Home | History | Annotate | Download | only in linux
      1 /*
      2  *
      3  * Copyright (c) 2011, Microsoft Corporation.
      4  *
      5  * This program is free software; you can redistribute it and/or modify it
      6  * under the terms and conditions of the GNU General Public License,
      7  * version 2, as published by the Free Software Foundation.
      8  *
      9  * This program is distributed in the hope it will be useful, but WITHOUT
     10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     12  * more details.
     13  *
     14  * You should have received a copy of the GNU General Public License along with
     15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
     16  * Place - Suite 330, Boston, MA 02111-1307 USA.
     17  *
     18  * Authors:
     19  *   Haiyang Zhang <haiyangz (at) microsoft.com>
     20  *   Hank Janssen  <hjanssen (at) microsoft.com>
     21  *   K. Y. Srinivasan <kys (at) microsoft.com>
     22  *
     23  */
     24 
     25 #ifndef _UAPI_HYPERV_H
     26 #define _UAPI_HYPERV_H
     27 
     28 #include <linux/uuid.h>
     29 
     30 /*
     31  * Framework version for util services.
     32  */
     33 #define UTIL_FW_MINOR  0
     34 
     35 #define UTIL_WS2K8_FW_MAJOR  1
     36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
     37 
     38 #define UTIL_FW_MAJOR  3
     39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
     40 
     41 
     42 /*
     43  * Implementation of host controlled snapshot of the guest.
     44  */
     45 
     46 #define VSS_OP_REGISTER 128
     47 
     48 /*
     49   Daemon code with full handshake support.
     50  */
     51 #define VSS_OP_REGISTER1 129
     52 
     53 enum hv_vss_op {
     54 	VSS_OP_CREATE = 0,
     55 	VSS_OP_DELETE,
     56 	VSS_OP_HOT_BACKUP,
     57 	VSS_OP_GET_DM_INFO,
     58 	VSS_OP_BU_COMPLETE,
     59 	/*
     60 	 * Following operations are only supported with IC version >= 5.0
     61 	 */
     62 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
     63 	VSS_OP_THAW, /* Unfreeze the file systems */
     64 	VSS_OP_AUTO_RECOVER,
     65 	VSS_OP_COUNT /* Number of operations, must be last */
     66 };
     67 
     68 
     69 /*
     70  * Header for all VSS messages.
     71  */
     72 struct hv_vss_hdr {
     73 	__u8 operation;
     74 	__u8 reserved[7];
     75 } __attribute__((packed));
     76 
     77 
     78 /*
     79  * Flag values for the hv_vss_check_feature. Linux supports only
     80  * one value.
     81  */
     82 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
     83 
     84 struct hv_vss_check_feature {
     85 	__u32 flags;
     86 } __attribute__((packed));
     87 
     88 struct hv_vss_check_dm_info {
     89 	__u32 flags;
     90 } __attribute__((packed));
     91 
     92 struct hv_vss_msg {
     93 	union {
     94 		struct hv_vss_hdr vss_hdr;
     95 		int error;
     96 	};
     97 	union {
     98 		struct hv_vss_check_feature vss_cf;
     99 		struct hv_vss_check_dm_info dm_info;
    100 	};
    101 } __attribute__((packed));
    102 
    103 /*
    104  * Implementation of a host to guest copy facility.
    105  */
    106 
    107 #define FCOPY_VERSION_0 0
    108 #define FCOPY_VERSION_1 1
    109 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
    110 #define W_MAX_PATH 260
    111 
    112 enum hv_fcopy_op {
    113 	START_FILE_COPY = 0,
    114 	WRITE_TO_FILE,
    115 	COMPLETE_FCOPY,
    116 	CANCEL_FCOPY,
    117 };
    118 
    119 struct hv_fcopy_hdr {
    120 	__u32 operation;
    121 	uuid_le service_id0; /* currently unused */
    122 	uuid_le service_id1; /* currently unused */
    123 } __attribute__((packed));
    124 
    125 #define OVER_WRITE	0x1
    126 #define CREATE_PATH	0x2
    127 
    128 struct hv_start_fcopy {
    129 	struct hv_fcopy_hdr hdr;
    130 	__u16 file_name[W_MAX_PATH];
    131 	__u16 path_name[W_MAX_PATH];
    132 	__u32 copy_flags;
    133 	__u64 file_size;
    134 } __attribute__((packed));
    135 
    136 /*
    137  * The file is chunked into fragments.
