the number of bytes in the fromUnicodeBytes array
   1313          * starting with header.version 4.1.
   1314          */
   1315         sizeofFromUBytes=mbcsTable->fromUBytesLength;
   1316     } else {
   1317         /*
   1318          * Otherwise:
   1319          * There used to be code to enumerate the fromUnicode
   1320          * trie and find the highest entry, but it was removed in ICU 3.2
   1321          * because it was not tested and caused a low code coverage number.
   1322          * See Jitterbug 3674.
   1323          * This affects only some .cnv file formats with a header.version
   1324          * below 4.1, and only when swaplfnl is requested.
   1325          *
   1326          * ucnvmbcs.c revision 1.99 is the last one with the
   1327          * ucnv_MBCSSizeofFromUBytes() function.
   1328          */
   1329         *pErrorCode=U_INVALID_FORMAT_ERROR;
   1330         return FALSE;
   1331     }
   1332 
   1333     /*
   1334      * The table has an appropriate format.
   1335      * Allocate and build
   1336      * - a modified to-Unicode state table
   1337      * - a modified from-Unicode output array
   1338      * - a converter name string with the swap option appended
   1339      */
   1340     size=
   1341         mbcsTable->countStates*1024+
   1342         sizeofFromUBytes+
   1343         UCNV_MAX_CONVERTER_NAME_LENGTH+20;
   1344     p=(uint8_t *)uprv_malloc(size);
   1345     if(p==NULL) {
   1346         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
   1347         return FALSE;
   1348     }
   1349 
   1350     /* copy and modify the to-Unicode state table */
   1351     newStateTable=(int32_t (*)[256])p;
   1352     uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
   1353 
   1354     newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
   1355     newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
   1356 
   1357     /* copy and modify the from-Unicode result table */
   1358     newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
   1359     uprv_memcpy(newResults, bytes, sizeofFromUBytes);
   1360 
   1361     /* conveniently, the table access macros work on the left side of expressions */
   1362     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
   1363         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
   1364         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
   1365     } else /* MBCS_OUTPUT_2_SISO */ {
   1366         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
   1367         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
   1368 
   1369         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
   1370         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
   1371     }
   1372 
   1373     /* set the canonical converter name */
   1374     name=(char *)newResults+sizeofFromUBytes;
   1375     uprv_strcpy(name, sharedData->staticData->name);
   1376     uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
   1377 
   1378     /* set the pointers */
   1379     umtx_lock(NULL);
   1380     if(mbcsTable->swapLFNLStateTable==NULL) {
   1381         mbcsTable->swapLFNLStateTable=newStateTable;
   1382         mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
   1383         mbcsTable->swapLFNLName=name;
   1384 
   1385         newStateTable=NULL;
   1386     }
   1387     umtx_unlock(NULL);
   1388 
   1389     /* release the allocated memory if another thread beat us to it */
   1390     if(newStateTable!=NULL) {
   1391         uprv_free(newStateTable);
   1392     }
   1393     return TRUE;
   1394 }
   1395 
   1396 /* reconstitute omitted fromUnicode data ------------------------------------ */
   1397 
   1398 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
   1399 static UBool U_CALLCONV
   1400 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
   1401     UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
   1402     const uint16_t *table;
   1403     uint32_t *stage2;
   1404     uint8_t *bytes, *p;
   1405     UChar32 c;
   1406     int32_t i, st3;
   1407 
   1408     table=mbcsTable->fromUnicodeTable;
   1409     bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
   1410 
   1411     /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
   1412     switch(mbcsTable->outputType) {
   1413     case MBCS_OUTPUT_3_EUC:
   1414         if(value<=0xffff) {
   1415             /* short sequences are stored directly */
   1416             /* code set 0 or 1 */
   1417         } else if(value<=0x8effff) {
   1418             /* code set 2 */
   1419             value&=0x7fff;
   1420         } else /* first byte is 0x8f */ {
   1421             /* code set 3 */
   1422             value&=0xff7f;
   1423         }
   1424         break;
   1425     case MBCS_OUTPUT_4_EUC:
   1426         if(value<=0xffffff) {
   1427             /* short sequences are stored directly */
   1428             /* code set 0 or 1 */
   1429         } else if(value<=0x8effffff) {
   1430             /* code set 2 */
   1431             value&=0x7fffff;
   1432         } else /* first byte is 0x8f */ {
   1433             /* code set 3 */
   1434             value&=0xff7fff;
   1435         }
   1436         break;
   1437     default:
   1438         break;
   1439     }
   1440 
   1441     for(i=0; i<=0x1f; ++value, ++i) {
   1442         c=codePoints[i];
   1443         if(c<0) {
   1444             continue;
   1445         }
   1446 
   1447         /* locate the stage 2 & 3 data */
   1448         stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
   1449         p=bytes;
   1450         st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
   1451 
   1452         /* write the codepage bytes into stage 3 */
   1453         switch(mbcsTable->outputType) {
   1454         case MBCS_OUTPUT_3:
   1455         case MBCS_OUTPUT_4_EUC:
   1456             p+=st3*3;
   1457             p[0]=(uint8_t)(value>>16);
   1458             p[1]=(uint8_t)(value>>8);
   1459             p[2]=(uint8_t)value;
   1460             break;
   1461         case MBCS_OUTPUT_4:
   1462             ((uint32_t *)p)[st3]=value;
   1463             break;
   1464         default:
   1465             /* 2 bytes per character */
   1466             ((uint16_t *)p)[st3]=(uint16_t)value;
   1467             break;
   1468         }
   1469 
   1470         /* set the roundtrip flag */
   1471         *stage2|=(1UL<<(16+(c&0xf)));
   1472     }
   1473     return TRUE;
   1474  }
   1475 
   1476 static void
   1477 reconstituteData(UConverterMBCSTable *mbcsTable,
   1478                  uint32_t stage1Length, uint32_t stage2Length,
   1479                  uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
   1480                  UErrorCode *pErrorCode) {
   1481     uint16_t *stage1;
   1482     uint32_t *stage2;
   1483     uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
   1484     mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
   1485     if(mbcsTable->reconstitutedData==NULL) {
   1486         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
   1487         return;
   1488     }
   1489     uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
   1490 
   1491     /* copy existing data and reroute the pointers */
   1492     stage1=(uint16_t *)mbcsTable->reconstitutedData;
   1493     uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
   1494 
   1495     stage2=(uint32_t *)(stage1+stage1Length);
   1496     uprv_memcpy(stage2+(fullStage2Length-stage2Length),
   1497                 mbcsTable->fromUnicodeTable+stage1Length,
   1498                 stage2Length*4);
   1499 
   1500     mbcsTable->fromUnicodeTable=stage1;
   1501     mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
   1502 
   1503     /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
   1504     stage2=(uint32_t *)stage1;
   1505 
   1506     /* reconstitute the initial part of stage 2 from the mbcsIndex */
   1507     {
   1508         int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
   1509         int32_t stageUTF8Index=0;
   1510         int32_t st1, st2, st3, i;
   1511 
   1512         for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
   1513             st2=stage1[st1];
   1514             if(st2!=(int32_t)stage1Length/2) {
   1515                 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
   1516                 for(i=0; i<16; ++i) {
   1517                     st3=mbcsTable->mbcsIndex[stageUTF8Index++];
   1518                     if(st3!=0) {
   1519                         /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
   1520                         st3>>=4;
   1521                         /*
   1522                          * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
   1523                          * allocated together as a single 64-block for access from the mbcsIndex
   1524                          */
   1525                         stage2[st2++]=st3++;
   1526                         stage2[st2++]=st3++;
   1527                         stage2[st2++]=st3++;
   1528                         stage2[st2++]=st3;
   1529                     } else {
   1530                         /* no stage 3 block, skip */
   1531                         st2+=4;
   1532                     }
   1533                 }
   1534             } else {
   1535                 /* no stage 2 block, skip */
   1536                 stageUTF8Index+=16;
   1537             }
   1538         }
   1539     }
   1540 
   1541     /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
   1542     ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
   1543 }
   1544 
   1545 /* MBCS setup functions ----------------------------------------------------- */
   1546 
   1547 static void
   1548 ucnv_MBCSLoad(UConverterSharedData *sharedData,
   1549           UConverterLoadArgs *pArgs,
   1550           const uint8_t *raw,
   1551           UErrorCode *pErrorCode) {
   1552     UDataInfo info;
   1553     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
   1554     _MBCSHeader *header=(_MBCSHeader *)raw;
   1555     uint32_t offset;
   1556     uint32_t headerLength;
   1557     UBool noFromU=FALSE;
   1558 
   1559     if(header->version[0]==4) {
   1560         headerLength=MBCS_HEADER_V4_LENGTH;
   1561     } else if(header->version[0]==5 && header->version[1]>=3 &&
   1562               (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
   1563         headerLength=header->options&MBCS_OPT_LENGTH_MASK;
   1564         noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
   1565     } else {
   1566         *pErrorCode=U_INVALID_TABLE_FORMAT;
   1567         return;
   1568     }
   1569 
   1570     mbcsTable->outputType=(uint8_t)header->flags;
   1571     if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
   1572         *pErrorCode=U_INVALID_TABLE_FORMAT;
   1573         return;
   1574     }
   1575 
   1576     /* extension data, header version 4.2 and higher */
   1577     offset=header->flags>>8;
   1578     if(offset!=0) {
   1579         mbcsTable->extIndexes=(const int32_t *)(raw+offset);
   1580     }
   1581 
   1582     if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
   1583         UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
   1584         UConverterSharedData *baseSharedData;
   1585         const int32_t *extIndexes;
   1586         const char *baseName;
   1587 
   1588         /* extension-only file, load the base table and set values appropriately */
   1589         if((extIndexes=mbcsTable->extIndexes)==NULL) {
   1590             /* extension-only file without extension */
   1591             *pErrorCode=U_INVALID_TABLE_FORMAT;
   1592             return;
   1593         }
   1594 
   1595         if(pArgs->nestedLoads!=1) {
   1596             /* an extension table must not be loaded as a base table */
   1597             *pErrorCode=U_INVALID_TABLE_FILE;
   1598             return;
   1599         }
   1600 
   1601         /* load the base table */
   1602         baseName=(const char *)header+headerLength*4;
   1603         if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
   1604             /* forbid loading this same extension-only file */
   1605             *pErrorCode=U_INVALID_TABLE_FORMAT;
   1606             return;
   1607         }
   1608 
   1609         /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
   1610         args.size=sizeof(UConverterLoadArgs);
   1611         args.nestedLoads=2;
   1612         args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
   1613         args.reserved=pArgs->reserved;
   1614         args.options=pArgs->options;
   1615         args.pkg=pArgs->pkg;
   1616         args.name=baseName;
   1617         baseSharedData=ucnv_load(&args, pErrorCode);
   1618         if(U_FAILURE(*pErrorCode)) {
   1619             return;
   1620         }
   1621         if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
   1622             baseSharedData->mbcs.baseSharedData!=NULL
   1623         ) {
   1624             ucnv_unload(baseSharedData);
   1625             *pErrorCode=U_INVALID_TABLE_FORMAT;
   1626             return;
   1627         }
   1628         if(pArgs->onlyTestIsLoadable) {
   1629             /*
   1630              * Exit as soon as we know that we can load the converter
   1631              * and the format is valid and supported.
   1632              * The worst that can happen in the following code is a memory
   1633              * allocation error.
   1634              */
   1635             ucnv_unload(baseSharedData);
   1636             return;
   1637         }
   1638 
   1639         /* copy the base table data */
   1640         uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
   1641 
   1642         /* overwrite values with relevant ones for the extension converter */
   1643         mbcsTable->baseSharedData=baseSharedData;
   1644         mbcsTable->extIndexes=extIndexes;
   1645 
   1646         /*
   1647          * It would be possible to share the swapLFNL data with a base converter,
   1648          * but the generated name would have to be different, and the memory
   1649          * would have to be free'd only once.
   1650          * It is easier to just create the data for the extension converter
   1651          * separately when it is requested.
   1652          */
   1653         mbcsTable->swapLFNLStateTable=NULL;
   1654         mbcsTable->swapLFNLFromUnicodeBytes=NULL;
   1655         mbcsTable->swapLFNLName=NULL;
   1656 
   1657         /*
   1658          * The reconstitutedData must be deleted only when the base converter
   1659          * is unloaded.
   1660          */
   1661         mbcsTable->reconstitutedData=NULL;
   1662 
   1663         /*
   1664          * Set a special, runtime-only outputType if the extension converter
   1665          * is a DBCS version of a base converter that also maps single bytes.
   1666          */
   1667         if( sharedData->staticData->conversionType==UCNV_DBCS ||
   1668                 (sharedData->staticData->conversionType==UCNV_MBCS &&
   1669                  sharedData->staticData->minBytesPerChar>=2)
   1670         ) {
   1671             if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
   1672                 /* the base converter is SI/SO-stateful */
   1673                 int32_t entry;
   1674 
   1675                 /* get the dbcs state from the state table entry for SO=0x0e */
   1676                 entry=mbcsTable->stateTable[0][0xe];
   1677                 if( MBCS_ENTRY_IS_FINAL(entry) &&
   1678                     MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
   1679                     MBCS_ENTRY_FINAL_STATE(entry)!=0
   1680                 ) {
   1681                     mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
   1682 
   1683                     mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
   1684                 }
   1685             } else if(
   1686                 baseSharedData->staticData->conversionType==UCNV_MBCS &&
   1687                 baseSharedData->staticData->minBytesPerChar==1 &&
   1688                 baseSharedData->staticData->maxBytesPerChar==2 &&
   1689                 mbcsTable->countStates<=127
   1690             ) {
   1691                 /* non-stateful base converter, need to modify the state table */
   1692                 int32_t (*newStateTable)[256];
   1693                 int32_t *state;
   1694                 int32_t i, count;
   1695 
   1696                 /* allocate a new state table and copy the base state table contents */
   1697                 count=mbcsTable->countStates;
   1698                 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
   1699                 if(newStateTable==NULL) {
   1700                     ucnv_unload(baseSharedData);
   1701                     *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
   1702                     return;
   1703                 }
   1704 
   1705                 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
   1706 
   1707                 /* change all final single-byte entries to go to a new all-illegal state */
   1708                 state=newStateTable[0];
   1709                 for(i=0; i<256; ++i) {
   1710                     if(MBCS_ENTRY_IS_FINAL(state[i])) {
   1711                         state[i]=MBCS_ENTRY_TRANSITION(count, 0);
   1712                     }
   1713                 }
   1714 
   1715                 /* build the new all-illegal state */
   1716                 state=newStateTable[count];
   1717                 for(i=0; i<256; ++i) {
   1718                     state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
   1719                 }
   1720                 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
   1721                 mbcsTable->countStates=(uint8_t)(count+1);
   1722                 mbcsTable->stateTableOwned=TRUE;
   1723 
   1724                 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
   1725             }
   1726         }
   1727 
   1728         /*
   1729          * unlike below for files with base tables, do not get the unicodeMask
   1730          * from the sharedData; instead, use the base table's unicodeMask,
   1731          * which we copied in the memcpy above;
   1732          * this is necessary because the static data unicodeMask, especially
   1733          * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
   1734          */
   1735     } else {
   1736         /* conversion file with a base table; an additional extension table is optional */
   1737         /* make sure that the output type is known */
   1738         switch(mbcsTable->outputType) {
   1739         case MBCS_OUTPUT_1:
   1740         case MBCS_OUTPUT_2:
   1741         case MBCS_OUTPUT_3:
   1742         case MBCS_OUTPUT_4:
   1743         case MBCS_OUTPUT_3_EUC:
   1744         case MBCS_OUTPUT_4_EUC:
   1745         case MBCS_OUTPUT_2_SISO:
   1746             /* OK */
   1747             break;
   1748         default:
   1749             *pErrorCode=U_INVALID_TABLE_FORMAT;
   1750             return;
   1751         }
   1752         if(pArgs->onlyTestIsLoadable) {
   1753             /*
   1754              * Exit as soon as we know that we can load the converter
   1755              * and the format is valid and supported.
   1756              * The worst that can happen in the following code is a memory
   1757              * allocation error.
   1758              */
   1759             return;
   1760         }
   1761 
   1762         mbcsTable->countStates=(uint8_t)header->countStates;
   1763         mbcsTable->countToUFallbacks=header->countToUFallbacks;
   1764         mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
   1765         mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
   1766         mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
   1767 
   1768         mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
   1769         mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
   1770         mbcsTable->fromUBytesLength=header->fromUBytesLength;
   1771 
   1772         /*
   1773          * converter versions 6.1 and up contain a unicodeMask that is
   1774          * used here to select the most efficient function implementations
   1775          */
   1776         info.size=sizeof(UDataInfo);
   1777         udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
   1778         if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
   1779             /* mask off possible future extensions to be safe */
   1780             mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
   1781         } else {
   1782             /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
   1783             mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
   1784         }
   1785 
   1786         /*
   1787          * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
   1788          * Check for the header version, SBCS vs. MBCS, and for whether the
   1789          * data structures are optimized for code points as high as what the
   1790          * runtime code is designed for.
   1791          * The implementation does not handle mapping tables with entries for
   1792          * unpaired surrogates.
   1793          */
   1794         if( header->version[1]>=3 &&
   1795             (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
   1796             (mbcsTable->countStates==1 ?
   1797                 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
   1798                 (header->version[2]>=(MBCS_FAST_MAX>>8))
   1799             )
   1800         ) {
   1801             mbcsTable->utf8Friendly=TRUE;
   1802 
   1803             if(mbcsTable->countStates==1) {
   1804                 /*
   1805                  * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
   1806                  * Build a table with indexes to each block, to be used instead of
   1807                  * the regular stage 1/2 table.
   1808                  */
   1809                 int32_t i;
   1810                 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
   1811                     mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
   1812                 }
   1813                 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
   1814                 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
   1815             } else {
   1816                 /*
   1817                  * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
   1818                  * The .cnv file is prebuilt with an additional stage table with indexes
   1819                  * to each block.
