Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/message_loop/message_loop.h"
      6 
      7 #include <algorithm>
      8 #include <utility>
      9 
     10 #include "base/bind.h"
     11 #include "base/compiler_specific.h"
     12 #include "base/lazy_instance.h"
     13 #include "base/logging.h"
     14 #include "base/memory/scoped_ptr.h"
     15 #include "base/message_loop/message_pump_default.h"
     16 #include "base/metrics/histogram.h"
     17 #include "base/metrics/statistics_recorder.h"
     18 #include "base/run_loop.h"
     19 #include "base/thread_task_runner_handle.h"
     20 #include "base/threading/thread_local.h"
     21 #include "base/time/time.h"
     22 #include "base/trace_event/trace_event.h"
     23 #include "base/tracked_objects.h"
     24 #include "build/build_config.h"
     25 
     26 #if defined(OS_MACOSX)
     27 #include "base/message_loop/message_pump_mac.h"
     28 #endif
     29 #if defined(OS_POSIX) && !defined(OS_IOS)
     30 #include "base/message_loop/message_pump_libevent.h"
     31 #endif
     32 #if defined(OS_ANDROID)
     33 #include "base/message_loop/message_pump_android.h"
     34 #endif
     35 #if defined(USE_GLIB)
     36 #include "base/message_loop/message_pump_glib.h"
     37 #endif
     38 
     39 namespace base {
     40 
     41 namespace {
     42 
     43 // A lazily created thread local storage for quick access to a thread's message
     44 // loop, if one exists.  This should be safe and free of static constructors.
     45 LazyInstance<base::ThreadLocalPointer<MessageLoop> >::Leaky lazy_tls_ptr =
     46     LAZY_INSTANCE_INITIALIZER;
     47 
     48 // Logical events for Histogram profiling. Run with --message-loop-histogrammer
     49 // to get an accounting of messages and actions taken on each thread.
     50 const int kTaskRunEvent = 0x1;
     51 #if !defined(OS_NACL)
     52 const int kTimerEvent = 0x2;
     53 
     54 // Provide range of message IDs for use in histogramming and debug display.
     55 const int kLeastNonZeroMessageId = 1;
     56 const int kMaxMessageId = 1099;
     57 const int kNumberOfDistinctMessagesDisplayed = 1100;
     58 
     59 // Provide a macro that takes an expression (such as a constant, or macro
     60 // constant) and creates a pair to initialize an array of pairs.  In this case,
     61 // our pair consists of the expressions value, and the "stringized" version
     62 // of the expression (i.e., the expression put in quotes).  For example, if
     63 // we have:
     64 //    #define FOO 2
     65 //    #define BAR 5
     66 // then the following:
     67 //    VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
     68 // will expand to:
     69 //   {7, "FOO + BAR"}
     70 // We use the resulting array as an argument to our histogram, which reads the
     71 // number as a bucket identifier, and proceeds to use the corresponding name
     72 // in the pair (i.e., the quoted string) when printing out a histogram.
     73 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
     74 
     75 const LinearHistogram::DescriptionPair event_descriptions_[] = {
     76   // Provide some pretty print capability in our histogram for our internal
     77   // messages.
     78 
     79   // A few events we handle (kindred to messages), and used to profile actions.
     80   VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
     81   VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
     82 
     83   {-1, NULL}  // The list must be null-terminated, per API to histogram.