    138  */
    139 #define DATA_FRAGMENT	(6 * 1024)
    140 
    141 struct hv_do_fcopy {
    142 	struct hv_fcopy_hdr hdr;
    143 	__u32   pad;
    144 	__u64	offset;
    145 	__u32	size;
    146 	__u8	data[DATA_FRAGMENT];
    147 } __attribute__((packed));
    148 
    149 /*
    150  * An implementation of HyperV key value pair (KVP) functionality for Linux.
    151  *
    152  *
    153  * Copyright (C) 2010, Novell, Inc.
    154  * Author : K. Y. Srinivasan <ksrinivasan (at) novell.com>
    155  *
    156  */
    157 
    158 /*
    159  * Maximum value size - used for both key names and value data, and includes
    160  * any applicable NULL terminators.
    161  *
    162  * Note:  This limit is somewhat arbitrary, but falls easily within what is
    163  * supported for all native guests (back to Win 2000) and what is reasonable
    164  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
    165  * limited to 255 character key names.
    166  *
    167  * MSDN recommends not storing data values larger than 2048 bytes in the
    168  * registry.
    169  *
    170  * Note:  This value is used in defining the KVP exchange message - this value
    171  * cannot be modified without affecting the message size and compatibility.
    172  */
    173 
    174 /*
    175  * bytes, including any null terminators
    176  */
    177 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
    178 
    179 
    180 /*
    181  * Maximum key size - the registry limit for the length of an entry name
    182  * is 256 characters, including the null terminator
    183  */
    184 
    185 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
    186 
    187 /*
    188  * In Linux, we implement the KVP functionality in two components:
    189  * 1) The kernel component which is packaged as part of the hv_utils driver
    190  * is responsible for communicating with the host and responsible for
    191  * implementing the host/guest protocol. 2) A user level daemon that is
    192  * responsible for data gathering.
    193  *
    194  * Host/Guest Protocol: The host iterates over an index and expects the guest
    195  * to assign a key name to the index and also return the value corresponding to
    196  * the key. The host will have atmost one KVP transaction outstanding at any
    197  * given point in time. The host side iteration stops when the guest returns
    198  * an error. Microsoft has specified the following mapping of key names to
    199  * host specified index:
    200  *
    201  *	Index		Key Name
    202  *	0		FullyQualifiedDomainName
    203  *	1		IntegrationServicesVersion
    204  *	2		NetworkAddressIPv4
    205  *	3		NetworkAddressIPv6
    206  *	4		OSBuildNumber
    207  *	5		OSName
    208  *	6		OSMajorVersion
    209  *	7		OSMinorVersion
    210  *	8		OSVersion
    211  *	9		ProcessorArchitecture
    212  *
    213  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
    214  *
    215  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
    216  * data gathering functionality in a user mode daemon. The user level daemon
    217  * is also responsible for binding the key name to the index as well. The
    218  * kernel and user-level daemon communicate using a connector channel.
    219  *
    220  * The user mode component first registers with the
    221  * the kernel component. Subsequently, the kernel component requests, data
    222  * for the specified keys. In response to this message the user mode component
    223  * fills in the value corresponding to the specified key. We overload the
    224  * sequence field in the cn_msg header to define our KVP message types.
    225  *
    226  *
    227  * The kernel component simply acts as a conduit for communication between the
    228  * Windows host and the user-level daemon. The kernel component passes up the
    229  * index received from the Host to the user-level daemon. If the index is
    230  * valid (supported), the corresponding key as well as its
    231  * value (both are strings) is returned. If the index is invalid
    232  * (not supported), a NULL key string is returned.
    233  */
    234 
    235 
    236 /*
    237  * Registry value types.
    238  */
    239 
    240 #define REG_SZ 1
    241 #define REG_U32 4
    242 #define REG_U64 8
    243 
    244 /*
    245  * As we look at expanding the KVP functionality to include
    246  * IP injection functionality, we need to maintain binary
    247  * compatibility with older daemons.
    248  *
    249  * The KVP opcodes are defined by the host and it was unfortunate
    250  * that I chose to treat the registration operation as part of the
    251  * KVP operations defined by the host.
    252  * Here is the level of compatibility
    253  * (between the user level daemon and the kernel KVP driver) that we
    254  * will implement:
    255  *
    256  * An older daemon will always be supported on a newer driver.
    257  * A given user level daemon will require a minimal version of the
    258  * kernel driver.
    259  * If we cannot handle the version differences, we will fail gracefully
    260  * (this can happen when we have a user level daemon that is more
    261  * advanced than the KVP driver.
    262  *
    263  * We will use values used in this handshake for determining if we have
    264  * workable user level daemon and the kernel driver. We begin by taking the
    265  * registration opcode out of the KVP opcode namespace. We will however,
    266  * maintain compatibility with the existing user-level daemon code.
    267  */
    268 
    269 /*
    270  * Daemon code not supporting IP injection (legacy daemon).