   1820                  */
   1821                 mbcsTable->mbcsIndex=(const uint16_t *)
   1822                     (mbcsTable->fromUnicodeBytes+
   1823                      (noFromU ? 0 : mbcsTable->fromUBytesLength));
   1824                 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
   1825             }
   1826         }
   1827 
   1828         /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
   1829         {
   1830             uint32_t asciiRoundtrips=0xffffffff;
   1831             int32_t i;
   1832 
   1833             for(i=0; i<0x80; ++i) {
   1834                 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
   1835                     asciiRoundtrips&=~((uint32_t)1<<(i>>2));
   1836                 }
   1837             }
   1838             mbcsTable->asciiRoundtrips=asciiRoundtrips;
   1839         }
   1840 
   1841         if(noFromU) {
   1842             uint32_t stage1Length=
   1843                 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
   1844                     0x440 : 0x40;
   1845             uint32_t stage2Length=
   1846                 (header->offsetFromUBytes-header->offsetFromUTable)/4-
   1847                 stage1Length/2;
   1848             reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
   1849         }
   1850     }
   1851 
   1852     /* Set the impl pointer here so that it is set for both extension-only and base tables. */
   1853     if(mbcsTable->utf8Friendly) {
   1854         if(mbcsTable->countStates==1) {
   1855             sharedData->impl=&_SBCSUTF8Impl;
   1856         } else {
   1857             if(mbcsTable->outputType==MBCS_OUTPUT_2) {
   1858                 sharedData->impl=&_DBCSUTF8Impl;
   1859             }
   1860         }
   1861     }
   1862 
   1863     if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
   1864         /*
   1865          * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
   1866          * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
   1867          */
   1868         mbcsTable->asciiRoundtrips=0;
   1869     }
   1870 }
   1871 
   1872 static void
   1873 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
   1874     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
   1875 
   1876     if(mbcsTable->swapLFNLStateTable!=NULL) {
   1877         uprv_free(mbcsTable->swapLFNLStateTable);
   1878     }
   1879     if(mbcsTable->stateTableOwned) {
   1880         uprv_free((void *)mbcsTable->stateTable);
   1881     }
   1882     if(mbcsTable->baseSharedData!=NULL) {
   1883         ucnv_unload(mbcsTable->baseSharedData);
   1884     }
   1885     if(mbcsTable->reconstitutedData!=NULL) {
   1886         uprv_free(mbcsTable->reconstitutedData);
   1887     }
   1888 }
   1889 
   1890 static void
   1891 ucnv_MBCSOpen(UConverter *cnv,
   1892               UConverterLoadArgs *pArgs,
   1893               UErrorCode *pErrorCode) {
   1894     UConverterMBCSTable *mbcsTable;
   1895     const int32_t *extIndexes;
   1896     uint8_t outputType;
   1897     int8_t maxBytesPerUChar;
   1898 
   1899     if(pArgs->onlyTestIsLoadable) {
   1900         return;
   1901     }
   1902 
   1903     mbcsTable=&cnv->sharedData->mbcs;
   1904     outputType=mbcsTable->outputType;
   1905 
   1906     if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
   1907         /* the swaplfnl option does not apply, remove it */
   1908         cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
   1909     }
   1910 
   1911     if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   1912         /* do this because double-checked locking is broken */
   1913         UBool isCached;
   1914 
   1915         umtx_lock(NULL);
   1916         isCached=mbcsTable->swapLFNLStateTable!=NULL;
   1917         umtx_unlock(NULL);
   1918 
   1919         if(!isCached) {
   1920             if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
   1921                 if(U_FAILURE(*pErrorCode)) {
   1922                     return; /* something went wrong */
   1923                 }
   1924 
   1925                 /* the option does not apply, remove it */
   1926                 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
   1927             }
   1928         }
   1929     }
   1930 
   1931     if(uprv_strstr(pArgs->name, "18030")!=NULL) {
   1932         if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
   1933             /* set a flag for GB 18030 mode, which changes the callback behavior */
   1934             cnv->options|=_MBCS_OPTION_GB18030;
   1935         }
   1936     } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
   1937         /* set a flag for KEIS converter, which changes the SI/SO character sequence */
   1938         cnv->options|=_MBCS_OPTION_KEIS;
   1939     } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
   1940         /* set a flag for JEF converter, which changes the SI/SO character sequence */
   1941         cnv->options|=_MBCS_OPTION_JEF;
   1942     } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
   1943         /* set a flag for JIPS converter, which changes the SI/SO character sequence */
   1944         cnv->options|=_MBCS_OPTION_JIPS;
   1945     }
   1946 
   1947     /* fix maxBytesPerUChar depending on outputType and options etc. */
   1948     if(outputType==MBCS_OUTPUT_2_SISO) {
   1949         cnv->maxBytesPerUChar=3; /* SO+DBCS */
   1950     }
   1951 
   1952     extIndexes=mbcsTable->extIndexes;
   1953     if(extIndexes!=NULL) {
   1954         maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
   1955         if(outputType==MBCS_OUTPUT_2_SISO) {
   1956             ++maxBytesPerUChar; /* SO + multiple DBCS */
   1957         }
   1958 
   1959         if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
   1960             cnv->maxBytesPerUChar=maxBytesPerUChar;
   1961         }
   1962     }
   1963 
   1964 #if 0
   1965     /*
   1966      * documentation of UConverter fields used for status
   1967      * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
   1968      */
   1969 
   1970     /* toUnicode */
   1971     cnv->toUnicodeStatus=0;     /* offset */
   1972     cnv->mode=0;                /* state */
   1973     cnv->toULength=0;           /* byteIndex */
   1974 
   1975     /* fromUnicode */
   1976     cnv->fromUChar32=0;
   1977     cnv->fromUnicodeStatus=1;   /* prevLength */
   1978 #endif
   1979 }
   1980 
   1981 static const char *
   1982 ucnv_MBCSGetName(const UConverter *cnv) {
   1983     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
   1984         return cnv->sharedData->mbcs.swapLFNLName;
   1985     } else {
   1986         return cnv->sharedData->staticData->name;
   1987     }
   1988 }
   1989 
   1990 /* MBCS-to-Unicode conversion functions ------------------------------------- */
   1991 
   1992 static UChar32
   1993 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
   1994     const _MBCSToUFallback *toUFallbacks;
   1995     uint32_t i, start, limit;
   1996 
   1997     limit=mbcsTable->countToUFallbacks;
   1998     if(limit>0) {
   1999         /* do a binary search for the fallback mapping */
   2000         toUFallbacks=mbcsTable->toUFallbacks;
   2001         start=0;
   2002         while(start<limit-1) {
   2003             i=(start+limit)/2;
   2004             if(offset<toUFallbacks[i].offset) {
   2005                 limit=i;
   2006             } else {
   2007                 start=i;
   2008             }
   2009         }
   2010 
   2011         /* did we really find it? */
   2012         if(offset==toUFallbacks[start].offset) {
   2013             return toUFallbacks[start].codePoint;
   2014         }
   2015     }
   2016 
   2017     return 0xfffe;
   2018 }
   2019 
   2020 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
   2021 static void
   2022 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
   2023                                 UErrorCode *pErrorCode) {
   2024     UConverter *cnv;
   2025     const uint8_t *source, *sourceLimit;
   2026     UChar *target;
   2027     const UChar *targetLimit;
   2028     int32_t *offsets;
   2029 
   2030     const int32_t (*stateTable)[256];
   2031 
   2032     int32_t sourceIndex;
   2033 
   2034     int32_t entry;
   2035     UChar c;
   2036     uint8_t action;
   2037 
   2038     /* set up the local pointers */
   2039     cnv=pArgs->converter;
   2040     source=(const uint8_t *)pArgs->source;
   2041     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
   2042     target=pArgs->target;
   2043     targetLimit=pArgs->targetLimit;
   2044     offsets=pArgs->offsets;
   2045 
   2046     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   2047         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
   2048     } else {
   2049         stateTable=cnv->sharedData->mbcs.stateTable;
   2050     }
   2051 
   2052     /* sourceIndex=-1 if the current character began in the previous buffer */
   2053     sourceIndex=0;
   2054 
   2055     /* conversion loop */
   2056     while(source<sourceLimit) {
   2057         /*
   2058          * This following test is to see if available input would overflow the output.
   2059          * It does not catch output of more than one code unit that
   2060          * overflows as a result of a surrogate pair or callback output
   2061          * from the last source byte.
   2062          * Therefore, those situations also test for overflows and will
   2063          * then break the loop, too.
   2064          */
   2065         if(target>=targetLimit) {
   2066             /* target is full */
   2067             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2068             break;
   2069         }
   2070 
   2071         entry=stateTable[0][*source++];
   2072         /* MBCS_ENTRY_IS_FINAL(entry) */
   2073 
   2074         /* test the most common case first */
   2075         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   2076             /* output BMP code point */
   2077             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2078             if(offsets!=NULL) {
   2079                 *offsets++=sourceIndex;
   2080             }
   2081 
   2082             /* normal end of action codes: prepare for a new character */
   2083             ++sourceIndex;
   2084             continue;
   2085         }
   2086 
   2087         /*
   2088          * An if-else-if chain provides more reliable performance for
   2089          * the most common cases compared to a switch.
   2090          */
   2091         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   2092         if(action==MBCS_STATE_VALID_DIRECT_20 ||
   2093            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
   2094         ) {
   2095             entry=MBCS_ENTRY_FINAL_VALUE(entry);
   2096             /* output surrogate pair */
   2097             *target++=(UChar)(0xd800|(UChar)(entry>>10));
   2098             if(offsets!=NULL) {
   2099                 *offsets++=sourceIndex;
   2100             }
   2101             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
   2102             if(target<targetLimit) {
   2103                 *target++=c;
   2104                 if(offsets!=NULL) {
   2105                     *offsets++=sourceIndex;
   2106                 }
   2107             } else {
   2108                 /* target overflow */
   2109                 cnv->UCharErrorBuffer[0]=c;
   2110                 cnv->UCharErrorBufferLength=1;
   2111                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2112                 break;
   2113             }
   2114 
   2115             ++sourceIndex;
   2116             continue;
   2117         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   2118             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   2119                 /* output BMP code point */
   2120                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2121                 if(offsets!=NULL) {
   2122                     *offsets++=sourceIndex;
   2123                 }
   2124 
   2125                 ++sourceIndex;
   2126                 continue;
   2127             }
   2128         } else if(action==MBCS_STATE_UNASSIGNED) {
   2129             /* just fall through */
   2130         } else if(action==MBCS_STATE_ILLEGAL) {
   2131             /* callback(illegal) */
   2132             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2133         } else {
   2134             /* reserved, must never occur */
   2135             ++sourceIndex;
   2136             continue;
   2137         }
   2138 
   2139         if(U_FAILURE(*pErrorCode)) {
   2140             /* callback(illegal) */
   2141             break;
   2142         } else /* unassigned sequences indicated with byteIndex>0 */ {
   2143             /* try an extension mapping */
   2144             pArgs->source=(const char *)source;
   2145             cnv->toUBytes[0]=*(source-1);
   2146             cnv->toULength=_extToU(cnv, cnv->sharedData,
   2147                                     1, &source, sourceLimit,
   2148                                     &target, targetLimit,
   2149                                     &offsets, sourceIndex,
   2150                                     pArgs->flush,
   2151                                     pErrorCode);
   2152             sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
   2153 
   2154             if(U_FAILURE(*pErrorCode)) {
   2155                 /* not mappable or buffer overflow */
   2156                 break;
   2157             }
   2158         }
   2159     }
   2160 
   2161     /* write back the updated pointers */
   2162     pArgs->source=(const char *)source;
   2163     pArgs->target=target;
   2164     pArgs->offsets=offsets;
   2165 }
   2166 
   2167 /*
   2168  * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
   2169  * that only map to and from the BMP.
   2170  * In addition to single-byte optimizations, the offset calculations
   2171  * become much easier.
   2172  */
   2173 static void
   2174 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
   2175                             UErrorCode *pErrorCode) {
   2176     UConverter *cnv;
   2177     const uint8_t *source, *sourceLimit, *lastSource;
   2178     UChar *target;
   2179     int32_t targetCapacity, length;
   2180     int32_t *offsets;
   2181 
   2182     const int32_t (*stateTable)[256];
   2183 
   2184     int32_t sourceIndex;
   2185 
   2186     int32_t entry;
   2187     uint8_t action;
   2188 
   2189     /* set up the local pointers */
   2190     cnv=pArgs->converter;
   2191     source=(const uint8_t *)pArgs->source;
   2192     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
   2193     target=pArgs->target;
   2194     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
   2195     offsets=pArgs->offsets;
   2196 
   2197     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   2198         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
   2199     } else {
   2200         stateTable=cnv->sharedData->mbcs.stateTable;
   2201     }
   2202 
   2203     /* sourceIndex=-1 if the current character began in the previous buffer */
   2204     sourceIndex=0;
   2205     lastSource=source;
   2206 
   2207     /*
   2208      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
   2209      * for the minimum of the sourceLength and targetCapacity
   2210      */
   2211     length=(int32_t)(sourceLimit-source);
   2212     if(length<targetCapacity) {
   2213         targetCapacity=length;
   2214     }
   2215 
   2216 #if MBCS_UNROLL_SINGLE_TO_BMP
   2217     /* unrolling makes it faster on Pentium III/Windows 2000 */
   2218     /* unroll the loop with the most common case */
   2219 unrolled:
   2220     if(targetCapacity>=16) {
   2221         int32_t count, loops, oredEntries;
   2222 
   2223         loops=count=targetCapacity>>4;
   2224         do {
   2225             oredEntries=entry=stateTable[0][*source++];
   2226             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2227             oredEntries|=entry=stateTable[0][*source++];
   2228             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2229             oredEntries|=entry=stateTable[0][*source++];
   2230             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2231             oredEntries|=entry=stateTable[0][*source++];
   2232             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2233             oredEntries|=entry=stateTable[0][*source++];
   2234             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2235             oredEntries|=entry=stateTable[0][*source++];
   2236             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2237             oredEntries|=entry=stateTable[0][*source++];
   2238             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2239             oredEntries|=entry=stateTable[0][*source++];
   2240             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2241             oredEntries|=entry=stateTable[0][*source++];
   2242             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2243             oredEntries|=entry=stateTable[0][*source++];
   2244             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2245             oredEntries|=entry=stateTable[0][*source++];
   2246             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2247             oredEntries|=entry=stateTable[0][*source++];
   2248             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2249             oredEntries|=entry=stateTable[0][*source++];
   2250             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2251             oredEntries|=entry=stateTable[0][*source++];
   2252             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2253             oredEntries|=entry=stateTable[0][*source++];
   2254             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2255             oredEntries|=entry=stateTable[0][*source++];
   2256             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2257 
   2258             /* were all 16 entries really valid? */
   2259             if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
   2260                 /* no, return to the first of these 16 */
   2261                 source-=16;
   2262                 target-=16;
   2263                 break;
   2264             }
   2265         } while(--count>0);
   2266         count=loops-count;
   2267         targetCapacity-=16*count;
   2268 
   2269         if(offsets!=NULL) {
   2270             lastSource+=16*count;
   2271             while(count>0) {
   2272                 *offsets++=sourceIndex++;
   2273                 *offsets++=sourceIndex++;
   2274                 *offsets++=sourceIndex++;
   2275                 *offsets++=sourceIndex++;
   2276                 *offsets++=sourceIndex++;
   2277                 *offsets++=sourceIndex++;
   2278                 *offsets++=sourceIndex++;
   2279                 *offsets++=sourceIndex++;
   2280                 *offsets++=sourceIndex++;
   2281                 *offsets++=sourceIndex++;
   2282                 *offsets++=sourceIndex++;
   2283                 *offsets++=sourceIndex++;
   2284                 *offsets++=sourceIndex++;
   2285                 *offsets++=sourceIndex++;
   2286                 *offsets++=sourceIndex++;
   2287                 *offsets++=sourceIndex++;
   2288                 --count;
   2289             }
   2290         }
   2291     }
   2292 #endif
   2293 
   2294     /* conversion loop */
   2295     while(targetCapacity > 0 && source < sourceLimit) {
   2296         entry=stateTable[0][*source++];
   2297         /* MBCS_ENTRY_IS_FINAL(entry) */
   2298 
   2299         /* test the most common case first */
   2300         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   2301             /* output BMP code point */
   2302             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2303             --targetCapacity;
   2304             continue;
   2305         }
   2306 
   2307         /*
   2308          * An if-else-if chain provides more reliable performance for
   2309          * the most common cases compared to a switch.
   2310          */
   2311         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   2312         if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   2313             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   2314                 /* output BMP code point */
   2315                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2316                 --targetCapacity;
   2317                 continue;
   2318             }
   2319         } else if(action==MBCS_STATE_UNASSIGNED) {
   2320             /* just fall through */
   2321         } else if(action==MBCS_STATE_ILLEGAL) {
   2322             /* callback(illegal) */
   2323             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2324         } else {
   2325             /* reserved, must never occur */
   2326             continue;
   2327         }
   2328 
   2329         /* set offsets since the start or the last extension */
   2330         if(offsets!=NULL) {
   2331             int32_t count=(int32_t)(source-lastSource);
   2332 
   2333             /* predecrement: do not set the offset for the callback-causing character */
   2334             while(--count>0) {
   2335                 *offsets++=sourceIndex++;
   2336             }
   2337             /* offset and sourceIndex are now set for the current character */
   2338         }
   2339 
   2340         if(U_FAILURE(*pErrorCode)) {
   2341             /* callback(illegal) */
   2342             break;
   2343         } else /* unassigned sequences indicated with byteIndex>0 */ {
   2344             /* try an extension mapping */
   2345             lastSource=source;
   2346             cnv->toUBytes[0]=*(source-1);
   2347             cnv->toULength=_extToU(cnv, cnv->sharedData,
   2348                                     1, &source, sourceLimit,
   2349                                     &target, pArgs->targetLimit,
   2350                                     &offsets, sourceIndex,
   2351                                     pArgs->flush,
   2352                                     pErrorCode);
   2353             sourceIndex+=1+(int32_t)(source-lastSource);
   2354 
   2355             if(U_FAILURE(*pErrorCode)) {
   2356                 /* not mappable or buffer overflow */
   2357                 break;
   2358             }
   2359 
   2360             /* recalculate the targetCapacity after an extension mapping */
   2361             targetCapacity=(int32_t)(pArgs->targetLimit-target);
   2362             length=(int32_t)(sourceLimit-source);
   2363             if(length<targetCapacity) {
   2364                 targetCapacity=length;
   2365             }
   2366         }
   2367 
   2368 #if MBCS_UNROLL_SINGLE_TO_BMP
   2369         /* unrolling makes it faster on Pentium III/Windows 2000 */
   2370         goto unrolled;
   2371 #endif
   2372     }
   2373 
   2374     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
   2375         /* target is full */
   2376         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2377     }
   2378 
   2379     /* set offsets since the start or the last callback */
   2380     if(offsets!=NULL) {
   2381         size_t count=source-lastSource;
   2382         while(count>0) {
   2383             *offsets++=sourceIndex++;
   2384             --count;
   2385         }
   2386     }
   2387 
   2388     /* write back the updated pointers */
   2389     pArgs->source=(const char *)source;
   2390     pArgs->target=target;
   2391     pArgs->offsets=offsets;
   2392 }
   2393 
   2394 static UBool
   2395 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
   2396     const int32_t *row=stateTable[state];
   2397     int32_t b, entry;
   2398     /* First test for final entries in this state for some commonly valid byte values. */
   2399     entry=row[0xa1];
   2400     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
   2401         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
   2402     ) {
   2403         return TRUE;
   2404     }
   2405     entry=row[0x41];
   2406     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
   2407         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
   2408     ) {
   2409         return TRUE;
   2410     }
   2411     /* Then test for final entries in this state. */
   2412     for(b=0; b<=0xff; ++b) {
   2413         entry=row[b];
   2414         if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
   2415             MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
   2416         ) {
   2417             return TRUE;
   2418         }
   2419     }
   2420     /* Then recurse for transition entries. */
   2421     for(b=0; b<=0xff; ++b) {
   2422         entry=row[b];
   2423         if( MBCS_ENTRY_IS_TRANSITION(entry) &&
   2424             hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
   2425         ) {
   2426             return TRUE;
   2427         }
   2428     }
   2429     return FALSE;
   2430 }
   2431 
   2432 /*
   2433  * Is byte b a single/lead byte in this state?