     84 };
     85 #endif  // !defined(OS_NACL)
     86 
     87 bool enable_histogrammer_ = false;
     88 
     89 MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL;
     90 
     91 #if defined(OS_IOS)
     92 typedef MessagePumpIOSForIO MessagePumpForIO;
     93 #elif defined(OS_NACL_SFI)
     94 typedef MessagePumpDefault MessagePumpForIO;
     95 #elif defined(OS_POSIX)
     96 typedef MessagePumpLibevent MessagePumpForIO;
     97 #endif
     98 
     99 #if !defined(OS_NACL_SFI)
    100 MessagePumpForIO* ToPumpIO(MessagePump* pump) {
    101   return static_cast<MessagePumpForIO*>(pump);
    102 }
    103 #endif  // !defined(OS_NACL_SFI)
    104 
    105 scoped_ptr<MessagePump> ReturnPump(scoped_ptr<MessagePump> pump) {
    106   return pump;
    107 }
    108 
    109 }  // namespace
    110 
    111 //------------------------------------------------------------------------------
    112 
    113 MessageLoop::TaskObserver::TaskObserver() {
    114 }
    115 
    116 MessageLoop::TaskObserver::~TaskObserver() {
    117 }
    118 
    119 MessageLoop::DestructionObserver::~DestructionObserver() {
    120 }
    121 
    122 //------------------------------------------------------------------------------
    123 
    124 MessageLoop::MessageLoop(Type type)
    125     : MessageLoop(type, MessagePumpFactoryCallback()) {
    126   BindToCurrentThread();
    127 }
    128 
    129 MessageLoop::MessageLoop(scoped_ptr<MessagePump> pump)
    130     : MessageLoop(TYPE_CUSTOM, Bind(&ReturnPump, Passed(&pump))) {
    131   BindToCurrentThread();
    132 }
    133 
    134 MessageLoop::~MessageLoop() {
    135   // If |pump_| is non-null, this message loop has been bound and should be the
    136   // current one on this thread. Otherwise, this loop is being destructed before
    137   // it was bound to a thread, so a different message loop (or no loop at all)
    138   // may be current.
    139   DCHECK((pump_ && current() == this) || (!pump_ && current() != this));
    140 
    141   // iOS just attaches to the loop, it doesn't Run it.
    142   // TODO(stuartmorgan): Consider wiring up a Detach().
    143 #if !defined(OS_IOS)
    144   DCHECK(!run_loop_);
    145 #endif
    146 
    147 #if defined(OS_WIN)
    148   if (in_high_res_mode_)
    149     Time::ActivateHighResolutionTimer(false);
    150 #endif
    151   // Clean up any unprocessed tasks, but take care: deleting a task could
    152   // result in the addition of more tasks (e.g., via DeleteSoon).  We set a
    153   // limit on the number of times we will allow a deleted task to generate more
    154   // tasks.  Normally, we should only pass through this loop once or twice.  If
    155   // we end up hitting the loop limit, then it is probably due to one task that
    156   // is being stubborn.  Inspect the queues to see who is left.
    157   bool did_work;
    158   for (int i = 0; i < 100; ++i) {
    159     DeletePendingTasks();
    160     ReloadWorkQueue();
    161     // If we end up with empty queues, then break out of the loop.
    162     did_work = DeletePendingTasks();
    163     if (!did_work)
    164       break;
    165   }
    166   DCHECK(!did_work);
    167 
    168   // Let interested parties have one last shot at accessing this.
    169   FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
    170                     WillDestroyCurrentMessageLoop());
    171 
    172   thread_task_runner_handle_.reset();
    173 
    174   // Tell the incoming queue that we are dying.
    175   incoming_task_queue_->WillDestroyCurrentMessageLoop();
    176   incoming_task_queue_ = NULL;
    177   unbound_task_runner_ = NULL;
    178   task_runner_ = NULL;
    179 
    180   // OK, now make it so that no one can find us.
    181   if (current() == this)
    182     lazy_tls_ptr.Pointer()->Set(nullptr);
    183 }
    184 
    185 // static
    186 MessageLoop* MessageLoop::current() {
    187   // TODO(darin): sadly, we cannot enable this yet since people call us even
    188   // when they have no intention of using us.
    189   // DCHECK(loop) << "Ouch, did you forget to initialize me?";
    190   return lazy_tls_ptr.Pointer()->Get();
    191 }
    192 
    193 // static
    194 void MessageLoop::EnableHistogrammer(bool enable) {
    195   enable_histogrammer_ = enable;
    196 }
    197 
    198 // static
    199 bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
    200   if (message_pump_for_ui_factory_)
    201     return false;
    202 
    203   message_pump_for_ui_factory_ = factory;
    204   return true;
    205 }
    206 
    207 // static
    208 scoped_ptr<MessagePump> MessageLoop::CreateMessagePumpForType(Type type) {
    209 // TODO(rvargas): Get rid of the OS guards.
