Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jcphuff.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1995-1997, Thomas G. Lane.
      6  * It was modified by The libjpeg-turbo Project to include only code relevant
      7  * to libjpeg-turbo.
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains Huffman entropy encoding routines for progressive JPEG.
     11  *
     12  * We do not support output suspension in this module, since the library
     13  * currently does not allow multiple-scan files to be written with output
     14  * suspension.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jchuff.h"             /* Declarations shared with jchuff.c */
     21 
     22 #ifdef C_PROGRESSIVE_SUPPORTED
     23 
     24 /* Expanded entropy encoder object for progressive Huffman encoding. */
     25 
     26 typedef struct {
     27   struct jpeg_entropy_encoder pub; /* public fields */
     28 
     29   /* Mode flag: TRUE for optimization, FALSE for actual data output */
     30   boolean gather_statistics;
     31 
     32   /* Bit-level coding status.
     33    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
     34    */
     35   JOCTET * next_output_byte;    /* => next byte to write in buffer */
     36   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
     37   INT32 put_buffer;             /* current bit-accumulation buffer */
     38   int put_bits;                 /* # of bits now in it */
     39   j_compress_ptr cinfo;         /* link to cinfo (needed for dump_buffer) */
     40 
     41   /* Coding status for DC components */
     42   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     43 
     44   /* Coding status for AC components */
     45   int ac_tbl_no;                /* the table number of the single component */
     46   unsigned int EOBRUN;          /* run length of EOBs */
     47   unsigned int BE;              /* # of buffered correction bits before MCU */
     48   char * bit_buffer;            /* buffer for correction bits (1 per char) */
     49   /* packing correction bits tightly would save some space but cost time... */
     50 
     51   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
     52   int next_restart_num;         /* next restart number to write (0-7) */
     53 
     54   /* Pointers to derived tables (these workspaces have image lifespan).
     55    * Since any one scan codes only DC or only AC, we only need one set
     56    * of tables, not one for DC and one for AC.
     57    */
     58   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     59 
     60   /* Statistics tables for optimization; again, one set is enough */
     61   long * count_ptrs[NUM_HUFF_TBLS];
     62 } phuff_entropy_encoder;
     63 
     64 typedef phuff_entropy_encoder * phuff_entropy_ptr;
     65 
     66 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
     67  * buffer can hold.  Larger sizes may slightly improve compression, but
     68  * 1000 is already well into the realm of overkill.
     69  * The minimum safe size is 64 bits.
     70  */
     71 
     72 #define MAX_CORR_BITS  1000     /* Max # of correction bits I can buffer */
     73 
     74 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     75  * We assume that int right shift is unsigned if INT32 right shift is,
     76  * which should be safe.
     77  */
     78 
     79 #ifdef RIGHT_SHIFT_IS_UNSIGNED
     80 #define ISHIFT_TEMPS    int ishift_temp;
     81 #define IRIGHT_SHIFT(x,shft)  \
     82         ((ishift_temp = (x)) < 0 ? \
     83          (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
     84          (ishift_temp >> (shft)))
     85 #else
     86 #define ISHIFT_TEMPS
     87 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
     88 #endif
     89 
     90 /* Forward declarations */
     91 METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo,
     92                                         JBLOCKROW *MCU_data);
     93 METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo,
     94                                         JBLOCKROW *MCU_data);
     95 METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo,
     96                                          JBLOCKROW *MCU_data);
     97 METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo,
     98                                          JBLOCKROW *MCU_data);
     99 METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo);
    100 METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo);
    101 
    102 
    103 /*
    104  * Initialize for a Huffman-compressed scan using progressive JPEG.