   2434  * Recurse for transition states, because here we don't want to say that
   2435  * b is a lead byte if all byte sequences that start with b are illegal.
   2436  */
   2437 static UBool
   2438 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
   2439     const int32_t *row=stateTable[state];
   2440     int32_t entry=row[b];
   2441     if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
   2442         return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
   2443     } else {
   2444         uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   2445         if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
   2446             return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
   2447         } else {
   2448             return action!=MBCS_STATE_ILLEGAL;
   2449         }
   2450     }
   2451 }
   2452 
   2453 U_CFUNC void
   2454 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
   2455                           UErrorCode *pErrorCode) {
   2456     UConverter *cnv;
   2457     const uint8_t *source, *sourceLimit;
   2458     UChar *target;
   2459     const UChar *targetLimit;
   2460     int32_t *offsets;
   2461 
   2462     const int32_t (*stateTable)[256];
   2463     const uint16_t *unicodeCodeUnits;
   2464 
   2465     uint32_t offset;
   2466     uint8_t state;
   2467     int8_t byteIndex;
   2468     uint8_t *bytes;
   2469 
   2470     int32_t sourceIndex, nextSourceIndex;
   2471 
   2472     int32_t entry;
   2473     UChar c;
   2474     uint8_t action;
   2475 
   2476     /* use optimized function if possible */
   2477     cnv=pArgs->converter;
   2478 
   2479     if(cnv->preToULength>0) {
   2480         /*
   2481          * pass sourceIndex=-1 because we continue from an earlier buffer
   2482          * in the future, this may change with continuous offsets
   2483          */
   2484         ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
   2485 
   2486         if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
   2487             return;
   2488         }
   2489     }
   2490 
   2491     if(cnv->sharedData->mbcs.countStates==1) {
   2492         if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   2493             ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
   2494         } else {
   2495             ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
   2496         }
   2497         return;
   2498     }
   2499 
   2500     /* set up the local pointers */
   2501     source=(const uint8_t *)pArgs->source;
   2502     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
   2503     target=pArgs->target;
   2504     targetLimit=pArgs->targetLimit;
   2505     offsets=pArgs->offsets;
   2506 
   2507     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   2508         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
   2509     } else {
   2510         stateTable=cnv->sharedData->mbcs.stateTable;
   2511     }
   2512     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
   2513 
   2514     /* get the converter state from UConverter */
   2515     offset=cnv->toUnicodeStatus;
   2516     byteIndex=cnv->toULength;
   2517     bytes=cnv->toUBytes;
   2518 
   2519     /*
   2520      * if we are in the SBCS state for a DBCS-only converter,
   2521      * then load the DBCS state from the MBCS data
   2522      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
   2523      */
   2524     if((state=(uint8_t)(cnv->mode))==0) {
   2525         state=cnv->sharedData->mbcs.dbcsOnlyState;
   2526     }
   2527 
   2528     /* sourceIndex=-1 if the current character began in the previous buffer */
   2529     sourceIndex=byteIndex==0 ? 0 : -1;
   2530     nextSourceIndex=0;
   2531 
   2532     /* conversion loop */
   2533     while(source<sourceLimit) {
   2534         /*
   2535          * This following test is to see if available input would overflow the output.
   2536          * It does not catch output of more than one code unit that
   2537          * overflows as a result of a surrogate pair or callback output
   2538          * from the last source byte.
   2539          * Therefore, those situations also test for overflows and will
   2540          * then break the loop, too.
   2541          */
   2542         if(target>=targetLimit) {
   2543             /* target is full */
   2544             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2545             break;
   2546         }
   2547 
   2548         if(byteIndex==0) {
   2549             /* optimized loop for 1/2-byte input and BMP output */
   2550             if(offsets==NULL) {
   2551                 do {
   2552                     entry=stateTable[state][*source];
   2553                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   2554                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   2555                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   2556 
   2557                         ++source;
   2558                         if( source<sourceLimit &&
   2559                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
   2560                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
   2561                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
   2562                         ) {
   2563                             ++source;
   2564                             *target++=c;
   2565                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   2566                             offset=0;
   2567                         } else {
   2568                             /* set the state and leave the optimized loop */
   2569                             bytes[0]=*(source-1);
   2570                             byteIndex=1;
   2571                             break;
   2572                         }
   2573                     } else {
   2574                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   2575                             /* output BMP code point */
   2576                             ++source;
   2577                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2578                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   2579                         } else {
   2580                             /* leave the optimized loop */
   2581                             break;
   2582                         }
   2583                     }
   2584                 } while(source<sourceLimit && target<targetLimit);
   2585             } else /* offsets!=NULL */ {
   2586                 do {
   2587                     entry=stateTable[state][*source];
   2588                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   2589                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   2590                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   2591 
   2592                         ++source;
   2593                         if( source<sourceLimit &&
   2594                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
   2595                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
   2596                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
   2597                         ) {
   2598                             ++source;
   2599                             *target++=c;
   2600                             if(offsets!=NULL) {
   2601                                 *offsets++=sourceIndex;
   2602                                 sourceIndex=(nextSourceIndex+=2);
   2603                             }
   2604                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   2605                             offset=0;
   2606                         } else {
   2607                             /* set the state and leave the optimized loop */
   2608                             ++nextSourceIndex;
   2609                             bytes[0]=*(source-1);
   2610                             byteIndex=1;
   2611                             break;
   2612                         }
   2613                     } else {
   2614                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   2615                             /* output BMP code point */
   2616                             ++source;
   2617                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2618                             if(offsets!=NULL) {
   2619                                 *offsets++=sourceIndex;
   2620                                 sourceIndex=++nextSourceIndex;
   2621                             }
   2622                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   2623                         } else {
   2624                             /* leave the optimized loop */
   2625                             break;
   2626                         }
   2627                     }
   2628                 } while(source<sourceLimit && target<targetLimit);
   2629             }
   2630 
   2631             /*
   2632              * these tests and break statements could be put inside the loop
   2633              * if C had "break outerLoop" like Java
   2634              */
   2635             if(source>=sourceLimit) {
   2636                 break;
   2637             }
   2638             if(target>=targetLimit) {
   2639                 /* target is full */
   2640                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2641                 break;
   2642             }
   2643 
   2644             ++nextSourceIndex;
   2645             bytes[byteIndex++]=*source++;
   2646         } else /* byteIndex>0 */ {
   2647             ++nextSourceIndex;
   2648             entry=stateTable[state][bytes[byteIndex++]=*source++];
   2649         }
   2650 
   2651         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   2652             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   2653             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   2654             continue;
   2655         }
   2656 
   2657         /* save the previous state for proper extension mapping with SI/SO-stateful converters */
   2658         cnv->mode=state;
   2659 
   2660         /* set the next state early so that we can reuse the entry variable */
   2661         state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   2662 
   2663         /*
   2664          * An if-else-if chain provides more reliable performance for
   2665          * the most common cases compared to a switch.
   2666          */
   2667         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   2668         if(action==MBCS_STATE_VALID_16) {
   2669             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   2670             c=unicodeCodeUnits[offset];
   2671             if(c<0xfffe) {
   2672                 /* output BMP code point */
   2673                 *target++=c;
   2674                 if(offsets!=NULL) {
   2675                     *offsets++=sourceIndex;
   2676                 }
   2677                 byteIndex=0;
   2678             } else if(c==0xfffe) {
   2679                 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
   2680                     /* output fallback BMP code point */
   2681                     *target++=(UChar)entry;
   2682                     if(offsets!=NULL) {
   2683                         *offsets++=sourceIndex;
   2684                     }
   2685                     byteIndex=0;
   2686                 }
   2687             } else {
   2688                 /* callback(illegal) */
   2689                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2690             }
   2691         } else if(action==MBCS_STATE_VALID_DIRECT_16) {
   2692             /* output BMP code point */
   2693             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2694             if(offsets!=NULL) {
   2695                 *offsets++=sourceIndex;
   2696             }
   2697             byteIndex=0;
   2698         } else if(action==MBCS_STATE_VALID_16_PAIR) {
   2699             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   2700             c=unicodeCodeUnits[offset++];
   2701             if(c<0xd800) {
   2702                 /* output BMP code point below 0xd800 */
   2703                 *target++=c;
   2704                 if(offsets!=NULL) {
   2705                     *offsets++=sourceIndex;
   2706                 }
   2707                 byteIndex=0;
   2708             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
   2709                 /* output roundtrip or fallback surrogate pair */
   2710                 *target++=(UChar)(c&0xdbff);
   2711                 if(offsets!=NULL) {
   2712                     *offsets++=sourceIndex;
   2713                 }
   2714                 byteIndex=0;
   2715                 if(target<targetLimit) {
   2716                     *target++=unicodeCodeUnits[offset];
   2717                     if(offsets!=NULL) {
   2718                         *offsets++=sourceIndex;
   2719                     }
   2720                 } else {
   2721                     /* target overflow */
   2722                     cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
   2723                     cnv->UCharErrorBufferLength=1;
   2724                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2725 
   2726                     offset=0;
   2727                     break;
   2728                 }
   2729             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
   2730                 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
   2731                 *target++=unicodeCodeUnits[offset];
   2732                 if(offsets!=NULL) {
   2733                     *offsets++=sourceIndex;
   2734                 }
   2735                 byteIndex=0;
   2736             } else if(c==0xffff) {
   2737                 /* callback(illegal) */
   2738                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2739             }
   2740         } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
   2741                   (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
   2742         ) {
   2743             entry=MBCS_ENTRY_FINAL_VALUE(entry);
   2744             /* output surrogate pair */
   2745             *target++=(UChar)(0xd800|(UChar)(entry>>10));
   2746             if(offsets!=NULL) {
   2747                 *offsets++=sourceIndex;
   2748             }
   2749             byteIndex=0;
   2750             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
   2751             if(target<targetLimit) {
   2752                 *target++=c;
   2753                 if(offsets!=NULL) {
   2754                     *offsets++=sourceIndex;
   2755                 }
   2756             } else {
   2757                 /* target overflow */
   2758                 cnv->UCharErrorBuffer[0]=c;
   2759                 cnv->UCharErrorBufferLength=1;
   2760                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   2761 
   2762                 offset=0;
   2763                 break;
   2764             }
   2765         } else if(action==MBCS_STATE_CHANGE_ONLY) {
   2766             /*
   2767              * This serves as a state change without any output.
   2768              * It is useful for reading simple stateful encodings,
   2769              * for example using just Shift-In/Shift-Out codes.
   2770              * The 21 unused bits may later be used for more sophisticated
   2771              * state transitions.
   2772              */
   2773             if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
   2774                 byteIndex=0;
   2775             } else {
   2776                 /* SI/SO are illegal for DBCS-only conversion */
   2777                 state=(uint8_t)(cnv->mode); /* restore the previous state */
   2778 
   2779                 /* callback(illegal) */
   2780                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2781             }
   2782         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   2783             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   2784                 /* output BMP code point */
   2785                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2786                 if(offsets!=NULL) {
   2787                     *offsets++=sourceIndex;
   2788                 }
   2789                 byteIndex=0;
   2790             }
   2791         } else if(action==MBCS_STATE_UNASSIGNED) {
   2792             /* just fall through */
   2793         } else if(action==MBCS_STATE_ILLEGAL) {
   2794             /* callback(illegal) */
   2795             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2796         } else {
   2797             /* reserved, must never occur */
   2798             byteIndex=0;
   2799         }
   2800 
   2801         /* end of action codes: prepare for a new character */
   2802         offset=0;
   2803 
   2804         if(byteIndex==0) {
   2805             sourceIndex=nextSourceIndex;
   2806         } else if(U_FAILURE(*pErrorCode)) {
   2807             /* callback(illegal) */
   2808             if(byteIndex>1) {
   2809                 /*
   2810                  * Ticket 5691: consistent illegal sequences:
   2811                  * - We include at least the first byte in the illegal sequence.
   2812                  * - If any of the non-initial bytes could be the start of a character,
   2813                  *   we stop the illegal sequence before the first one of those.
   2814                  */
   2815                 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
   2816                 int8_t i;
   2817                 for(i=1;
   2818                     i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
   2819                     ++i) {}
   2820                 if(i<byteIndex) {
   2821                     /* Back out some bytes. */
   2822                     int8_t backOutDistance=byteIndex-i;
   2823                     int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
   2824                     byteIndex=i;  /* length of reported illegal byte sequence */
   2825                     if(backOutDistance<=bytesFromThisBuffer) {
   2826                         source-=backOutDistance;
   2827                     } else {
   2828                         /* Back out bytes from the previous buffer: Need to replay them. */
   2829                         cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
   2830                         /* preToULength is negative! */
   2831                         uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
   2832                         source=(const uint8_t *)pArgs->source;
   2833                     }
   2834                 }
   2835             }
   2836             break;
   2837         } else /* unassigned sequences indicated with byteIndex>0 */ {
   2838             /* try an extension mapping */
   2839             pArgs->source=(const char *)source;
   2840             byteIndex=_extToU(cnv, cnv->sharedData,
   2841                               byteIndex, &source, sourceLimit,
   2842                               &target, targetLimit,
   2843                               &offsets, sourceIndex,
   2844                               pArgs->flush,
   2845                               pErrorCode);
   2846             sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
   2847 
   2848             if(U_FAILURE(*pErrorCode)) {
   2849                 /* not mappable or buffer overflow */
   2850                 break;
   2851             }
   2852         }
   2853     }
   2854 
   2855     /* set the converter state back into UConverter */
   2856     cnv->toUnicodeStatus=offset;
   2857     cnv->mode=state;
   2858     cnv->toULength=byteIndex;
   2859 
   2860     /* write back the updated pointers */
   2861     pArgs->source=(const char *)source;
   2862     pArgs->target=target;
   2863     pArgs->offsets=offsets;
   2864 }
   2865 
   2866 /*
   2867  * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
   2868  * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
   2869  */
   2870 static UChar32
   2871 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
   2872                         UErrorCode *pErrorCode) {
   2873     UConverter *cnv;
   2874     const int32_t (*stateTable)[256];
   2875     const uint8_t *source, *sourceLimit;
   2876 
   2877     int32_t entry;
   2878     uint8_t action;
   2879 
   2880     /* set up the local pointers */
   2881     cnv=pArgs->converter;
   2882     source=(const uint8_t *)pArgs->source;
   2883     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
   2884     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   2885         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
   2886     } else {
   2887         stateTable=cnv->sharedData->mbcs.stateTable;
   2888     }
   2889 
   2890     /* conversion loop */
   2891     while(source<sourceLimit) {
   2892         entry=stateTable[0][*source++];
   2893         /* MBCS_ENTRY_IS_FINAL(entry) */
   2894 
   2895         /* write back the updated pointer early so that we can return directly */
   2896         pArgs->source=(const char *)source;
   2897 
   2898         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   2899             /* output BMP code point */
   2900             return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2901         }
   2902 
   2903         /*
   2904          * An if-else-if chain provides more reliable performance for
   2905          * the most common cases compared to a switch.
   2906          */
   2907         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   2908         if( action==MBCS_STATE_VALID_DIRECT_20 ||
   2909             (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
   2910         ) {
   2911             /* output supplementary code point */
   2912             return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
   2913         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   2914             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   2915                 /* output BMP code point */
   2916                 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   2917             }
   2918         } else if(action==MBCS_STATE_UNASSIGNED) {
   2919             /* just fall through */
   2920         } else if(action==MBCS_STATE_ILLEGAL) {
   2921             /* callback(illegal) */
   2922             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   2923         } else {
   2924             /* reserved, must never occur */
   2925             continue;
   2926         }
   2927 
   2928         if(U_FAILURE(*pErrorCode)) {
   2929             /* callback(illegal) */
   2930             break;
   2931         } else /* unassigned sequence */ {
   2932             /* defer to the generic implementation */
   2933             pArgs->source=(const char *)source-1;
   2934             return UCNV_GET_NEXT_UCHAR_USE_TO_U;
   2935         }
   2936     }
   2937 
   2938     /* no output because of empty input or only state changes */
   2939     *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   2940     return 0xffff;
   2941 }
   2942 
   2943 /*
   2944  * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
   2945  * conversion without offset handling.
   2946  *
   2947  * When a character does not have a mapping to Unicode, then we return to the
   2948  * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
   2949  * handling.
   2950  * We also defer to the generic code in other complicated cases and have them
   2951  * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
   2952  *
   2953  * All normal mappings and errors are handled here.