    210 #if defined(USE_GLIB) && !defined(OS_NACL)
    211   typedef MessagePumpGlib MessagePumpForUI;
    212 #elif defined(OS_LINUX) && !defined(OS_NACL)
    213   typedef MessagePumpLibevent MessagePumpForUI;
    214 #endif
    215 
    216 #if defined(OS_IOS) || defined(OS_MACOSX)
    217 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(MessagePumpMac::Create())
    218 #elif defined(OS_NACL)
    219 // Currently NaCl doesn't have a UI MessageLoop.
    220 // TODO(abarth): Figure out if we need this.
    221 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>()
    222 #else
    223 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(new MessagePumpForUI())
    224 #endif
    225 
    226 #if defined(OS_MACOSX)
    227   // Use an OS native runloop on Mac to support timer coalescing.
    228   #define MESSAGE_PUMP_DEFAULT \
    229       scoped_ptr<MessagePump>(new MessagePumpCFRunLoop())
    230 #else
    231   #define MESSAGE_PUMP_DEFAULT scoped_ptr<MessagePump>(new MessagePumpDefault())
    232 #endif
    233 
    234   if (type == MessageLoop::TYPE_UI) {
    235     if (message_pump_for_ui_factory_)
    236       return message_pump_for_ui_factory_();
    237     return MESSAGE_PUMP_UI;
    238   }
    239   if (type == MessageLoop::TYPE_IO)
    240     return scoped_ptr<MessagePump>(new MessagePumpForIO());
    241 
    242 #if defined(OS_ANDROID)
    243   if (type == MessageLoop::TYPE_JAVA)
    244     return scoped_ptr<MessagePump>(new MessagePumpForUI());
    245 #endif
    246 
    247   DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type);
    248   return MESSAGE_PUMP_DEFAULT;
    249 }
    250 
    251 void MessageLoop::AddDestructionObserver(
    252     DestructionObserver* destruction_observer) {
    253   DCHECK_EQ(this, current());
    254   destruction_observers_.AddObserver(destruction_observer);
    255 }
    256 
    257 void MessageLoop::RemoveDestructionObserver(
    258     DestructionObserver* destruction_observer) {
    259   DCHECK_EQ(this, current());
    260   destruction_observers_.RemoveObserver(destruction_observer);
    261 }
    262 
    263 void MessageLoop::PostTask(
    264     const tracked_objects::Location& from_here,
    265     const Closure& task) {
    266   task_runner_->PostTask(from_here, task);
    267 }
    268 
    269 void MessageLoop::PostDelayedTask(
    270     const tracked_objects::Location& from_here,
    271     const Closure& task,
    272     TimeDelta delay) {
    273   task_runner_->PostDelayedTask(from_here, task, delay);
    274 }
    275 
    276 void MessageLoop::PostNonNestableTask(
    277     const tracked_objects::Location& from_here,
    278     const Closure& task) {
    279   task_runner_->PostNonNestableTask(from_here, task);
    280 }
    281 
    282 void MessageLoop::PostNonNestableDelayedTask(
    283     const tracked_objects::Location& from_here,
    284     const Closure& task,
    285     TimeDelta delay) {
    286   task_runner_->PostNonNestableDelayedTask(from_here, task, delay);
    287 }
    288 
    289 void MessageLoop::Run() {
    290   DCHECK(pump_);
    291   RunLoop run_loop;
    292   run_loop.Run();
    293 }
    294 
    295 void MessageLoop::RunUntilIdle() {
    296   DCHECK(pump_);
    297   RunLoop run_loop;
    298   run_loop.RunUntilIdle();
    299 }
    300 
    301 void MessageLoop::QuitWhenIdle() {
    302   DCHECK_EQ(this, current());
    303   if (run_loop_) {
    304     run_loop_->quit_when_idle_received_ = true;
    305   } else {
    306     NOTREACHED() << "Must be inside Run to call Quit";
    307   }
    308 }
    309 
    310 void MessageLoop::QuitNow() {
    311   DCHECK_EQ(this, current());
    312   if (run_loop_) {
    313     pump_->Quit();
    314   } else {
    315     NOTREACHED() << "Must be inside Run to call Quit";
    316   }
    317 }
    318 
    319 bool MessageLoop::IsType(Type type) const {
    320   return type_ == type;
    321 }
    322 
    323 static void QuitCurrentWhenIdle() {
    324   MessageLoop::current()->QuitWhenIdle();
    325 }
    326 
    327 // static
    328 Closure MessageLoop::QuitWhenIdleClosure() {
    329   return Bind(&QuitCurrentWhenIdle);
    330 }
    331 
    332 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
    333   if (allowed) {
    334     // Kick the native pump just in case we enter a OS-driven nested message
    335     // loop.