    271  */
    272 
    273 #define KVP_OP_REGISTER	4
    274 
    275 /*
    276  * Daemon code supporting IP injection.
    277  * The KVP opcode field is used to communicate the
    278  * registration information; so define a namespace that
    279  * will be distinct from the host defined KVP opcode.
    280  */
    281 
    282 #define KVP_OP_REGISTER1 100
    283 
    284 enum hv_kvp_exchg_op {
    285 	KVP_OP_GET = 0,
    286 	KVP_OP_SET,
    287 	KVP_OP_DELETE,
    288 	KVP_OP_ENUMERATE,
    289 	KVP_OP_GET_IP_INFO,
    290 	KVP_OP_SET_IP_INFO,
    291 	KVP_OP_COUNT /* Number of operations, must be last. */
    292 };
    293 
    294 enum hv_kvp_exchg_pool {
    295 	KVP_POOL_EXTERNAL = 0,
    296 	KVP_POOL_GUEST,
    297 	KVP_POOL_AUTO,
    298 	KVP_POOL_AUTO_EXTERNAL,
    299 	KVP_POOL_AUTO_INTERNAL,
    300 	KVP_POOL_COUNT /* Number of pools, must be last. */
    301 };
    302 
    303 /*
    304  * Some Hyper-V status codes.
    305  */
    306 
    307 #define HV_S_OK				0x00000000
    308 #define HV_E_FAIL			0x80004005
    309 #define HV_S_CONT			0x80070103
    310 #define HV_ERROR_NOT_SUPPORTED		0x80070032
    311 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
    312 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
    313 #define HV_INVALIDARG			0x80070057
    314 #define HV_GUID_NOTFOUND		0x80041002
    315 #define HV_ERROR_ALREADY_EXISTS		0x80070050
    316 
    317 #define ADDR_FAMILY_NONE	0x00
    318 #define ADDR_FAMILY_IPV4	0x01
    319 #define ADDR_FAMILY_IPV6	0x02
    320 
    321 #define MAX_ADAPTER_ID_SIZE	128
    322 #define MAX_IP_ADDR_SIZE	1024
    323 #define MAX_GATEWAY_SIZE	512
    324 
    325 
    326 struct hv_kvp_ipaddr_value {
    327 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
    328 	__u8	addr_family;
    329 	__u8	dhcp_enabled;
    330 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
    331 	__u16	sub_net[MAX_IP_ADDR_SIZE];
    332 	__u16	gate_way[MAX_GATEWAY_SIZE];
    333 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
    334 } __attribute__((packed));
    335 
    336 
    337 struct hv_kvp_hdr {
    338 	__u8 operation;
    339 	__u8 pool;
    340 	__u16 pad;
    341 } __attribute__((packed));
    342 
    343 struct hv_kvp_exchg_msg_value {
    344 	__u32 value_type;
    345 	__u32 key_size;
    346 	__u32 value_size;
    347 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    348 	union {
    349 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
    350 		__u32 value_u32;
    351 		__u64 value_u64;
    352 	};
    353 } __attribute__((packed));
    354 
    355 struct hv_kvp_msg_enumerate {
    356 	__u32 index;
    357 	struct hv_kvp_exchg_msg_value data;
    358 } __attribute__((packed));
    359 
    360 struct hv_kvp_msg_get {
    361 	struct hv_kvp_exchg_msg_value data;
    362 };
    363 
    364 struct hv_kvp_msg_set {
    365 	struct hv_kvp_exchg_msg_value data;
    366 };
    367 
    368 struct hv_kvp_msg_delete {
    369 	__u32 key_size;
    370 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    371 };
    372 
    373 struct hv_kvp_register {
    374 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    375 };
    376 
    377 struct hv_kvp_msg {
    378 	union {
    379 		struct hv_kvp_hdr	kvp_hdr;
    380 		int error;
    381 	};
    382 	union {
    383 		struct hv_kvp_msg_get		kvp_get;
    384 		struct hv_kvp_msg_set		kvp_set;
    385 		struct hv_kvp_msg_delete	kvp_delete;
    386 		struct hv_kvp_msg_enumerate	kvp_enum_data;
    387 		struct hv_kvp_ipaddr_value      kvp_ip_val;
    388 		struct hv_kvp_register		kvp_register;
    389 	} body;
    390 } __attribute__((packed));
    391 
    392 struct hv_kvp_ip_msg {
    393 	__u8 operation;
    394 	__u8 pool;
    395 	struct hv_kvp_ipaddr_value      kvp_ip_val;
    396 } __attribute__((packed));
    397 
    398 #endif /* _UAPI_HYPERV_H */
    399