   2954  */
   2955 static UChar32
   2956 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
   2957                   UErrorCode *pErrorCode) {
   2958     UConverter *cnv;
   2959     const uint8_t *source, *sourceLimit, *lastSource;
   2960 
   2961     const int32_t (*stateTable)[256];
   2962     const uint16_t *unicodeCodeUnits;
   2963 
   2964     uint32_t offset;
   2965     uint8_t state;
   2966 
   2967     int32_t entry;
   2968     UChar32 c;
   2969     uint8_t action;
   2970 
   2971     /* use optimized function if possible */
   2972     cnv=pArgs->converter;
   2973 
   2974     if(cnv->preToULength>0) {
   2975         /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
   2976         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
   2977     }
   2978 
   2979     if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
   2980         /*
   2981          * Using the generic ucnv_getNextUChar() code lets us deal correctly
   2982          * with the rare case of a codepage that maps single surrogates
   2983          * without adding the complexity to this already complicated function here.
   2984          */
   2985         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
   2986     } else if(cnv->sharedData->mbcs.countStates==1) {
   2987         return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
   2988     }
   2989 
   2990     /* set up the local pointers */
   2991     source=lastSource=(const uint8_t *)pArgs->source;
   2992     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
   2993 
   2994     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   2995         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
   2996     } else {
   2997         stateTable=cnv->sharedData->mbcs.stateTable;
   2998     }
   2999     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
   3000 
   3001     /* get the converter state from UConverter */
   3002     offset=cnv->toUnicodeStatus;
   3003 
   3004     /*
   3005      * if we are in the SBCS state for a DBCS-only converter,
   3006      * then load the DBCS state from the MBCS data
   3007      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
   3008      */
   3009     if((state=(uint8_t)(cnv->mode))==0) {
   3010         state=cnv->sharedData->mbcs.dbcsOnlyState;
   3011     }
   3012 
   3013     /* conversion loop */
   3014     c=U_SENTINEL;
   3015     while(source<sourceLimit) {
   3016         entry=stateTable[state][*source++];
   3017         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   3018             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   3019             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   3020 
   3021             /* optimization for 1/2-byte input and BMP output */
   3022             if( source<sourceLimit &&
   3023                 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
   3024                 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
   3025                 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
   3026             ) {
   3027                 ++source;
   3028                 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   3029                 /* output BMP code point */
   3030                 break;
   3031             }
   3032         } else {
   3033             /* save the previous state for proper extension mapping with SI/SO-stateful converters */
   3034             cnv->mode=state;
   3035 
   3036             /* set the next state early so that we can reuse the entry variable */
   3037             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
   3038 
   3039             /*
   3040              * An if-else-if chain provides more reliable performance for
   3041              * the most common cases compared to a switch.
   3042              */
   3043             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   3044             if(action==MBCS_STATE_VALID_DIRECT_16) {
   3045                 /* output BMP code point */
   3046                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3047                 break;
   3048             } else if(action==MBCS_STATE_VALID_16) {
   3049                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   3050                 c=unicodeCodeUnits[offset];
   3051                 if(c<0xfffe) {
   3052                     /* output BMP code point */
   3053                     break;
   3054                 } else if(c==0xfffe) {
   3055                     if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
   3056                         break;
   3057                     }
   3058                 } else {
   3059                     /* callback(illegal) */
   3060                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3061                 }
   3062             } else if(action==MBCS_STATE_VALID_16_PAIR) {
   3063                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   3064                 c=unicodeCodeUnits[offset++];
   3065                 if(c<0xd800) {
   3066                     /* output BMP code point below 0xd800 */
   3067                     break;
   3068                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
   3069                     /* output roundtrip or fallback supplementary code point */
   3070                     c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
   3071                     break;
   3072                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
   3073                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
   3074                     c=unicodeCodeUnits[offset];
   3075                     break;
   3076                 } else if(c==0xffff) {
   3077                     /* callback(illegal) */
   3078                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3079                 }
   3080             } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
   3081                       (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
   3082             ) {
   3083                 /* output supplementary code point */
   3084                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
   3085                 break;
   3086             } else if(action==MBCS_STATE_CHANGE_ONLY) {
   3087                 /*
   3088                  * This serves as a state change without any output.
   3089                  * It is useful for reading simple stateful encodings,
   3090                  * for example using just Shift-In/Shift-Out codes.
   3091                  * The 21 unused bits may later be used for more sophisticated
   3092                  * state transitions.
   3093                  */
   3094                 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
   3095                     /* SI/SO are illegal for DBCS-only conversion */
   3096                     state=(uint8_t)(cnv->mode); /* restore the previous state */
   3097 
   3098                     /* callback(illegal) */
   3099                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3100                 }
   3101             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   3102                 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   3103                     /* output BMP code point */
   3104                     c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3105                     break;
   3106                 }
   3107             } else if(action==MBCS_STATE_UNASSIGNED) {
   3108                 /* just fall through */
   3109             } else if(action==MBCS_STATE_ILLEGAL) {
   3110                 /* callback(illegal) */
   3111                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3112             } else {
   3113                 /* reserved (must never occur), or only state change */
   3114                 offset=0;
   3115                 lastSource=source;
   3116                 continue;
   3117             }
   3118 
   3119             /* end of action codes: prepare for a new character */
   3120             offset=0;
   3121 
   3122             if(U_FAILURE(*pErrorCode)) {
   3123                 /* callback(illegal) */
   3124                 break;
   3125             } else /* unassigned sequence */ {
   3126                 /* defer to the generic implementation */
   3127                 cnv->toUnicodeStatus=0;
   3128                 cnv->mode=state;
   3129                 pArgs->source=(const char *)lastSource;
   3130                 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
   3131             }
   3132         }
   3133     }
   3134 
   3135     if(c<0) {
   3136         if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
   3137             /* incomplete character byte sequence */
   3138             uint8_t *bytes=cnv->toUBytes;
   3139             cnv->toULength=(int8_t)(source-lastSource);
   3140             do {
   3141                 *bytes++=*lastSource++;
   3142             } while(lastSource<source);
   3143             *pErrorCode=U_TRUNCATED_CHAR_FOUND;
   3144         } else if(U_FAILURE(*pErrorCode)) {
   3145             /* callback(illegal) */
   3146             /*
   3147              * Ticket 5691: consistent illegal sequences:
   3148              * - We include at least the first byte in the illegal sequence.
   3149              * - If any of the non-initial bytes could be the start of a character,
   3150              *   we stop the illegal sequence before the first one of those.
   3151              */
   3152             UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
   3153             uint8_t *bytes=cnv->toUBytes;
   3154             *bytes++=*lastSource++;     /* first byte */
   3155             if(lastSource==source) {
   3156                 cnv->toULength=1;
   3157             } else /* lastSource<source: multi-byte character */ {
   3158                 int8_t i;
   3159                 for(i=1;
   3160                     lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
   3161                     ++i
   3162                 ) {
   3163                     *bytes++=*lastSource++;
   3164                 }
   3165                 cnv->toULength=i;
   3166                 source=lastSource;
   3167             }
   3168         } else {
   3169             /* no output because of empty input or only state changes */
   3170             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   3171         }
   3172         c=0xffff;
   3173     }
   3174 
   3175     /* set the converter state back into UConverter, ready for a new character */
   3176     cnv->toUnicodeStatus=0;
   3177     cnv->mode=state;
   3178 
   3179     /* write back the updated pointer */
   3180     pArgs->source=(const char *)source;
   3181     return c;
   3182 }
   3183 
   3184 #if 0
   3185 /*
   3186  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
   3187  * Removal improves code coverage.
   3188  */
   3189 /**
   3190  * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
   3191  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
   3192  * It does not handle conversion extensions (_extToU()).
   3193  */
   3194 U_CFUNC UChar32
   3195 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
   3196                               uint8_t b, UBool useFallback) {
   3197     int32_t entry;
   3198     uint8_t action;
   3199 
   3200     entry=sharedData->mbcs.stateTable[0][b];
   3201     /* MBCS_ENTRY_IS_FINAL(entry) */
   3202 
   3203     if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
   3204         /* output BMP code point */
   3205         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3206     }
   3207 
   3208     /*
   3209      * An if-else-if chain provides more reliable performance for
   3210      * the most common cases compared to a switch.
   3211      */
   3212     action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   3213     if(action==MBCS_STATE_VALID_DIRECT_20) {
   3214         /* output supplementary code point */
   3215         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
   3216     } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   3217         if(!TO_U_USE_FALLBACK(useFallback)) {
   3218             return 0xfffe;
   3219         }
   3220         /* output BMP code point */
   3221         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3222     } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
   3223         if(!TO_U_USE_FALLBACK(useFallback)) {
   3224             return 0xfffe;
   3225         }
   3226         /* output supplementary code point */
   3227         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
   3228     } else if(action==MBCS_STATE_UNASSIGNED) {
   3229         return 0xfffe;
   3230     } else if(action==MBCS_STATE_ILLEGAL) {
   3231         return 0xffff;
   3232     } else {
   3233         /* reserved, must never occur */
   3234         return 0xffff;
   3235     }
   3236 }
   3237 #endif
   3238 
   3239 /*
   3240  * This is a simple version of _MBCSGetNextUChar() that is used
   3241  * by other converter implementations.
   3242  * It only returns an "assigned" result if it consumes the entire input.
   3243  * It does not use state from the converter, nor error codes.
   3244  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
   3245  * It handles conversion extensions but not GB 18030.
   3246  *
   3247  * Return value:
   3248  * U+fffe   unassigned
   3249  * U+ffff   illegal
   3250  * otherwise the Unicode code point
   3251  */
   3252 U_CFUNC UChar32
   3253 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
   3254                         const char *source, int32_t length,
   3255                         UBool useFallback) {
   3256     const int32_t (*stateTable)[256];
   3257     const uint16_t *unicodeCodeUnits;
   3258 
   3259     uint32_t offset;
   3260     uint8_t state, action;
   3261 
   3262     UChar32 c;
   3263     int32_t i, entry;
   3264 
   3265     if(length<=0) {
   3266         /* no input at all: "illegal" */
   3267         return 0xffff;
   3268     }
   3269 
   3270 #if 0
   3271 /*
   3272  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
   3273  * TODO In future releases, verify that this function is never called for SBCS
   3274  * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
   3275  * Removal improves code coverage.
   3276  */
   3277     /* use optimized function if possible */
   3278     if(sharedData->mbcs.countStates==1) {
   3279         if(length==1) {
   3280             return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
   3281         } else {
   3282             return 0xffff; /* illegal: more than a single byte for an SBCS converter */
   3283         }
   3284     }
   3285 #endif
   3286 
   3287     /* set up the local pointers */
   3288     stateTable=sharedData->mbcs.stateTable;
   3289     unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
   3290 
   3291     /* converter state */
   3292     offset=0;
   3293     state=sharedData->mbcs.dbcsOnlyState;
   3294 
   3295     /* conversion loop */
   3296     for(i=0;;) {
   3297         entry=stateTable[state][(uint8_t)source[i++]];
   3298         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   3299             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   3300             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   3301 
   3302             if(i==length) {
   3303                 return 0xffff; /* truncated character */
   3304             }
   3305         } else {
   3306             /*
   3307              * An if-else-if chain provides more reliable performance for
   3308              * the most common cases compared to a switch.
   3309              */
   3310             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
   3311             if(action==MBCS_STATE_VALID_16) {
   3312                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   3313                 c=unicodeCodeUnits[offset];
   3314                 if(c!=0xfffe) {
   3315                     /* done */
   3316                 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
   3317                     c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
   3318                 /* else done with 0xfffe */
   3319                 }
   3320                 break;
   3321             } else if(action==MBCS_STATE_VALID_DIRECT_16) {
   3322                 /* output BMP code point */
   3323                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3324                 break;
   3325             } else if(action==MBCS_STATE_VALID_16_PAIR) {
   3326                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   3327                 c=unicodeCodeUnits[offset++];
   3328                 if(c<0xd800) {
   3329                     /* output BMP code point below 0xd800 */
   3330                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
   3331                     /* output roundtrip or fallback supplementary code point */
   3332                     c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
   3333                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
   3334                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
   3335                     c=unicodeCodeUnits[offset];
   3336                 } else if(c==0xffff) {
   3337                     return 0xffff;
   3338                 } else {
   3339                     c=0xfffe;
   3340                 }
   3341                 break;
   3342             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
   3343                 /* output supplementary code point */
   3344                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
   3345                 break;
   3346             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
   3347                 if(!TO_U_USE_FALLBACK(useFallback)) {
   3348                     c=0xfffe;
   3349                     break;
   3350                 }
   3351                 /* output BMP code point */
   3352                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
   3353                 break;
   3354             } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
   3355                 if(!TO_U_USE_FALLBACK(useFallback)) {
   3356                     c=0xfffe;
   3357                     break;
   3358                 }
   3359                 /* output supplementary code point */
   3360                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
   3361                 break;
   3362             } else if(action==MBCS_STATE_UNASSIGNED) {
   3363                 c=0xfffe;
   3364                 break;
   3365             }
   3366 
   3367             /*
   3368              * forbid MBCS_STATE_CHANGE_ONLY for this function,
   3369              * and MBCS_STATE_ILLEGAL and reserved action codes
   3370              */
   3371             return 0xffff;
   3372         }
   3373     }
   3374 
   3375     if(i!=length) {
   3376         /* illegal for this function: not all input consumed */
   3377         return 0xffff;
   3378     }
   3379 
   3380     if(c==0xfffe) {
   3381         /* try an extension mapping */
   3382         const int32_t *cx=sharedData->mbcs.extIndexes;
   3383         if(cx!=NULL) {
   3384             return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
   3385         }
   3386     }
   3387 
   3388     return c;
   3389 }
   3390 
   3391 /* MBCS-from-Unicode conversion functions ----------------------------------- */
   3392 
   3393 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
   3394 static void
   3395 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
   3396                                   UErrorCode *pErrorCode) {
   3397     UConverter *cnv;
   3398     const UChar *source, *sourceLimit;
   3399     uint8_t *target;
   3400     int32_t targetCapacity;
   3401     int32_t *offsets;
   3402 
   3403     const uint16_t *table;
   3404     const uint16_t *mbcsIndex;
   3405     const uint8_t *bytes;
   3406 
   3407     UChar32 c;
   3408 
   3409     int32_t sourceIndex, nextSourceIndex;
   3410 
   3411     uint32_t stage2Entry;
   3412     uint32_t asciiRoundtrips;
   3413     uint32_t value;
   3414     uint8_t unicodeMask;
   3415 
   3416     /* use optimized function if possible */
   3417     cnv=pArgs->converter;
   3418     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
   3419 
   3420     /* set up the local pointers */
   3421     source=pArgs->source;
   3422     sourceLimit=pArgs->sourceLimit;
   3423     target=(uint8_t *)pArgs->target;
   3424     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
   3425     offsets=pArgs->offsets;
   3426 
   3427     table=cnv->sharedData->mbcs.fromUnicodeTable;
   3428     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
   3429     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   3430         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   3431     } else {
   3432         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
   3433     }
   3434     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
   3435 
   3436     /* get the converter state from UConverter */
   3437     c=cnv->fromUChar32;
   3438 
   3439     /* sourceIndex=-1 if the current character began in the previous buffer */
   3440     sourceIndex= c==0 ? 0 : -1;
   3441     nextSourceIndex=0;
   3442 
   3443     /* conversion loop */
   3444     if(c!=0 && targetCapacity>0) {
   3445         goto getTrail;
   3446     }
   3447 
   3448     while(source<sourceLimit) {
   3449         /*
   3450          * This following test is to see if available input would overflow the output.
   3451          * It does not catch output of more than one byte that
   3452          * overflows as a result of a multi-byte character or callback output
   3453          * from the last source character.
   3454          * Therefore, those situations also test for overflows and will
   3455          * then break the loop, too.
   3456          */
   3457         if(targetCapacity>0) {
   3458             /*
   3459              * Get a correct Unicode code point:
   3460              * a single UChar for a BMP code point or
   3461              * a matched surrogate pair for a "supplementary code point".
   3462              */
   3463             c=*source++;
   3464             ++nextSourceIndex;
   3465             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
   3466                 *target++=(uint8_t)c;
   3467                 if(offsets!=NULL) {
   3468                     *offsets++=sourceIndex;
   3469                     sourceIndex=nextSourceIndex;
   3470                 }
   3471                 --targetCapacity;
   3472                 c=0;
   3473                 continue;
   3474             }
   3475             /*
   3476              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
   3477              * to avoid dealing with surrogates.
   3478              * MBCS_FAST_MAX must be >=0xd7ff.
   3479              */
   3480             if(c<=0xd7ff) {
   3481                 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
   3482                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
   3483                 if(value==0) {
   3484                     goto unassigned;
   3485                 }
   3486                 /* output the value */
   3487             } else {
   3488                 /*
   3489                  * This also tests if the codepage maps single surrogates.
   3490                  * If it does, then surrogates are not paired but mapped separately.
   3491                  * Note that in this case unmatched surrogates are not detected.
   3492                  */
   3493                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
   3494                     if(U16_IS_SURROGATE_LEAD(c)) {
   3495 getTrail:
   3496                         if(source<sourceLimit) {
   3497                             /* test the following code unit */
   3498                             UChar trail=*source;
   3499                             if(U16_IS_TRAIL(trail)) {
   3500                                 ++source;
   3501                                 ++nextSourceIndex;
   3502                                 c=U16_GET_SUPPLEMENTARY(c, trail);
   3503                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   3504                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   3505                                     /* callback(unassigned) */
   3506                                     goto unassigned;
   3507                                 }
   3508                                 /* convert this supplementary code point */
   3509                                 /* exit this condition tree */
   3510                             } else {
   3511                                 /* this is an unmatched lead code unit (1st surrogate) */
   3512                                 /* callback(illegal) */
   3513                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3514                                 break;
   3515                             }
   3516                         } else {
   3517                             /* no more input */
   3518                             break;
   3519                         }
   3520                     } else {
   3521                         /* this is an unmatched trail code unit (2nd surrogate) */
   3522                         /* callback(illegal) */
   3523                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3524                         break;
   3525                     }
   3526                 }
   3527 
   3528                 /* convert the Unicode code point in c into codepage bytes */
   3529                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
   3530 
   3531                 /* get the bytes and the length for the output */
   3532                 /* MBCS_OUTPUT_2 */
   3533                 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
   3534 
   3535                 /* is this code point assigned, or do we use fallbacks? */
   3536                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
   3537                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
   3538                 ) {
   3539                     /*
   3540                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
   3541                      * There is no way with this data structure for fallback output
   3542                      * to be a zero byte.