    336     pump_->ScheduleWork();
    337   }
    338   nestable_tasks_allowed_ = allowed;
    339 }
    340 
    341 bool MessageLoop::NestableTasksAllowed() const {
    342   return nestable_tasks_allowed_;
    343 }
    344 
    345 bool MessageLoop::IsNested() {
    346   return run_loop_->run_depth_ > 1;
    347 }
    348 
    349 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
    350   DCHECK_EQ(this, current());
    351   task_observers_.AddObserver(task_observer);
    352 }
    353 
    354 void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
    355   DCHECK_EQ(this, current());
    356   task_observers_.RemoveObserver(task_observer);
    357 }
    358 
    359 bool MessageLoop::is_running() const {
    360   DCHECK_EQ(this, current());
    361   return run_loop_ != NULL;
    362 }
    363 
    364 bool MessageLoop::HasHighResolutionTasks() {
    365   return incoming_task_queue_->HasHighResolutionTasks();
    366 }
    367 
    368 bool MessageLoop::IsIdleForTesting() {
    369   // We only check the incoming queue, since we don't want to lock the work
    370   // queue.
    371   return incoming_task_queue_->IsIdleForTesting();
    372 }
    373 
    374 //------------------------------------------------------------------------------
    375 
    376 // static
    377 scoped_ptr<MessageLoop> MessageLoop::CreateUnbound(
    378     Type type, MessagePumpFactoryCallback pump_factory) {
    379   return make_scoped_ptr(new MessageLoop(type, pump_factory));
    380 }
    381 
    382 MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory)
    383     : type_(type),
    384 #if defined(OS_WIN)
    385       pending_high_res_tasks_(0),
    386       in_high_res_mode_(false),
    387 #endif
    388       nestable_tasks_allowed_(true),
    389 #if defined(OS_WIN)
    390       os_modal_loop_(false),
    391 #endif  // OS_WIN
    392       pump_factory_(pump_factory),
    393       message_histogram_(NULL),
    394       run_loop_(NULL),
    395       incoming_task_queue_(new internal::IncomingTaskQueue(this)),
    396       unbound_task_runner_(
    397           new internal::MessageLoopTaskRunner(incoming_task_queue_)),
    398       task_runner_(unbound_task_runner_) {
    399   // If type is TYPE_CUSTOM non-null pump_factory must be given.
    400   DCHECK_EQ(type_ == TYPE_CUSTOM, !pump_factory_.is_null());
    401 }
    402 
    403 void MessageLoop::BindToCurrentThread() {
    404   DCHECK(!pump_);
    405   if (!pump_factory_.is_null())
    406     pump_ = pump_factory_.Run();
    407   else
    408     pump_ = CreateMessagePumpForType(type_);
    409 
    410   DCHECK(!current()) << "should only have one message loop per thread";
    411   lazy_tls_ptr.Pointer()->Set(this);
    412 
    413   incoming_task_queue_->StartScheduling();
    414   unbound_task_runner_->BindToCurrentThread();
    415   unbound_task_runner_ = nullptr;
    416   SetThreadTaskRunnerHandle();
    417 }
    418 
    419 void MessageLoop::SetTaskRunner(
    420     scoped_refptr<SingleThreadTaskRunner> task_runner) {
    421   DCHECK_EQ(this, current());
    422   DCHECK(task_runner->BelongsToCurrentThread());
    423   DCHECK(!unbound_task_runner_);
    424   task_runner_ = std::move(task_runner);
    425   SetThreadTaskRunnerHandle();
    426 }
    427 
    428 void MessageLoop::SetThreadTaskRunnerHandle() {
    429   DCHECK_EQ(this, current());
    430   // Clear the previous thread task runner first, because only one can exist at
    431   // a time.
    432   thread_task_runner_handle_.reset();
    433   thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_));
    434 }
    435 
    436 void MessageLoop::RunHandler() {
    437   DCHECK_EQ(this, current());
    438 
    439   StartHistogrammer();
    440 
    441 #if defined(OS_WIN)
    442   if (run_loop_->dispatcher_ && type() == TYPE_UI) {
    443     static_cast<MessagePumpForUI*>(pump_.get())->
    444         RunWithDispatcher(this, run_loop_->dispatcher_);
    445     return;
    446   }
    447 #endif
    448 
    449   pump_->Run(this);
    450 }
    451 
    452 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
    453   if (run_loop_->run_depth_ != 1)
    454     return false;
    455 
    456   if (deferred_non_nestable_work_queue_.empty())
    457     return false;
    458 
    459   PendingTask pending_task = deferred_non_nestable_work_queue_.front();
    460   deferred_non_nestable_work_queue_.pop();
    461 
    462   RunTask(pending_task);
    463   return true;
    464 }
    465 
    466 void MessageLoop::RunTask(const PendingTask& pending_task) {
    467   DCHECK(nestable_tasks_allowed_);
    468 
    469 #if defined(OS_WIN)
    470   if (pending_task.is_high_res) {
    471     pending_high_res_tasks_--;
    472     CHECK_GE(pending_high_res_tasks_, 0);
    473   }
    474 #endif
    475 
    476   // Execute the task and assume the worst: It is probably not reentrant.
    477   nestable_tasks_allowed_ = false;
    478 
    479   HistogramEvent(kTaskRunEvent);
    480 
    481   TRACE_TASK_EXECUTION("MessageLoop::RunTask", pending_task);
    482 
    483   FOR_EACH_OBSERVER(TaskObserver, task_observers_,
    484                     WillProcessTask(pending_task));
    485   task_annotator_.RunTask("MessageLoop::PostTask", pending_task);
    486   FOR_EACH_OBSERVER(TaskObserver, task_observers_,
    487                     DidProcessTask(pending_task));
    488 
    489   nestable_tasks_allowed_ = true;
    490 }
    491 
    492 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
    493   if (pending_task.nestable || run_loop_->run_depth_ == 1) {
    494     RunTask(pending_task);
    495     // Show that we ran a task (Note: a new one might arrive as a
    496     // consequence!).
    497     return true;
    498   }
    499 
    500   // We couldn't run the task now because we're in a nested message loop
    501   // and the task isn't nestable.
    502   deferred_non_nestable_work_queue_.push(pending_task);
    503   return false;
    504 }
    505 
    506 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
    507   // Move to the delayed work queue.
    508   delayed_work_queue_.push(pending_task);
    509 }
    510 
    511 bool MessageLoop::DeletePendingTasks() {
    512   bool did_work = !work_queue_.empty();
    513   while (!work_queue_.empty()) {
    514     PendingTask pending_task = work_queue_.front();
    515     work_queue_.pop();
    516     if (!pending_task.delayed_run_time.is_null()) {
    517       // We want to delete delayed tasks in the same order in which they would
    518       // normally be deleted in case of any funny dependencies between delayed
    519       // tasks.
    520       AddToDelayedWorkQueue(pending_task);
    521     }
    522   }
    523   did_work |= !deferred_non_nestable_work_queue_.empty();
    524   while (!deferred_non_nestable_work_queue_.empty()) {
    525     deferred_non_nestable_work_queue_.pop();
    526   }
    527   did_work |= !delayed_work_queue_.empty();
    528 
    529   // Historically, we always delete the task regardless of valgrind status. It's
    530   // not completely clear why we want to leak them in the loops above.  This
    531   // code is replicating legacy behavior, and should not be considered
    532   // absolutely "correct" behavior.  See TODO above about deleting all tasks
    533   // when it's safe.