   3543                      */
   3544 
   3545 unassigned:
   3546                     /* try an extension mapping */
   3547                     pArgs->source=source;
   3548                     c=_extFromU(cnv, cnv->sharedData,
   3549                                 c, &source, sourceLimit,
   3550                                 &target, target+targetCapacity,
   3551                                 &offsets, sourceIndex,
   3552                                 pArgs->flush,
   3553                                 pErrorCode);
   3554                     nextSourceIndex+=(int32_t)(source-pArgs->source);
   3555 
   3556                     if(U_FAILURE(*pErrorCode)) {
   3557                         /* not mappable or buffer overflow */
   3558                         break;
   3559                     } else {
   3560                         /* a mapping was written to the target, continue */
   3561 
   3562                         /* recalculate the targetCapacity after an extension mapping */
   3563                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
   3564 
   3565                         /* normal end of conversion: prepare for a new character */
   3566                         sourceIndex=nextSourceIndex;
   3567                         continue;
   3568                     }
   3569                 }
   3570             }
   3571 
   3572             /* write the output character bytes from value and length */
   3573             /* from the first if in the loop we know that targetCapacity>0 */
   3574             if(value<=0xff) {
   3575                 /* this is easy because we know that there is enough space */
   3576                 *target++=(uint8_t)value;
   3577                 if(offsets!=NULL) {
   3578                     *offsets++=sourceIndex;
   3579                 }
   3580                 --targetCapacity;
   3581             } else /* length==2 */ {
   3582                 *target++=(uint8_t)(value>>8);
   3583                 if(2<=targetCapacity) {
   3584                     *target++=(uint8_t)value;
   3585                     if(offsets!=NULL) {
   3586                         *offsets++=sourceIndex;
   3587                         *offsets++=sourceIndex;
   3588                     }
   3589                     targetCapacity-=2;
   3590                 } else {
   3591                     if(offsets!=NULL) {
   3592                         *offsets++=sourceIndex;
   3593                     }
   3594                     cnv->charErrorBuffer[0]=(char)value;
   3595                     cnv->charErrorBufferLength=1;
   3596 
   3597                     /* target overflow */
   3598                     targetCapacity=0;
   3599                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   3600                     c=0;
   3601                     break;
   3602                 }
   3603             }
   3604 
   3605             /* normal end of conversion: prepare for a new character */
   3606             c=0;
   3607             sourceIndex=nextSourceIndex;
   3608             continue;
   3609         } else {
   3610             /* target is full */
   3611             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   3612             break;
   3613         }
   3614     }
   3615 
   3616     /* set the converter state back into UConverter */
   3617     cnv->fromUChar32=c;
   3618 
   3619     /* write back the updated pointers */
   3620     pArgs->source=source;
   3621     pArgs->target=(char *)target;
   3622     pArgs->offsets=offsets;
   3623 }
   3624 
   3625 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
   3626 static void
   3627 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
   3628                                   UErrorCode *pErrorCode) {
   3629     UConverter *cnv;
   3630     const UChar *source, *sourceLimit;
   3631     uint8_t *target;
   3632     int32_t targetCapacity;
   3633     int32_t *offsets;
   3634 
   3635     const uint16_t *table;
   3636     const uint16_t *results;
   3637 
   3638     UChar32 c;
   3639 
   3640     int32_t sourceIndex, nextSourceIndex;
   3641 
   3642     uint16_t value, minValue;
   3643     UBool hasSupplementary;
   3644 
   3645     /* set up the local pointers */
   3646     cnv=pArgs->converter;
   3647     source=pArgs->source;
   3648     sourceLimit=pArgs->sourceLimit;
   3649     target=(uint8_t *)pArgs->target;
   3650     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
   3651     offsets=pArgs->offsets;
   3652 
   3653     table=cnv->sharedData->mbcs.fromUnicodeTable;
   3654     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   3655         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   3656     } else {
   3657         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
   3658     }
   3659 
   3660     if(cnv->useFallback) {
   3661         /* use all roundtrip and fallback results */
   3662         minValue=0x800;
   3663     } else {
   3664         /* use only roundtrips and fallbacks from private-use characters */
   3665         minValue=0xc00;
   3666     }
   3667     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
   3668 
   3669     /* get the converter state from UConverter */
   3670     c=cnv->fromUChar32;
   3671 
   3672     /* sourceIndex=-1 if the current character began in the previous buffer */
   3673     sourceIndex= c==0 ? 0 : -1;
   3674     nextSourceIndex=0;
   3675 
   3676     /* conversion loop */
   3677     if(c!=0 && targetCapacity>0) {
   3678         goto getTrail;
   3679     }
   3680 
   3681     while(source<sourceLimit) {
   3682         /*
   3683          * This following test is to see if available input would overflow the output.
   3684          * It does not catch output of more than one byte that
   3685          * overflows as a result of a multi-byte character or callback output
   3686          * from the last source character.
   3687          * Therefore, those situations also test for overflows and will
   3688          * then break the loop, too.
   3689          */
   3690         if(targetCapacity>0) {
   3691             /*
   3692              * Get a correct Unicode code point:
   3693              * a single UChar for a BMP code point or
   3694              * a matched surrogate pair for a "supplementary code point".
   3695              */
   3696             c=*source++;
   3697             ++nextSourceIndex;
   3698             if(U16_IS_SURROGATE(c)) {
   3699                 if(U16_IS_SURROGATE_LEAD(c)) {
   3700 getTrail:
   3701                     if(source<sourceLimit) {
   3702                         /* test the following code unit */
   3703                         UChar trail=*source;
   3704                         if(U16_IS_TRAIL(trail)) {
   3705                             ++source;
   3706                             ++nextSourceIndex;
   3707                             c=U16_GET_SUPPLEMENTARY(c, trail);
   3708                             if(!hasSupplementary) {
   3709                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   3710                                 /* callback(unassigned) */
   3711                                 goto unassigned;
   3712                             }
   3713                             /* convert this supplementary code point */
   3714                             /* exit this condition tree */
   3715                         } else {
   3716                             /* this is an unmatched lead code unit (1st surrogate) */
   3717                             /* callback(illegal) */
   3718                             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3719                             break;
   3720                         }
   3721                     } else {
   3722                         /* no more input */
   3723                         break;
   3724                     }
   3725                 } else {
   3726                     /* this is an unmatched trail code unit (2nd surrogate) */
   3727                     /* callback(illegal) */
   3728                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3729                     break;
   3730                 }
   3731             }
   3732 
   3733             /* convert the Unicode code point in c into codepage bytes */
   3734             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3735 
   3736             /* is this code point assigned, or do we use fallbacks? */
   3737             if(value>=minValue) {
   3738                 /* assigned, write the output character bytes from value and length */
   3739                 /* length==1 */
   3740                 /* this is easy because we know that there is enough space */
   3741                 *target++=(uint8_t)value;
   3742                 if(offsets!=NULL) {
   3743                     *offsets++=sourceIndex;
   3744                 }
   3745                 --targetCapacity;
   3746 
   3747                 /* normal end of conversion: prepare for a new character */
   3748                 c=0;
   3749                 sourceIndex=nextSourceIndex;
   3750             } else { /* unassigned */
   3751 unassigned:
   3752                 /* try an extension mapping */
   3753                 pArgs->source=source;
   3754                 c=_extFromU(cnv, cnv->sharedData,
   3755                             c, &source, sourceLimit,
   3756                             &target, target+targetCapacity,
   3757                             &offsets, sourceIndex,
   3758                             pArgs->flush,
   3759                             pErrorCode);
   3760                 nextSourceIndex+=(int32_t)(source-pArgs->source);
   3761 
   3762                 if(U_FAILURE(*pErrorCode)) {
   3763                     /* not mappable or buffer overflow */
   3764                     break;
   3765                 } else {
   3766                     /* a mapping was written to the target, continue */
   3767 
   3768                     /* recalculate the targetCapacity after an extension mapping */
   3769                     targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
   3770 
   3771                     /* normal end of conversion: prepare for a new character */
   3772                     sourceIndex=nextSourceIndex;
   3773                 }
   3774             }
   3775         } else {
   3776             /* target is full */
   3777             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   3778             break;
   3779         }
   3780     }
   3781 
   3782     /* set the converter state back into UConverter */
   3783     cnv->fromUChar32=c;
   3784 
   3785     /* write back the updated pointers */
   3786     pArgs->source=source;
   3787     pArgs->target=(char *)target;
   3788     pArgs->offsets=offsets;
   3789 }
   3790 
   3791 /*
   3792  * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
   3793  * that map only to and from the BMP.
   3794  * In addition to single-byte/state optimizations, the offset calculations
   3795  * become much easier.
   3796  * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
   3797  * but measurements have shown that this diminishes performance
   3798  * in more cases than it improves it.
   3799  * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
   3800  * for various MBCS and SBCS optimizations.
   3801  */
   3802 static void
   3803 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
   3804                               UErrorCode *pErrorCode) {
   3805     UConverter *cnv;
   3806     const UChar *source, *sourceLimit, *lastSource;
   3807     uint8_t *target;
   3808     int32_t targetCapacity, length;
   3809     int32_t *offsets;
   3810 
   3811     const uint16_t *table;
   3812     const uint16_t *results;
   3813 
   3814     UChar32 c;
   3815 
   3816     int32_t sourceIndex;
   3817 
   3818     uint32_t asciiRoundtrips;
   3819     uint16_t value, minValue;
   3820 
   3821     /* set up the local pointers */
   3822     cnv=pArgs->converter;
   3823     source=pArgs->source;
   3824     sourceLimit=pArgs->sourceLimit;
   3825     target=(uint8_t *)pArgs->target;
   3826     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
   3827     offsets=pArgs->offsets;
   3828 
   3829     table=cnv->sharedData->mbcs.fromUnicodeTable;
   3830     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   3831         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   3832     } else {
   3833         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
   3834     }
   3835     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
   3836 
   3837     if(cnv->useFallback) {
   3838         /* use all roundtrip and fallback results */
   3839         minValue=0x800;
   3840     } else {
   3841         /* use only roundtrips and fallbacks from private-use characters */
   3842         minValue=0xc00;
   3843     }
   3844 
   3845     /* get the converter state from UConverter */
   3846     c=cnv->fromUChar32;
   3847 
   3848     /* sourceIndex=-1 if the current character began in the previous buffer */
   3849     sourceIndex= c==0 ? 0 : -1;
   3850     lastSource=source;
   3851 
   3852     /*
   3853      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
   3854      * for the minimum of the sourceLength and targetCapacity
   3855      */
   3856     length=(int32_t)(sourceLimit-source);
   3857     if(length<targetCapacity) {
   3858         targetCapacity=length;
   3859     }
   3860 
   3861     /* conversion loop */
   3862     if(c!=0 && targetCapacity>0) {
   3863         goto getTrail;
   3864     }
   3865 
   3866 #if MBCS_UNROLL_SINGLE_FROM_BMP
   3867     /* unrolling makes it slower on Pentium III/Windows 2000?! */
   3868     /* unroll the loop with the most common case */
   3869 unrolled:
   3870     if(targetCapacity>=4) {
   3871         int32_t count, loops;
   3872         uint16_t andedValues;
   3873 
   3874         loops=count=targetCapacity>>2;
   3875         do {
   3876             c=*source++;
   3877             andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3878             *target++=(uint8_t)value;
   3879             c=*source++;
   3880             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3881             *target++=(uint8_t)value;
   3882             c=*source++;
   3883             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3884             *target++=(uint8_t)value;
   3885             c=*source++;
   3886             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3887             *target++=(uint8_t)value;
   3888 
   3889             /* were all 4 entries really valid? */
   3890             if(andedValues<minValue) {
   3891                 /* no, return to the first of these 4 */
   3892                 source-=4;
   3893                 target-=4;
   3894                 break;
   3895             }
   3896         } while(--count>0);
   3897         count=loops-count;
   3898         targetCapacity-=4*count;
   3899 
   3900         if(offsets!=NULL) {
   3901             lastSource+=4*count;
   3902             while(count>0) {
   3903                 *offsets++=sourceIndex++;
   3904                 *offsets++=sourceIndex++;
   3905                 *offsets++=sourceIndex++;
   3906                 *offsets++=sourceIndex++;
   3907                 --count;
   3908             }
   3909         }
   3910 
   3911         c=0;
   3912     }
   3913 #endif
   3914 
   3915     while(targetCapacity>0) {
   3916         /*
   3917          * Get a correct Unicode code point:
   3918          * a single UChar for a BMP code point or
   3919          * a matched surrogate pair for a "supplementary code point".
   3920          */
   3921         c=*source++;
   3922         /*
   3923          * Do not immediately check for single surrogates:
   3924          * Assume that they are unassigned and check for them in that case.
   3925          * This speeds up the conversion of assigned characters.
   3926          */
   3927         /* convert the Unicode code point in c into codepage bytes */
   3928         if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
   3929             *target++=(uint8_t)c;
   3930             --targetCapacity;
   3931             c=0;
   3932             continue;
   3933         }
   3934         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   3935         /* is this code point assigned, or do we use fallbacks? */
   3936         if(value>=minValue) {
   3937             /* assigned, write the output character bytes from value and length */
   3938             /* length==1 */
   3939             /* this is easy because we know that there is enough space */
   3940             *target++=(uint8_t)value;
   3941             --targetCapacity;
   3942 
   3943             /* normal end of conversion: prepare for a new character */
   3944             c=0;
   3945             continue;
   3946         } else if(!U16_IS_SURROGATE(c)) {
   3947             /* normal, unassigned BMP character */
   3948         } else if(U16_IS_SURROGATE_LEAD(c)) {
   3949 getTrail:
   3950             if(source<sourceLimit) {
   3951                 /* test the following code unit */
   3952                 UChar trail=*source;
   3953                 if(U16_IS_TRAIL(trail)) {
   3954                     ++source;
   3955                     c=U16_GET_SUPPLEMENTARY(c, trail);
   3956                     /* this codepage does not map supplementary code points */
   3957                     /* callback(unassigned) */
   3958                 } else {
   3959                     /* this is an unmatched lead code unit (1st surrogate) */
   3960                     /* callback(illegal) */
   3961                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3962                     break;
   3963                 }
   3964             } else {
   3965                 /* no more input */
   3966                 if (pArgs->flush) {
   3967                     *pErrorCode=U_TRUNCATED_CHAR_FOUND;
   3968                 }
   3969                 break;
   3970             }
   3971         } else {
   3972             /* this is an unmatched trail code unit (2nd surrogate) */
   3973             /* callback(illegal) */
   3974             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   3975             break;
   3976         }
   3977 
   3978         /* c does not have a mapping */
   3979 
   3980         /* get the number of code units for c to correctly advance sourceIndex */
   3981         length=U16_LENGTH(c);
   3982 
   3983         /* set offsets since the start or the last extension */
   3984         if(offsets!=NULL) {
   3985             int32_t count=(int32_t)(source-lastSource);
   3986 
   3987             /* do not set the offset for this character */
   3988             count-=length;
   3989 
   3990             while(count>0) {
   3991                 *offsets++=sourceIndex++;
   3992                 --count;
   3993             }
   3994             /* offsets and sourceIndex are now set for the current character */
   3995         }
   3996 
   3997         /* try an extension mapping */
   3998         lastSource=source;
   3999         c=_extFromU(cnv, cnv->sharedData,
   4000                     c, &source, sourceLimit,
   4001                     &target, (const uint8_t *)(pArgs->targetLimit),
   4002                     &offsets, sourceIndex,
   4003                     pArgs->flush,
   4004                     pErrorCode);
   4005         sourceIndex+=length+(int32_t)(source-lastSource);
   4006         lastSource=source;
   4007 
   4008         if(U_FAILURE(*pErrorCode)) {
   4009             /* not mappable or buffer overflow */
   4010             break;
   4011         } else {
   4012             /* a mapping was written to the target, continue */
   4013 
   4014             /* recalculate the targetCapacity after an extension mapping */
   4015             targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
   4016             length=(int32_t)(sourceLimit-source);
   4017             if(length<targetCapacity) {
   4018                 targetCapacity=length;
   4019             }
   4020         }
   4021 
   4022 #if MBCS_UNROLL_SINGLE_FROM_BMP
   4023         /* unrolling makes it slower on Pentium III/Windows 2000?! */
   4024         goto unrolled;
   4025 #endif
   4026     }
   4027 
   4028     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
   4029         /* target is full */
   4030         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   4031     }
   4032 
   4033     /* set offsets since the start or the last callback */
   4034     if(offsets!=NULL) {
   4035         size_t count=source-lastSource;
   4036         if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
   4037             /*
   4038             Caller gave us a partial supplementary character,
   4039             which this function couldn't convert in any case.