    534   while (!delayed_work_queue_.empty()) {
    535     delayed_work_queue_.pop();
    536   }
    537   return did_work;
    538 }
    539 
    540 void MessageLoop::ReloadWorkQueue() {
    541   // We can improve performance of our loading tasks from the incoming queue to
    542   // |*work_queue| by waiting until the last minute (|*work_queue| is empty) to
    543   // load. That reduces the number of locks-per-task significantly when our
    544   // queues get large.
    545   if (work_queue_.empty()) {
    546 #if defined(OS_WIN)
    547     pending_high_res_tasks_ +=
    548         incoming_task_queue_->ReloadWorkQueue(&work_queue_);
    549 #else
    550     incoming_task_queue_->ReloadWorkQueue(&work_queue_);
    551 #endif
    552   }
    553 }
    554 
    555 void MessageLoop::ScheduleWork() {
    556   pump_->ScheduleWork();
    557 }
    558 
    559 //------------------------------------------------------------------------------
    560 // Method and data for histogramming events and actions taken by each instance
    561 // on each thread.
    562 
    563 void MessageLoop::StartHistogrammer() {
    564 #if !defined(OS_NACL)  // NaCl build has no metrics code.
    565   if (enable_histogrammer_ && !message_histogram_
    566       && StatisticsRecorder::IsActive()) {
    567     DCHECK(!thread_name_.empty());
    568     message_histogram_ = LinearHistogram::FactoryGetWithRangeDescription(
    569         "MsgLoop:" + thread_name_,
    570         kLeastNonZeroMessageId, kMaxMessageId,
    571         kNumberOfDistinctMessagesDisplayed,
    572         HistogramBase::kHexRangePrintingFlag,
    573         event_descriptions_);
    574   }
    575 #endif
    576 }
    577 
    578 void MessageLoop::HistogramEvent(int event) {
    579 #if !defined(OS_NACL)
    580   if (message_histogram_)
    581     message_histogram_->Add(event);
    582 #endif
    583 }
    584 
    585 bool MessageLoop::DoWork() {
    586   if (!nestable_tasks_allowed_) {
    587     // Task can't be executed right now.
    588     return false;
    589   }
    590 
    591   for (;;) {
    592     ReloadWorkQueue();
    593     if (work_queue_.empty())
    594       break;
    595 
    596     // Execute oldest task.
    597     do {
    598       PendingTask pending_task = work_queue_.front();
    599       work_queue_.pop();
    600       if (!pending_task.delayed_run_time.is_null()) {
    601         AddToDelayedWorkQueue(pending_task);
    602         // If we changed the topmost task, then it is time to reschedule.
    603         if (delayed_work_queue_.top().task.Equals(pending_task.task))
    604           pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
    605       } else {
    606         if (DeferOrRunPendingTask(pending_task))
    607           return true;
    608       }
    609     } while (!work_queue_.empty());
    610   }
    611 
    612   // Nothing happened.
    613   return false;
    614 }
    615 
    616 bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
    617   if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
    618     recent_time_ = *next_delayed_work_time = TimeTicks();
    619     return false;
    620   }
    621 
    622   // When we "fall behind", there will be a lot of tasks in the delayed work
    623   // queue that are ready to run.  To increase efficiency when we fall behind,
    624   // we will only call Time::Now() intermittently, and then process all tasks
    625   // that are ready to run before calling it again.  As a result, the more we
    626   // fall behind (and have a lot of ready-to-run delayed tasks), the more
    627   // efficient we'll be at handling the tasks.
    628 
    629   TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time;
    630   if (next_run_time > recent_time_) {
    631     recent_time_ = TimeTicks::Now();  // Get a better view of Now();
    632     if (next_run_time > recent_time_) {
    633       *next_delayed_work_time = next_run_time;
    634       return false;
    635     }
    636   }
    637 
    638   PendingTask pending_task = delayed_work_queue_.top();
    639   delayed_work_queue_.pop();
    640 
    641   if (!delayed_work_queue_.empty())
    642     *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
    643 
    644   return DeferOrRunPendingTask(pending_task);
    645 }
    646 
    647 bool MessageLoop::DoIdleWork() {
    648   if (ProcessNextDelayedNonNestableTask())
    649     return true;
    650 
    651   if (run_loop_->quit_when_idle_received_)
    652     pump_->Quit();
    653 
    654   // When we return we will do a kernel wait for more tasks.
    655 #if defined(OS_WIN)
    656   // On Windows we activate the high resolution timer so that the wait
    657   // _if_ triggered by the timer happens with good resolution. If we don't
    658   // do this the default resolution is 15ms which might not be acceptable
    659   // for some tasks.
    660   bool high_res = pending_high_res_tasks_ > 0;
    661   if (high_res != in_high_res_mode_) {
    662     in_high_res_mode_ = high_res;
    663     Time::ActivateHighResolutionTimer(in_high_res_mode_);
    664   }
    665 #endif
    666   return false;
    667 }
    668 
    669 void MessageLoop::DeleteSoonInternal(const tracked_objects::Location& from_here,
    670                                      void(*deleter)(const void*),
    671                                      const void* object) {
    672   PostNonNestableTask(from_here, Bind(deleter, object));
    673 }
    674 
    675 void MessageLoop::ReleaseSoonInternal(
    676     const tracked_objects::Location& from_here,
    677     void(*releaser)(const void*),
    678     const void* object) {
    679   PostNonNestableTask(from_here, Bind(releaser, object));
    680 }
    681 
    682 #if !defined(OS_NACL)
    683 //------------------------------------------------------------------------------
    684 // MessageLoopForUI
    685 
    686 #if defined(OS_ANDROID)
    687 void MessageLoopForUI::Start() {
    688   // No Histogram support for UI message loop as it is managed by Java side
    689   static_cast<MessagePumpForUI*>(pump_.get())->Start(this);
    690 }
    691 #endif
    692 
    693 #if defined(OS_IOS)
    694 void MessageLoopForUI::Attach() {
    695   static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this);
    696 }
    697 #endif
    698 
    699 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
    700 bool MessageLoopForUI::WatchFileDescriptor(
    701     int fd,
    702     bool persistent,
    703     MessagePumpLibevent::Mode mode,
    704     MessagePumpLibevent::FileDescriptorWatcher *controller,
    705     MessagePumpLibevent::Watcher *delegate) {
    706   return static_cast<MessagePumpLibevent*>(pump_.get())->WatchFileDescriptor(
    707       fd,
    708       persistent,
    709       mode,
    710       controller,
    711       delegate);
    712 }
    713 #endif
    714 
    715 #endif  // !defined(OS_NACL)
    716 
    717 //------------------------------------------------------------------------------
    718 // MessageLoopForIO
    719 
    720 MessageLoopForIO::MessageLoopForIO() : MessageLoop(TYPE_IO) {}
    721 
    722 #if !defined(OS_NACL_SFI)
    723 void MessageLoopForIO::AddIOObserver(
    724     MessageLoopForIO::IOObserver* io_observer) {
    725   ToPumpIO(pump_.get())->AddIOObserver(io_observer);
    726 }
    727 
    728 void MessageLoopForIO::RemoveIOObserver(
    729     MessageLoopForIO::IOObserver* io_observer) {
    730   ToPumpIO(pump_.get())->RemoveIOObserver(io_observer);
    731 }
    732 
    733 #if defined(OS_WIN)
    734 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
    735   ToPumpIO(pump_.get())->RegisterIOHandler(file, handler);
    736 }
    737 
    738 bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) {
    739   return ToPumpIO(pump_.get())->RegisterJobObject(job, handler);
    740 }
    741 
    742 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
    743   return ToPumpIO(pump_.get())->WaitForIOCompletion(timeout, filter);
    744 }
    745 #elif defined(OS_POSIX)
    746 bool MessageLoopForIO::WatchFileDescriptor(int fd,
    747                                            bool persistent,
    748                                            Mode mode,
    749                                            FileDescriptorWatcher* controller,
    750                                            Watcher* delegate) {
    751   return ToPumpIO(pump_.get())->WatchFileDescriptor(
    752       fd,
    753       persistent,
    754       mode,
    755       controller,
    756       delegate);
    757 }
    758 #endif
    759 
    760 #endif  // !defined(OS_NACL_SFI)
    761 
    762 }  // namespace base
    763