   4040             The callback will handle the offset.
   4041             */
   4042             count--;
   4043         }
   4044         while(count>0) {
   4045             *offsets++=sourceIndex++;
   4046             --count;
   4047         }
   4048     }
   4049 
   4050     /* set the converter state back into UConverter */
   4051     cnv->fromUChar32=c;
   4052 
   4053     /* write back the updated pointers */
   4054     pArgs->source=source;
   4055     pArgs->target=(char *)target;
   4056     pArgs->offsets=offsets;
   4057 }
   4058 
   4059 U_CFUNC void
   4060 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
   4061                             UErrorCode *pErrorCode) {
   4062     UConverter *cnv;
   4063     const UChar *source, *sourceLimit;
   4064     uint8_t *target;
   4065     int32_t targetCapacity;
   4066     int32_t *offsets;
   4067 
   4068     const uint16_t *table;
   4069     const uint16_t *mbcsIndex;
   4070     const uint8_t *p, *bytes;
   4071     uint8_t outputType;
   4072 
   4073     UChar32 c;
   4074 
   4075     int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
   4076 
   4077     uint32_t stage2Entry;
   4078     uint32_t asciiRoundtrips;
   4079     uint32_t value;
   4080     /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
   4081     uint8_t siBytes[2] = {0, 0};
   4082     uint8_t soBytes[2] = {0, 0};
   4083     uint8_t siLength, soLength;
   4084     int32_t length = 0, prevLength;
   4085     uint8_t unicodeMask;
   4086 
   4087     cnv=pArgs->converter;
   4088 
   4089     if(cnv->preFromUFirstCP>=0) {
   4090         /*
   4091          * pass sourceIndex=-1 because we continue from an earlier buffer
   4092          * in the future, this may change with continuous offsets
   4093          */
   4094         ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
   4095 
   4096         if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
   4097             return;
   4098         }
   4099     }
   4100 
   4101     /* use optimized function if possible */
   4102     outputType=cnv->sharedData->mbcs.outputType;
   4103     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
   4104     if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
   4105         if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   4106             ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
   4107         } else {
   4108             ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
   4109         }
   4110         return;
   4111     } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
   4112         ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
   4113         return;
   4114     }
   4115 
   4116     /* set up the local pointers */
   4117     source=pArgs->source;
   4118     sourceLimit=pArgs->sourceLimit;
   4119     target=(uint8_t *)pArgs->target;
   4120     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
   4121     offsets=pArgs->offsets;
   4122 
   4123     table=cnv->sharedData->mbcs.fromUnicodeTable;
   4124     if(cnv->sharedData->mbcs.utf8Friendly) {
   4125         mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
   4126     } else {
   4127         mbcsIndex=NULL;
   4128     }
   4129     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   4130         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   4131     } else {
   4132         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
   4133     }
   4134     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
   4135 
   4136     /* get the converter state from UConverter */
   4137     c=cnv->fromUChar32;
   4138 
   4139     if(outputType==MBCS_OUTPUT_2_SISO) {
   4140         prevLength=cnv->fromUnicodeStatus;
   4141         if(prevLength==0) {
   4142             /* set the real value */
   4143             prevLength=1;
   4144         }
   4145     } else {
   4146         /* prevent fromUnicodeStatus from being set to something non-0 */
   4147         prevLength=0;
   4148     }
   4149 
   4150     /* sourceIndex=-1 if the current character began in the previous buffer */
   4151     prevSourceIndex=-1;
   4152     sourceIndex= c==0 ? 0 : -1;
   4153     nextSourceIndex=0;
   4154 
   4155     /* Get the SI/SO character for the converter */
   4156     siLength = getSISOBytes(SI, cnv->options, siBytes);
   4157     soLength = getSISOBytes(SO, cnv->options, soBytes);
   4158 
   4159     /* conversion loop */
   4160     /*
   4161      * This is another piece of ugly code:
   4162      * A goto into the loop if the converter state contains a first surrogate
   4163      * from the previous function call.
   4164      * It saves me to check in each loop iteration a check of if(c==0)
   4165      * and duplicating the trail-surrogate-handling code in the else
   4166      * branch of that check.
   4167      * I could not find any other way to get around this other than
   4168      * using a function call for the conversion and callback, which would
   4169      * be even more inefficient.
   4170      *
   4171      * Markus Scherer 2000-jul-19
   4172      */
   4173     if(c!=0 && targetCapacity>0) {
   4174         goto getTrail;
   4175     }
   4176 
   4177     while(source<sourceLimit) {
   4178         /*
   4179          * This following test is to see if available input would overflow the output.
   4180          * It does not catch output of more than one byte that
   4181          * overflows as a result of a multi-byte character or callback output
   4182          * from the last source character.
   4183          * Therefore, those situations also test for overflows and will
   4184          * then break the loop, too.
   4185          */
   4186         if(targetCapacity>0) {
   4187             /*
   4188              * Get a correct Unicode code point:
   4189              * a single UChar for a BMP code point or
   4190              * a matched surrogate pair for a "supplementary code point".
   4191              */
   4192             c=*source++;
   4193             ++nextSourceIndex;
   4194             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
   4195                 *target++=(uint8_t)c;
   4196                 if(offsets!=NULL) {
   4197                     *offsets++=sourceIndex;
   4198                     prevSourceIndex=sourceIndex;
   4199                     sourceIndex=nextSourceIndex;
   4200                 }
   4201                 --targetCapacity;
   4202                 c=0;
   4203                 continue;
   4204             }
   4205             /*
   4206              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
   4207              * to avoid dealing with surrogates.
   4208              * MBCS_FAST_MAX must be >=0xd7ff.
   4209              */
   4210             if(c<=0xd7ff && mbcsIndex!=NULL) {
   4211                 value=mbcsIndex[c>>6];
   4212 
   4213                 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
   4214                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
   4215                 switch(outputType) {
   4216                 case MBCS_OUTPUT_2:
   4217                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
   4218                     if(value<=0xff) {
   4219                         if(value==0) {
   4220                             goto unassigned;
   4221                         } else {
   4222                             length=1;
   4223                         }
   4224                     } else {
   4225                         length=2;
   4226                     }
   4227                     break;
   4228                 case MBCS_OUTPUT_2_SISO:
   4229                     /* 1/2-byte stateful with Shift-In/Shift-Out */
   4230                     /*
   4231                      * Save the old state in the converter object
   4232                      * right here, then change the local prevLength state variable if necessary.
   4233                      * Then, if this character turns out to be unassigned or a fallback that
   4234                      * is not taken, the callback code must not save the new state in the converter
   4235                      * because the new state is for a character that is not output.
   4236                      * However, the callback must still restore the state from the converter
   4237                      * in case the callback function changed it for its output.
   4238                      */
   4239                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
   4240                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
   4241                     if(value<=0xff) {
   4242                         if(value==0) {
   4243                             goto unassigned;
   4244                         } else if(prevLength<=1) {
   4245                             length=1;
   4246                         } else {
   4247                             /* change from double-byte mode to single-byte */
   4248                             if (siLength == 1) {
   4249                                 value|=(uint32_t)siBytes[0]<<8;
   4250                                 length = 2;
   4251                             } else if (siLength == 2) {
   4252                                 value|=(uint32_t)siBytes[1]<<8;
   4253                                 value|=(uint32_t)siBytes[0]<<16;
   4254                                 length = 3;
   4255                             }
   4256                             prevLength=1;
   4257                         }
   4258                     } else {
   4259                         if(prevLength==2) {
   4260                             length=2;
   4261                         } else {
   4262                             /* change from single-byte mode to double-byte */
   4263                             if (soLength == 1) {
   4264                                 value|=(uint32_t)soBytes[0]<<16;
   4265                                 length = 3;
   4266                             } else if (soLength == 2) {
   4267                                 value|=(uint32_t)soBytes[1]<<16;
   4268                                 value|=(uint32_t)soBytes[0]<<24;
   4269                                 length = 4;
   4270                             }
   4271                             prevLength=2;
   4272                         }
   4273                     }
   4274                     break;
   4275                 case MBCS_OUTPUT_DBCS_ONLY:
   4276                     /* table with single-byte results, but only DBCS mappings used */
   4277                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
   4278                     if(value<=0xff) {
   4279                         /* no mapping or SBCS result, not taken for DBCS-only */
   4280                         goto unassigned;
   4281                     } else {
   4282                         length=2;
   4283                     }
   4284                     break;
   4285                 case MBCS_OUTPUT_3:
   4286                     p=bytes+(value+(c&0x3f))*3;
   4287                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4288                     if(value<=0xff) {
   4289                         if(value==0) {
   4290                             goto unassigned;
   4291                         } else {
   4292                             length=1;
   4293                         }
   4294                     } else if(value<=0xffff) {
   4295                         length=2;
   4296                     } else {
   4297                         length=3;
   4298                     }
   4299                     break;
   4300                 case MBCS_OUTPUT_4:
   4301                     value=((const uint32_t *)bytes)[value +(c&0x3f)];
   4302                     if(value<=0xff) {
   4303                         if(value==0) {
   4304                             goto unassigned;
   4305                         } else {
   4306                             length=1;
   4307                         }
   4308                     } else if(value<=0xffff) {
   4309                         length=2;
   4310                     } else if(value<=0xffffff) {
   4311                         length=3;
   4312                     } else {
   4313                         length=4;
   4314                     }
   4315                     break;
   4316                 case MBCS_OUTPUT_3_EUC:
   4317                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
   4318                     /* EUC 16-bit fixed-length representation */
   4319                     if(value<=0xff) {
   4320                         if(value==0) {
   4321                             goto unassigned;
   4322                         } else {
   4323                             length=1;
   4324                         }
   4325                     } else if((value&0x8000)==0) {
   4326                         value|=0x8e8000;
   4327                         length=3;
   4328                     } else if((value&0x80)==0) {
   4329                         value|=0x8f0080;
   4330                         length=3;
   4331                     } else {
   4332                         length=2;
   4333                     }
   4334                     break;
   4335                 case MBCS_OUTPUT_4_EUC:
   4336                     p=bytes+(value+(c&0x3f))*3;
   4337                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4338                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
   4339                     if(value<=0xff) {
   4340                         if(value==0) {
   4341                             goto unassigned;
   4342                         } else {
   4343                             length=1;
   4344                         }
   4345                     } else if(value<=0xffff) {
   4346                         length=2;
   4347                     } else if((value&0x800000)==0) {
   4348                         value|=0x8e800000;
   4349                         length=4;
   4350                     } else if((value&0x8000)==0) {
   4351                         value|=0x8f008000;
   4352                         length=4;
   4353                     } else {
   4354                         length=3;
   4355                     }
   4356                     break;
   4357                 default:
   4358                     /* must not occur */
   4359                     /*
   4360                      * To avoid compiler warnings that value & length may be
   4361                      * used without having been initialized, we set them here.
   4362                      * In reality, this is unreachable code.
   4363                      * Not having a default branch also causes warnings with
   4364                      * some compilers.
   4365                      */
   4366                     value=0;
   4367                     length=0;
   4368                     break;
   4369                 }
   4370                 /* output the value */
   4371             } else {
   4372                 /*
   4373                  * This also tests if the codepage maps single surrogates.
   4374                  * If it does, then surrogates are not paired but mapped separately.
   4375                  * Note that in this case unmatched surrogates are not detected.
   4376                  */
   4377                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
   4378                     if(U16_IS_SURROGATE_LEAD(c)) {
   4379 getTrail:
   4380                         if(source<sourceLimit) {
   4381                             /* test the following code unit */
   4382                             UChar trail=*source;
   4383                             if(U16_IS_TRAIL(trail)) {
   4384                                 ++source;
   4385                                 ++nextSourceIndex;
   4386                                 c=U16_GET_SUPPLEMENTARY(c, trail);
   4387                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   4388                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   4389                                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
   4390                                     /* callback(unassigned) */
   4391                                     goto unassigned;
   4392                                 }
   4393                                 /* convert this supplementary code point */
   4394                                 /* exit this condition tree */
   4395                             } else {
   4396                                 /* this is an unmatched lead code unit (1st surrogate) */
   4397                                 /* callback(illegal) */
   4398                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   4399                                 break;
   4400                             }
   4401                         } else {
   4402                             /* no more input */
   4403                             break;
   4404                         }
   4405                     } else {
   4406                         /* this is an unmatched trail code unit (2nd surrogate) */
   4407                         /* callback(illegal) */
   4408                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   4409                         break;
   4410                     }
   4411                 }
   4412 
   4413                 /* convert the Unicode code point in c into codepage bytes */
   4414 
   4415                 /*
   4416                  * The basic lookup is a triple-stage compact array (trie) lookup.
   4417                  * For details see the beginning of this file.
   4418                  *
   4419                  * Single-byte codepages are handled with a different data structure
   4420                  * by _MBCSSingle... functions.
   4421                  *
   4422                  * The result consists of a 32-bit value from stage 2 and
   4423                  * a pointer to as many bytes as are stored per character.
   4424                  * The pointer points to the character's bytes in stage 3.
   4425                  * Bits 15..0 of the stage 2 entry contain the stage 3 index
   4426                  * for that pointer, while bits 31..16 are flags for which of
   4427                  * the 16 characters in the block are roundtrip-assigned.
   4428                  *
   4429                  * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
   4430                  * respectively as uint32_t, in the platform encoding.
   4431                  * For 3-byte codepages, the bytes are always stored in big-endian order.
   4432                  *
   4433                  * For EUC encodings that use only either 0x8e or 0x8f as the first
   4434                  * byte of their longest byte sequences, the first two bytes in
   4435                  * this third stage indicate with their 7th bits whether these bytes
   4436                  * are to be written directly or actually need to be preceeded by
   4437                  * one of the two Single-Shift codes. With this, the third stage
   4438                  * stores one byte fewer per character than the actual maximum length of
   4439                  * EUC byte sequences.
   4440                  *
   4441                  * Other than that, leading zero bytes are removed and the other
   4442                  * bytes output. A single zero byte may be output if the "assigned"
   4443                  * bit in stage 2 was on.
   4444                  * The data structure does not support zero byte output as a fallback,
   4445                  * and also does not allow output of leading zeros.
   4446                  */
   4447                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
   4448 
   4449                 /* get the bytes and the length for the output */
   4450                 switch(outputType) {
   4451                 case MBCS_OUTPUT_2:
   4452                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
   4453                     if(value<=0xff) {
   4454                         length=1;
   4455                     } else {
   4456                         length=2;
   4457                     }
   4458                     break;
   4459                 case MBCS_OUTPUT_2_SISO:
   4460                     /* 1/2-byte stateful with Shift-In/Shift-Out */
   4461                     /*
   4462                      * Save the old state in the converter object
   4463                      * right here, then change the local prevLength state variable if necessary.
   4464                      * Then, if this character turns out to be unassigned or a fallback that
   4465                      * is not taken, the callback code must not save the new state in the converter
   4466                      * because the new state is for a character that is not output.
   4467                      * However, the callback must still restore the state from the converter
   4468                      * in case the callback function changed it for its output.
   4469                      */
   4470                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
   4471                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
   4472                     if(value<=0xff) {
   4473                         if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
   4474                             /* no mapping, leave value==0 */
   4475                             length=0;
   4476                         } else if(prevLength<=1) {
   4477                             length=1;
   4478                         } else {
   4479                             /* change from double-byte mode to single-byte */
   4480                             if (siLength == 1) {
   4481                                 value|=(uint32_t)siBytes[0]<<8;
   4482                                 length = 2;
   4483                             } else if (siLength == 2) {
   4484                                 value|=(uint32_t)siBytes[1]<<8;
   4485                                 value|=(uint32_t)siBytes[0]<<16;
   4486                                 length = 3;
   4487                             }
   4488                             prevLength=1;
   4489                         }
   4490                     } else {
   4491                         if(prevLength==2) {
   4492                             length=2;
   4493                         } else {
   4494                             /* change from single-byte mode to double-byte */
   4495                             if (soLength == 1) {
   4496                                 value|=(uint32_t)soBytes[0]<<16;
   4497                                 length = 3;
   4498                             } else if (soLength == 2) {
   4499                                 value|=(uint32_t)soBytes[1]<<16;
   4500                                 value|=(uint32_t)soBytes[0]<<24;
   4501                                 length = 4;
   4502                             }
   4503                             prevLength=2;
   4504                         }
   4505                     }
   4506                     break;
   4507                 case MBCS_OUTPUT_DBCS_ONLY:
   4508                     /* table with single-byte results, but only DBCS mappings used */
   4509                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
   4510                     if(value<=0xff) {
   4511                         /* no mapping or SBCS result, not taken for DBCS-only */
   4512                         value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
   4513                         length=0;
   4514                     } else {
   4515                         length=2;
   4516                     }
   4517                     break;
   4518                 case MBCS_OUTPUT_3:
   4519                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
   4520                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4521                     if(value<=0xff) {
   4522                         length=1;
   4523                     } else if(value<=0xffff) {
   4524                         length=2;
   4525                     } else {
   4526                         length=3;
   4527                     }
   4528                     break;
   4529                 case MBCS_OUTPUT_4:
   4530                     value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
   4531                     if(value<=0xff) {
   4532                         length=1;
   4533                     } else if(value<=0xffff) {
   4534                         length=2;
   4535                     } else if(value<=0xffffff) {
   4536                         length=3;
   4537                     } else {
   4538                         length=4;
   4539                     }
   4540                     break;
   4541                 case MBCS_OUTPUT_3_EUC:
   4542                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
   4543                     /* EUC 16-bit fixed-length representation */
   4544                     if(value<=0xff) {
   4545                         length=1;
   4546                     } else if((value&0x8000)==0) {
   4547                         value|=0x8e8000;
   4548                         length=3;
   4549                     } else if((value&0x80)==0) {
   4550                         value|=0x8f0080;
   4551                         length=3;
   4552                     } else {
   4553                         length=2;
   4554                     }
   4555                     break;
   4556                 case MBCS_OUTPUT_4_EUC:
   4557                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
   4558                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4559                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
   4560                     if(value<=0xff) {
   4561                         length=1;
   4562                     } else if(value<=0xffff) {
   4563                         length=2;
   4564                     } else if((value&0x800000)==0) {
   4565                         value|=0x8e800000;
   4566                         length=4;
   4567                     } else if((value&0x8000)==0) {
   4568                         value|=0x8f008000;
   4569                         length=4;
   4570                     } else {
   4571                         length=3;
   4572                     }
   4573                     break;
   4574                 default:
   4575                     /* must not occur */
   4576                     /*
   4577                      * To avoid compiler warnings that value & length may be
   4578                      * used without having been initialized, we set them here.
   4579                      * In reality, this is unreachable code.
   4580                      * Not having a default branch also causes warnings with
   4581                      * some compilers.
   4582                      */
   4583                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
   4584                     length=0;
   4585                     break;
   4586                 }
   4587 
   4588                 /* is this code point assigned, or do we use fallbacks? */
   4589                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
   4590                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
   4591                 ) {
   4592                     /*
   4593                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
   4594                      * There is no way with this data structure for fallback output
   4595                      * to be a zero byte.
   4596                      */
   4597 
   4598 unassigned:
   4599                     /* try an extension mapping */
   4600                     pArgs->source=source;
   4601                     c=_extFromU(cnv, cnv->sharedData,
   4602                                 c, &source, sourceLimit,
   4603                                 &target, target+targetCapacity,
   4604                                 &offsets, sourceIndex,
   4605                                 pArgs->flush,
   4606                                 pErrorCode);
   4607                     nextSourceIndex+=(int32_t)(source-pArgs->source);
   4608                     prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
   4609 
   4610                     if(U_FAILURE(*pErrorCode)) {
   4611                         /* not mappable or buffer overflow */
   4612                         break;
   4613                     } else {
   4614                         /* a mapping was written to the target, continue */
   4615 
   4616                         /* recalculate the targetCapacity after an extension mapping */
   4617                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
   4618 
   4619                         /* normal end of conversion: prepare for a new character */
   4620                         if(offsets!=NULL) {
   4621                             prevSourceIndex=sourceIndex;
   4622                             sourceIndex=nextSourceIndex;
   4623                         }
   4624                         continue;
   4625                     }
   4626                 }
   4627             }
   4628 
   4629             /* write the output character bytes from value and length */
   4630             /* from the first if in the loop we know that targetCapacity>0 */
   4631             if(length<=targetCapacity) {
   4632                 if(offsets==NULL) {
   4633                     switch(length) {
   4634                         /* each branch falls through to the next one */
   4635                     case 4:
   4636                         *target++=(uint8_t)(value>>24);
   4637                     case 3: /*fall through*/
   4638                         *target++=(uint8_t)(value>>16);
   4639                     case 2: /*fall through*/
   4640                         *target++=(uint8_t)(value>>8);
   4641                     case 1: /*fall through*/
   4642                         *target++=(uint8_t)value;
   4643                     default:
   4644                         /* will never occur */
   4645                         break;
   4646                     }
   4647                 } else {
   4648                     switch(length) {
   4649                         /* each branch falls through to the next one */
   4650                     case 4:
   4651                         *target++=(uint8_t)(value>>24);
   4652                         *offsets++=sourceIndex;
   4653                     case 3: /*fall through*/
   4654                         *target++=(uint8_t)(value>>16);
   4655                         *offsets++=sourceIndex;
   4656                     case 2: /*fall through*/
   4657                         *target++=(uint8_t)(value>>8);
   4658                         *offsets++=sourceIndex;
   4659                     case 1: /*fall through*/
   4660                         *target++=(uint8_t)value;
   4661                         *offsets++=sourceIndex;
   4662                     default:
   4663                         /* will never occur */
   4664                         break;
   4665                     }
   4666                 }
   4667                 targetCapacity-=length;
   4668             } else {
   4669                 uint8_t *charErrorBuffer;
   4670 
   4671                 /*
   4672                  * We actually do this backwards here:
   4673                  * In order to save an intermediate variable, we output
   4674                  * first to the overflow buffer what does not fit into the
   4675                  * regular target.
   4676                  */
   4677                 /* we know that 1<=targetCapacity<length<=4 */
   4678                 length-=targetCapacity;
   4679                 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
   4680                 switch(length) {
   4681                     /* each branch falls through to the next one */
   4682                 case 3:
   4683                     *charErrorBuffer++=(uint8_t)(value>>16);
   4684                 case 2: /*fall through*/
   4685                     *charErrorBuffer++=(uint8_t)(value>>8);
   4686                 case 1: /*fall through*/
   4687                     *charErrorBuffer=(uint8_t)value;
   4688                 default:
   4689                     /* will never occur */
   4690                     break;
   4691                 }
   4692                 cnv->charErrorBufferLength=(int8_t)length;
   4693 
   4694                 /* now output what fits into the regular target */
   4695                 value>>=8*length; /* length was reduced by targetCapacity */
   4696                 switch(targetCapacity) {
   4697                     /* each branch falls through to the next one */
   4698                 case 3:
   4699                     *target++=(uint8_t)(value>>16);
   4700                     if(offsets!=NULL) {
   4701                         *offsets++=sourceIndex;
   4702                     }
   4703                 case 2: /*fall through*/
   4704                     *target++=(uint8_t)(value>>8);
   4705                     if(offsets!=NULL) {
   4706                         *offsets++=sourceIndex;
   4707                     }
   4708                 case 1: /*fall through*/
   4709                     *target++=(uint8_t)value;
   4710                     if(offsets!=NULL) {
   4711                         *offsets++=sourceIndex;
   4712                     }
   4713                 default:
   4714                     /* will never occur */
   4715                     break;
   4716                 }
   4717 
   4718                 /* target overflow */
   4719                 targetCapacity=0;
   4720                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   4721                 c=0;
   4722                 break;
   4723             }
   4724 
   4725             /* normal end of conversion: prepare for a new character */
   4726             c=0;
   4727             if(offsets!=NULL) {
   4728                 prevSourceIndex=sourceIndex;
   4729                 sourceIndex=nextSourceIndex;
   4730             }
   4731             continue;
   4732         } else {
   4733             /* target is full */
   4734             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   4735             break;
   4736         }
   4737     }
   4738 
   4739     /*
   4740      * the end of the input stream and detection of truncated input
   4741      * are handled by the framework, but for EBCDIC_STATEFUL conversion
   4742      * we need to emit an SI at the very end
   4743      *
   4744      * conditions:
   4745      *   successful
   4746      *   EBCDIC_STATEFUL in DBCS mode
   4747      *   end of input and no truncated input
   4748      */
   4749     if( U_SUCCESS(*pErrorCode) &&
   4750         outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
   4751         pArgs->flush && source>=sourceLimit && c==0
   4752     ) {
   4753         /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
   4754         if(targetCapacity>0) {
   4755             *target++=(uint8_t)siBytes[0];
   4756             if (siLength == 2) {
   4757                 if (targetCapacity<2) {
   4758                     cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
   4759                     cnv->charErrorBufferLength=1;
   4760                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   4761                 } else {
   4762                     *target++=(uint8_t)siBytes[1];
   4763                 }
   4764             }
   4765             if(offsets!=NULL) {
   4766                 /* set the last source character's index (sourceIndex points at sourceLimit now) */
   4767                 *offsets++=prevSourceIndex;
   4768             }
   4769         } else {
   4770             /* target is full */
   4771             cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
   4772             if (siLength == 2) {
   4773                 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
   4774             }
   4775             cnv->charErrorBufferLength=siLength;
   4776             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   4777         }
   4778         prevLength=1; /* we switched into SBCS */
   4779     }
   4780 
   4781     /* set the converter state back into UConverter */
   4782     cnv->fromUChar32=c;
   4783     cnv->fromUnicodeStatus=prevLength;
   4784 
   4785     /* write back the updated pointers */
   4786     pArgs->source=source;
   4787     pArgs->target=(char *)target;
   4788     pArgs->offsets=offsets;
   4789 }
   4790 
   4791 /*
   4792  * This is another simple conversion function for internal use by other
   4793  * conversion implementations.
   4794  * It does not use the converter state nor call callbacks.
   4795  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
   4796  * It handles conversion extensions but not GB 18030.
   4797  *
   4798  * It converts one single Unicode code point into codepage bytes, encoded
   4799  * as one 32-bit value. The function returns the number of bytes in *pValue:
   4800  * 1..4 the number of bytes in *pValue
   4801  * 0    unassigned (*pValue undefined)
   4802  * -1   illegal (currently not used, *pValue undefined)
   4803  *
   4804  * *pValue will contain the resulting bytes with the last byte in bits 7..0,
   4805  * the second to last byte in bits 15..8, etc.
   4806  * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
   4807  */
   4808 U_CFUNC int32_t
   4809 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
   4810                  UChar32 c, uint32_t *pValue,
   4811                  UBool useFallback) {
   4812     const int32_t *cx;
   4813     const uint16_t *table;
   4814 #if 0
   4815 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
   4816     const uint8_t *p;
   4817 #endif
   4818     uint32_t stage2Entry;
   4819     uint32_t value;
   4820     int32_t length;
   4821 
   4822     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   4823     if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   4824         table=sharedData->mbcs.fromUnicodeTable;
   4825 
   4826         /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
   4827         if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
   4828             value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
   4829             /* is this code point assigned, or do we use fallbacks? */
   4830             if(useFallback ? value>=0x800 : value>=0xc00) {
   4831                 *pValue=value&0xff;
   4832                 return 1;
   4833             }
   4834         } else /* outputType!=MBCS_OUTPUT_1 */ {
   4835             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
   4836 
   4837             /* get the bytes and the length for the output */
   4838             switch(sharedData->mbcs.outputType) {
   4839             case MBCS_OUTPUT_2:
   4840                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4841                 if(value<=0xff) {
   4842                     length=1;
   4843                 } else {
   4844                     length=2;
   4845                 }
   4846                 break;
   4847 #if 0
   4848 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
   4849             case MBCS_OUTPUT_DBCS_ONLY:
   4850                 /* table with single-byte results, but only DBCS mappings used */
   4851                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4852                 if(value<=0xff) {
   4853                     /* no mapping or SBCS result, not taken for DBCS-only */
   4854                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
   4855                     length=0;
   4856                 } else {
   4857                     length=2;
   4858                 }
   4859                 break;
   4860             case MBCS_OUTPUT_3:
   4861                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4862                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4863                 if(value<=0xff) {
   4864                     length=1;
   4865                 } else if(value<=0xffff) {
   4866                     length=2;
   4867                 } else {
   4868                     length=3;
   4869                 }
   4870                 break;
   4871             case MBCS_OUTPUT_4:
   4872                 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4873                 if(value<=0xff) {
   4874                     length=1;
   4875                 } else if(value<=0xffff) {
   4876                     length=2;
   4877                 } else if(value<=0xffffff) {
   4878                     length=3;
   4879                 } else {
   4880                     length=4;
   4881                 }
   4882                 break;
   4883             case MBCS_OUTPUT_3_EUC:
   4884                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4885                 /* EUC 16-bit fixed-length representation */
   4886                 if(value<=0xff) {
   4887                     length=1;
   4888                 } else if((value&0x8000)==0) {
   4889                     value|=0x8e8000;
   4890                     length=3;
   4891                 } else if((value&0x80)==0) {
   4892                     value|=0x8f0080;
   4893                     length=3;
   4894                 } else {
   4895                     length=2;
   4896                 }
   4897                 break;
   4898             case MBCS_OUTPUT_4_EUC:
   4899                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
   4900                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
   4901                 /* EUC 16-bit fixed-length representation applied to the first two bytes */
   4902                 if(value<=0xff) {
   4903                     length=1;
   4904                 } else if(value<=0xffff) {
   4905                     length=2;
   4906                 } else if((value&0x800000)==0) {
   4907                     value|=0x8e800000;
   4908                     length=4;
   4909                 } else if((value&0x8000)==0) {
   4910                     value|=0x8f008000;
   4911                     length=4;
   4912                 } else {
   4913                     length=3;
   4914                 }
   4915                 break;
   4916 #endif
   4917             default:
   4918                 /* must not occur */
   4919                 return -1;
   4920             }
   4921 
   4922             /* is this code point assigned, or do we use fallbacks? */
   4923             if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
   4924                 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
   4925             ) {
   4926                 /*
   4927                  * We allow a 0 byte output if the "assigned" bit is set for this entry.
   4928                  * There is no way with this data structure for fallback output
   4929                  * to be a zero byte.
   4930                  */
   4931                 /* assigned */
   4932                 *pValue=value;
   4933                 return length;
   4934             }
   4935         }
   4936     }
   4937 
   4938     cx=sharedData->mbcs.extIndexes;
   4939     if(cx!=NULL) {
   4940         length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
   4941         return length>=0 ? length : -length;  /* return abs(length); */
   4942     }
   4943 
   4944     /* unassigned */
   4945     return 0;
   4946 }
   4947 
   4948 
   4949 #if 0
   4950 /*
   4951  * This function has been moved to ucnv2022.c for inlining.
   4952  * This implementation is here only for documentation purposes
   4953  */
   4954 
   4955 /**
   4956  * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
   4957  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
   4958  * It does not handle conversion extensions (_extFromU()).
   4959  *
   4960  * It returns the codepage byte for the code point, or -1 if it is unassigned.
   4961  */
   4962 U_CFUNC int32_t
   4963 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
   4964                        UChar32 c,
   4965                        UBool useFallback) {
   4966     const uint16_t *table;
   4967     int32_t value;
   4968 
   4969     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   4970     if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
   4971         return -1;
   4972     }
   4973 
   4974     /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
   4975     table=sharedData->mbcs.fromUnicodeTable;
   4976 
   4977     /* get the byte for the output */
   4978     value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
   4979     /* is this code point assigned, or do we use fallbacks? */
   4980     if(useFallback ? value>=0x800 : value>=0xc00) {
   4981         return value&0xff;
   4982     } else {
   4983         return -1;
   4984     }
   4985 }
   4986 #endif
   4987 
   4988 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
   4989 
   4990 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
   4991 static const UChar32
   4992 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
   4993 
   4994 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
   4995 static const UChar32
   4996 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
   4997 
   4998 static void
   4999 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
   5000                   UConverterToUnicodeArgs *pToUArgs,
   5001                   UErrorCode *pErrorCode) {
   5002     UConverter *utf8, *cnv;
   5003     const uint8_t *source, *sourceLimit;
   5004     uint8_t *target;
   5005     int32_t targetCapacity;
   5006 
   5007     const uint16_t *table, *sbcsIndex;
   5008     const uint16_t *results;
   5009 
   5010     int8_t oldToULength, toULength, toULimit;
   5011 
   5012     UChar32 c;
   5013     uint8_t b, t1, t2;
   5014 
   5015     uint32_t asciiRoundtrips;
   5016     uint16_t value, minValue;
   5017     UBool hasSupplementary;
   5018 
   5019     /* set up the local pointers */
   5020     utf8=pToUArgs->converter;
   5021     cnv=pFromUArgs->converter;
   5022     source=(uint8_t *)pToUArgs->source;
   5023     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
   5024     target=(uint8_t *)pFromUArgs->target;
   5025     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
   5026 
   5027     table=cnv->sharedData->mbcs.fromUnicodeTable;
   5028     sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
   5029     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   5030         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   5031     } else {
   5032         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
   5033     }
   5034     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
   5035 
   5036     if(cnv->useFallback) {
   5037         /* use all roundtrip and fallback results */
   5038         minValue=0x800;
   5039     } else {
   5040         /* use only roundtrips and fallbacks from private-use characters */
   5041         minValue=0xc00;
   5042     }
   5043     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
   5044 
   5045     /* get the converter state from the UTF-8 UConverter */
   5046     c=(UChar32)utf8->toUnicodeStatus;
   5047     if(c!=0) {
   5048         toULength=oldToULength=utf8->toULength;
   5049         toULimit=(int8_t)utf8->mode;
   5050     } else {
   5051         toULength=oldToULength=toULimit=0;
   5052     }
   5053 
   5054     /*
   5055      * Make sure that the last byte sequence before sourceLimit is complete
   5056      * or runs into a lead byte.
   5057      * Do not go back into the bytes that will be read for finishing a partial
   5058      * sequence from the previous buffer.
   5059      * In the conversion loop compare source with sourceLimit only once
   5060      * per multi-byte character.
   5061      */
   5062     {
   5063         int32_t i, length;
   5064 
   5065         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
   5066         for(i=0; i<3 && i<length;) {
   5067             b=*(sourceLimit-i-1);
   5068             if(U8_IS_TRAIL(b)) {
   5069                 ++i;
   5070             } else {
   5071                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
   5072                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
   5073                     sourceLimit-=i+1;
   5074                 }
   5075                 break;
   5076             }
   5077         }
   5078     }
   5079 
   5080     if(c!=0 && targetCapacity>0) {
   5081         utf8->toUnicodeStatus=0;
   5082         utf8->toULength=0;
   5083         goto moreBytes;
   5084         /*
   5085          * Note: We could avoid the goto by duplicating some of the moreBytes
   5086          * code, but only up to the point of collecting a complete UTF-8
   5087          * sequence; then recurse for the toUBytes[toULength]
   5088          * and then continue with normal conversion.
   5089          *
   5090          * If so, move this code to just after initializing the minimum
   5091          * set of local variables for reading the UTF-8 input
   5092          * (utf8, source, target, limits but not cnv, table, minValue, etc.).
   5093          *
   5094          * Potential advantages:
   5095          * - avoid the goto
   5096          * - oldToULength could become a local variable in just those code blocks
   5097          *   that deal with buffer boundaries
   5098          * - possibly faster if the goto prevents some compiler optimizations
   5099          *   (this would need measuring to confirm)
   5100          * Disadvantage:
   5101          * - code duplication
   5102          */
   5103     }
   5104 
   5105     /* conversion loop */
   5106     while(source<sourceLimit) {
   5107         if(targetCapacity>0) {
   5108             b=*source++;
   5109             if((int8_t)b>=0) {
   5110                 /* convert ASCII */
   5111                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
   5112                     *target++=(uint8_t)b;
   5113                     --targetCapacity;
   5114                     continue;
   5115                 } else {
   5116                     c=b;
   5117                     value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
   5118                 }
   5119             } else {
   5120                 if(b<0xe0) {
   5121                     if( /* handle U+0080..U+07FF inline */
   5122                         b>=0xc2 &&
   5123                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
   5124                     ) {
   5125                         c=b&0x1f;
   5126                         ++source;
   5127                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
   5128                         if(value>=minValue) {
   5129                             *target++=(uint8_t)value;
   5130                             --targetCapacity;
   5131                             continue;
   5132                         } else {
   5133                             c=(c<<6)|t1;
   5134                         }
   5135                     } else {
   5136                         c=-1;
   5137                     }
   5138                 } else if(b==0xe0) {
   5139                     if( /* handle U+0800..U+0FFF inline */
   5140                         (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
   5141                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
   5142                     ) {
   5143                         c=t1;
   5144                         source+=2;
   5145                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
   5146                         if(value>=minValue) {
   5147                             *target++=(uint8_t)value;
   5148                             --targetCapacity;
   5149                             continue;
   5150                         } else {
   5151                             c=(c<<6)|t2;
   5152                         }
   5153                     } else {
   5154                         c=-1;
   5155                     }
   5156                 } else {
   5157                     c=-1;
   5158                 }
   5159 
   5160                 if(c<0) {
   5161                     /* handle "complicated" and error cases, and continuing partial characters */
   5162                     oldToULength=0;
   5163                     toULength=1;
   5164                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
   5165                     c=b;
   5166 moreBytes:
   5167                     while(toULength<toULimit) {
   5168                         /*
   5169                          * The sourceLimit may have been adjusted before the conversion loop
   5170                          * to stop before a truncated sequence.
   5171                          * Here we need to use the real limit in case we have two truncated
   5172                          * sequences at the end.
   5173                          * See ticket #7492.
   5174                          */
   5175                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
   5176                             b=*source;
   5177                             if(U8_IS_TRAIL(b)) {
   5178                                 ++source;
   5179                                 ++toULength;
   5180                                 c=(c<<6)+b;
   5181                             } else {
   5182                                 break; /* sequence too short, stop with toULength<toULimit */
   5183                             }
   5184                         } else {
   5185                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
   5186                             source-=(toULength-oldToULength);
   5187                             while(oldToULength<toULength) {
   5188                                 utf8->toUBytes[oldToULength++]=*source++;
   5189                             }
   5190                             utf8->toUnicodeStatus=c;
   5191                             utf8->toULength=toULength;
   5192                             utf8->mode=toULimit;
   5193                             pToUArgs->source=(char *)source;
   5194                             pFromUArgs->target=(char *)target;
   5195                             return;
   5196                         }
   5197                     }
   5198 
   5199                     if( toULength==toULimit &&      /* consumed all trail bytes */
   5200                         (toULength==3 || toULength==2) &&             /* BMP */
   5201                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
   5202                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
   5203                     ) {
   5204                         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   5205                     } else if(
   5206                         toULength==toULimit && toULength==4 &&
   5207                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
   5208                     ) {
   5209                         /* supplementary code point */
   5210                         if(!hasSupplementary) {
   5211                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   5212                             value=0;
   5213                         } else {
   5214                             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
   5215                         }
   5216                     } else {
   5217                         /* error handling: illegal UTF-8 byte sequence */
   5218                         source-=(toULength-oldToULength);
   5219                         while(oldToULength<toULength) {
   5220                             utf8->toUBytes[oldToULength++]=*source++;
   5221                         }
   5222                         utf8->toULength=toULength;
   5223                         pToUArgs->source=(char *)source;
   5224                         pFromUArgs->target=(char *)target;
   5225                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   5226                         return;
   5227                     }
   5228                 }
   5229             }
   5230 
   5231             if(value>=minValue) {
   5232                 /* output the mapping for c */
   5233                 *target++=(uint8_t)value;
   5234                 --targetCapacity;
   5235             } else {
   5236                 /* value<minValue means c is unassigned (unmappable) */
   5237                 /*
   5238                  * Try an extension mapping.
   5239                  * Pass in no source because we don't have UTF-16 input.
   5240                  * If we have a partial match on c, we will return and revert
   5241                  * to UTF-8->UTF-16->charset conversion.
   5242                  */
   5243                 static const UChar nul=0;
   5244                 const UChar *noSource=&nul;
   5245                 c=_extFromU(cnv, cnv->sharedData,
   5246                             c, &noSource, noSource,
   5247                             &target, target+targetCapacity,
   5248                             NULL, -1,
   5249                             pFromUArgs->flush,
   5250                             pErrorCode);
   5251 
   5252                 if(U_FAILURE(*pErrorCode)) {
   5253                     /* not mappable or buffer overflow */
   5254                     cnv->fromUChar32=c;
   5255                     break;
   5256                 } else if(cnv->preFromUFirstCP>=0) {
   5257                     /*
   5258                      * Partial match, return and revert to pivoting.
   5259                      * In normal from-UTF-16 conversion, we would just continue
   5260                      * but then exit the loop because the extension match would
   5261                      * have consumed the source.
   5262                      */
   5263                     *pErrorCode=U_USING_DEFAULT_WARNING;
   5264                     break;
   5265                 } else {
   5266                     /* a mapping was written to the target, continue */
   5267 
   5268                     /* recalculate the targetCapacity after an extension mapping */
   5269                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
   5270                 }
   5271             }
   5272         } else {
   5273             /* target is full */
   5274             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   5275             break;
   5276         }
   5277     }
   5278 
   5279     /*
   5280      * The sourceLimit may have been adjusted before the conversion loop
   5281      * to stop before a truncated sequence.
   5282      * If so, then collect the truncated sequence now.
   5283      */
   5284     if(U_SUCCESS(*pErrorCode) &&
   5285             cnv->preFromUFirstCP<0 &&
   5286             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
   5287         c=utf8->toUBytes[0]=b=*source++;
   5288         toULength=1;
   5289         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
   5290         while(source<sourceLimit) {
   5291             utf8->toUBytes[toULength++]=b=*source++;
   5292             c=(c<<6)+b;
   5293         }
   5294         utf8->toUnicodeStatus=c;
   5295         utf8->toULength=toULength;
   5296         utf8->mode=toULimit;
   5297     }
   5298 
   5299     /* write back the updated pointers */
   5300     pToUArgs->source=(char *)source;
   5301     pFromUArgs->target=(char *)target;
   5302 }
   5303 
   5304 static void
   5305 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
   5306                   UConverterToUnicodeArgs *pToUArgs,
   5307                   UErrorCode *pErrorCode) {
   5308     UConverter *utf8, *cnv;
   5309     const uint8_t *source, *sourceLimit;
   5310     uint8_t *target;
   5311     int32_t targetCapacity;
   5312 
   5313     const uint16_t *table, *mbcsIndex;
   5314     const uint16_t *results;
   5315 
   5316     int8_t oldToULength, toULength, toULimit;
   5317 
   5318     UChar32 c;
   5319     uint8_t b, t1, t2;
   5320 
   5321     uint32_t stage2Entry;
   5322     uint32_t asciiRoundtrips;
   5323     uint16_t value;
   5324     UBool hasSupplementary;
   5325 
   5326     /* set up the local pointers */
   5327     utf8=pToUArgs->converter;
   5328     cnv=pFromUArgs->converter;
   5329     source=(uint8_t *)pToUArgs->source;
   5330     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
   5331     target=(uint8_t *)pFromUArgs->target;
   5332     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
   5333 
   5334     table=cnv->sharedData->mbcs.fromUnicodeTable;
   5335     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
   5336     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
   5337         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
   5338     } else {
   5339         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
   5340     }
   5341     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
   5342 
   5343     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
   5344 
   5345     /* get the converter state from the UTF-8 UConverter */
   5346     c=(UChar32)utf8->toUnicodeStatus;
   5347     if(c!=0) {
   5348         toULength=oldToULength=utf8->toULength;
   5349         toULimit=(int8_t)utf8->mode;
   5350     } else {
   5351         toULength=oldToULength=toULimit=0;
   5352     }
   5353 
   5354     /*
   5355      * Make sure that the last byte sequence before sourceLimit is complete
   5356      * or runs into a lead byte.
   5357      * Do not go back into the bytes that will be read for finishing a partial
   5358      * sequence from the previous buffer.
   5359      * In the conversion loop compare source with sourceLimit only once
   5360      * per multi-byte character.
   5361      */
   5362     {
   5363         int32_t i, length;
   5364 
   5365         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
   5366         for(i=0; i<3 && i<length;) {
   5367             b=*(sourceLimit-i-1);
   5368             if(U8_IS_TRAIL(b)) {
   5369                 ++i;
   5370             } else {
   5371                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
   5372                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
   5373                     sourceLimit-=i+1;
   5374                 }
   5375                 break;
   5376             }
   5377         }
   5378     }
   5379 
   5380     if(c!=0 && targetCapacity>0) {
   5381         utf8->toUnicodeStatus=0;
   5382         utf8->toULength=0;
   5383         goto moreBytes;
   5384         /* See note in ucnv_SBCSFromUTF8() about this goto. */
   5385     }
   5386 
   5387     /* conversion loop */
   5388     while(source<sourceLimit) {
   5389         if(targetCapacity>0) {
   5390             b=*source++;
   5391             if((int8_t)b>=0) {
   5392                 /* convert ASCII */
   5393                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
   5394                     *target++=b;
   5395                     --targetCapacity;
   5396                     continue;
   5397                 } else {
   5398                     value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
   5399                     if(value==0) {
   5400                         c=b;
   5401                         goto unassigned;
   5402                     }
   5403                 }
   5404             } else {
   5405                 if(b>0xe0) {
   5406                     if( /* handle U+1000..U+D7FF inline */
   5407                         (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
   5408                                                         (b==0xed && (t1 <= 0x1f))) &&
   5409                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
   5410                     ) {
   5411                         c=((b&0xf)<<6)|t1;
   5412                         source+=2;
   5413                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
   5414                         if(value==0) {
   5415                             c=(c<<6)|t2;
   5416                             goto unassigned;
   5417                         }
   5418                     } else {
   5419                         c=-1;
   5420                     }
   5421                 } else if(b<0xe0) {
   5422                     if( /* handle U+0080..U+07FF inline */
   5423                         b>=0xc2 &&
   5424                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
   5425                     ) {
   5426                         c=b&0x1f;
   5427                         ++source;
   5428                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
   5429                         if(value==0) {
   5430                             c=(c<<6)|t1;
   5431                             goto unassigned;
   5432                         }
   5433                     } else {
   5434                         c=-1;
   5435                     }
   5436                 } else {
   5437                     c=-1;
   5438                 }
   5439 
   5440                 if(c<0) {
   5441                     /* handle "complicated" and error cases, and continuing partial characters */
   5442                     oldToULength=0;
   5443                     toULength=1;
   5444                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
   5445                     c=b;
   5446 moreBytes:
   5447                     while(toULength<toULimit) {
   5448                         /*
   5449                          * The sourceLimit may have been adjusted before the conversion loop
   5450                          * to stop before a truncated sequence.
   5451                          * Here we need to use the real limit in case we have two truncated
   5452                          * sequences at the end.
   5453                          * See ticket #7492.
   5454                          */
   5455                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
   5456                             b=*source;
   5457                             if(U8_IS_TRAIL(b)) {
   5458                                 ++source;
   5459                                 ++toULength;
   5460                                 c=(c<<6)+b;
   5461                             } else {
   5462                                 break; /* sequence too short, stop with toULength<toULimit */
   5463                             }
   5464                         } else {
   5465                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
   5466                             source-=(toULength-oldToULength);
   5467                             while(oldToULength<toULength) {
   5468                                 utf8->toUBytes[oldToULength++]=*source++;
   5469                             }
   5470                             utf8->toUnicodeStatus=c;
   5471                             utf8->toULength=toULength;
   5472                             utf8->mode=toULimit;
   5473                             pToUArgs->source=(char *)source;
   5474                             pFromUArgs->target=(char *)target;
   5475                             return;
   5476                         }
   5477                     }
   5478 
   5479                     if( toULength==toULimit &&      /* consumed all trail bytes */
   5480                         (toULength==3 || toULength==2) &&             /* BMP */
   5481                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
   5482                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
   5483                     ) {
   5484                         stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
   5485                     } else if(
   5486                         toULength==toULimit && toULength==4 &&
   5487                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
   5488                     ) {
   5489                         /* supplementary code point */
   5490                         if(!hasSupplementary) {
   5491                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
   5492                             stage2Entry=0;
   5493                         } else {
   5494                             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
   5495                         }
   5496                     } else {
   5497                         /* error handling: illegal UTF-8 byte sequence */
   5498                         source-=(toULength-oldToULength);
   5499                         while(oldToULength<toULength) {
   5500                             utf8->toUBytes[oldToULength++]=*source++;
   5501                         }
   5502                         utf8->toULength=toULength;
   5503                         pToUArgs->source=(char *)source;
   5504                         pFromUArgs->target=(char *)target;
   5505                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
   5506                         return;
   5507                     }
   5508 
   5509                     /* get the bytes and the length for the output */
   5510                     /* MBCS_OUTPUT_2 */
   5511                     value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
   5512 
   5513                     /* is this code point assigned, or do we use fallbacks? */
   5514                     if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
   5515                          (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
   5516                     ) {
   5517                         goto unassigned;
   5518                     }
   5519                 }
   5520             }
   5521 
   5522             /* write the output character bytes from value and length */
   5523             /* from the first if in the loop we know that targetCapacity>0 */
   5524             if(value<=0xff) {
   5525                 /* this is easy because we know that there is enough space */
   5526                 *target++=(uint8_t)value;
   5527                 --targetCapacity;
   5528             } else /* length==2 */ {
   5529                 *target++=(uint8_t)(value>>8);
   5530                 if(2<=targetCapacity) {
   5531                     *target++=(uint8_t)value;
   5532                     targetCapacity-=2;
   5533                 } else {
   5534                     cnv->charErrorBuffer[0]=(char)value;
   5535                     cnv->charErrorBufferLength=1;
   5536 
   5537                     /* target overflow */
   5538                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   5539                     break;
   5540                 }
   5541             }
   5542             continue;
   5543 
   5544 unassigned:
   5545             {
   5546                 /*
   5547                  * Try an extension mapping.
   5548                  * Pass in no source because we don't have UTF-16 input.
   5549                  * If we have a partial match on c, we will return and revert
   5550                  * to UTF-8->UTF-16->charset conversion.
   5551                  */
   5552                 static const UChar nul=0;
   5553                 const UChar *noSource=&nul;
   5554                 c=_extFromU(cnv, cnv->sharedData,
   5555                             c, &noSource, noSource,
   5556                             &target, target+targetCapacity,
   5557                             NULL, -1,
   5558                             pFromUArgs->flush,
   5559                             pErrorCode);
   5560 
   5561                 if(U_FAILURE(*pErrorCode)) {
   5562                     /* not mappable or buffer overflow */
   5563                     cnv->fromUChar32=c;
   5564                     break;
   5565                 } else if(cnv->preFromUFirstCP>=0) {
   5566                     /*
   5567                      * Partial match, return and revert to pivoting.
   5568                      * In normal from-UTF-16 conversion, we would just continue
   5569                      * but then exit the loop because the extension match would
   5570                      * have consumed the source.
   5571                      */
   5572                     *pErrorCode=U_USING_DEFAULT_WARNING;
   5573                     break;
   5574                 } else {
   5575                     /* a mapping was written to the target, continue */
   5576 
   5577                     /* recalculate the targetCapacity after an extension mapping */
   5578                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
   5579                     continue;
   5580                 }
   5581             }
   5582         } else {
   5583             /* target is full */
   5584             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
   5585             break;
   5586         }
   5587     }
   5588 
   5589     /*
   5590      * The sourceLimit may have been adjusted before the conversion loop
   5591      * to stop before a truncated sequence.
   5592      * If so, then collect the truncated sequence now.
   5593      */
   5594     if(U_SUCCESS(*pErrorCode) &&
   5595             cnv->preFromUFirstCP<0 &&
   5596             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
   5597         c=utf8->toUBytes[0]=b=*source++;
   5598         toULength=1;
   5599         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
   5600         while(source<sourceLimit) {
   5601             utf8->toUBytes[toULength++]=b=*source++;
   5602             c=(c<<6)+b;
   5603         }
   5604         utf8->toUnicodeStatus=c;
   5605         utf8->toULength=toULength;
   5606         utf8->mode=toULimit;
   5607     }
   5608 
   5609     /* write back the updated pointers */
   5610     pToUArgs->source=(char *)source;
   5611     pFromUArgs->target=(char *)target;
   5612 }
   5613 
   5614 /* miscellaneous ------------------------------------------------------------ */
   5615 
   5616 static void
   5617 ucnv_MBCSGetStarters(const UConverter* cnv,
   5618                  UBool starters[256],
   5619                  UErrorCode *) {
   5620     const int32_t *state0;
   5621     int i;
   5622 
   5623     state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
   5624     for(i=0; i<256; ++i) {
   5625         /* all bytes that cause a state transition from state 0 are lead bytes */
   5626         starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
   5627     }
   5628 }
   5629 
   5630 /*
   5631  * This is an internal function that allows other converter implementations
   5632  * to check whether a byte is a lead byte.
   5633  */
   5634 U_CFUNC UBool
   5635 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
   5636     return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
   5637 }
   5638 
   5639 static void
   5640 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
   5641               int32_t offsetIndex,
   5642               UErrorCode *pErrorCode) {
   5643     UConverter *cnv=pArgs->converter;
   5644     char *p, *subchar;
   5645     char buffer[4];
   5646     int32_t length;
   5647 
   5648     /* first, select between subChar and subChar1 */
   5649     if( cnv->subChar1!=0 &&
   5650         (cnv->sharedData->mbcs.extIndexes!=NULL ?
   5651             cnv->useSubChar1 :
   5652             (cnv->invalidUCharBuffer[0]<=0xff))
   5653     ) {
   5654         /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
   5655         subchar=(char *)&cnv->subChar1;
   5656         length=1;
   5657     } else {
   5658         /* select subChar in all other cases */
   5659         subchar=(char *)cnv->subChars;
   5660         length=cnv->subCharLen;
   5661     }
   5662 
   5663     /* reset the selector for the next code point */
   5664     cnv->useSubChar1=FALSE;
   5665 
   5666     if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
   5667         p=buffer;
   5668 
   5669         /* fromUnicodeStatus contains prevLength */
   5670         switch(length) {
   5671         case 1:
   5672             if(cnv->fromUnicodeStatus==2) {
   5673                 /* DBCS mode and SBCS sub char: change to SBCS */
   5674                 cnv->fromUnicodeStatus=1;
   5675                 *p++=UCNV_SI;
   5676             }
   5677             *p++=subchar[0];
   5678             break;
   5679         case 2:
   5680             if(cnv->fromUnicodeStatus<=1) {
   5681                 /* SBCS mode and DBCS sub char: change to DBCS */
   5682                 cnv->fromUnicodeStatus=2;
   5683                 *p++=UCNV_SO;
   5684             }
   5685             *p++=subchar[0];
   5686             *p++=subchar[1];
   5687             break;
   5688         default:
   5689             *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
   5690             return;
   5691         }
   5692         subchar=buffer;
   5693         length=(int32_t)(p-buffer);
   5694     }
   5695 
   5696     ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
   5697 }
   5698 
   5699 U_CFUNC UConverterType
   5700 ucnv_MBCSGetType(const UConverter* converter) {
   5701     /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
   5702     if(converter->sharedData->mbcs.countStates==1) {
   5703         return (UConverterType)UCNV_SBCS;
   5704     } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
   5705         return (UConverterType)UCNV_EBCDIC_STATEFUL;
   5706     } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
   5707         return (UConverterType)UCNV_DBCS;
   5708     }
   5709     return (UConverterType)UCNV_MBCS;
   5710 }
   5711 
   5712 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
   5713