    105  */
    106 
    107 METHODDEF(void)
    108 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
    109 {
    110   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    111   boolean is_DC_band;
    112   int ci, tbl;
    113   jpeg_component_info * compptr;
    114 
    115   entropy->cinfo = cinfo;
    116   entropy->gather_statistics = gather_statistics;
    117 
    118   is_DC_band = (cinfo->Ss == 0);
    119 
    120   /* We assume jcmaster.c already validated the scan parameters. */
    121 
    122   /* Select execution routines */
    123   if (cinfo->Ah == 0) {
    124     if (is_DC_band)
    125       entropy->pub.encode_mcu = encode_mcu_DC_first;
    126     else
    127       entropy->pub.encode_mcu = encode_mcu_AC_first;
    128   } else {
    129     if (is_DC_band)
    130       entropy->pub.encode_mcu = encode_mcu_DC_refine;
    131     else {
    132       entropy->pub.encode_mcu = encode_mcu_AC_refine;
    133       /* AC refinement needs a correction bit buffer */
    134       if (entropy->bit_buffer == NULL)
    135         entropy->bit_buffer = (char *)
    136           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    137                                       MAX_CORR_BITS * sizeof(char));
    138     }
    139   }
    140   if (gather_statistics)
    141     entropy->pub.finish_pass = finish_pass_gather_phuff;
    142   else
    143     entropy->pub.finish_pass = finish_pass_phuff;
    144 
    145   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
    146    * for AC coefficients.
    147    */
    148   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    149     compptr = cinfo->cur_comp_info[ci];
    150     /* Initialize DC predictions to 0 */
    151     entropy->last_dc_val[ci] = 0;
    152     /* Get table index */
    153     if (is_DC_band) {
    154       if (cinfo->Ah != 0)       /* DC refinement needs no table */
    155         continue;
    156       tbl = compptr->dc_tbl_no;
    157     } else {
    158       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
    159     }
    160     if (gather_statistics) {
    161       /* Check for invalid table index */
    162       /* (make_c_derived_tbl does this in the other path) */
    163       if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
    164         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
    165       /* Allocate and zero the statistics tables */
    166       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    167       if (entropy->count_ptrs[tbl] == NULL)
    168         entropy->count_ptrs[tbl] = (long *)
    169           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    170                                       257 * sizeof(long));
    171       MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long));
    172     } else {
    173       /* Compute derived values for Huffman table */
    174       /* We may do this more than once for a table, but it's not expensive */
    175       jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
    176                               & entropy->derived_tbls[tbl]);
    177     }
    178   }
    179 
    180   /* Initialize AC stuff */
    181   entropy->EOBRUN = 0;
    182   entropy->BE = 0;
    183 
    184   /* Initialize bit buffer to empty */
    185   entropy->put_buffer = 0;
    186   entropy->put_bits = 0;
    187 
    188   /* Initialize restart stuff */
    189   entropy->restarts_to_go = cinfo->restart_interval;
    190   entropy->next_restart_num = 0;
    191 }
    192 
    193 
    194 /* Outputting bytes to the file.
    195  * NB: these must be called only when actually outputting,
    196  * that is, entropy->gather_statistics == FALSE.
    197  */
    198 
    199 /* Emit a byte */
    200 #define emit_byte(entropy,val)  \
    201         { *(entropy)->next_output_byte++ = (JOCTET) (val);  \
    202           if (--(entropy)->free_in_buffer == 0)  \
    203             dump_buffer(entropy); }
    204 
    205 
    206 LOCAL(void)
    207 dump_buffer (phuff_entropy_ptr entropy)
    208 /* Empty the output buffer; we do not support suspension in this module. */
    209 {
    210   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    211 
    212   if (! (*dest->empty_output_buffer) (entropy->cinfo))
    213     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
    214   /* After a successful buffer dump, must reset buffer pointers */
    215   entropy->next_output_byte = dest->next_output_byte;
    216   entropy->free_in_buffer = dest->free_in_buffer;
    217 }
    218 
    219 
    220 /* Outputting bits to the file */
    221 
    222 /* Only the right 24 bits of put_buffer are used; the valid bits are
    223  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    224  * in one call, and we never retain more than 7 bits in put_buffer
    225  * between calls, so 24 bits are sufficient.
    226  */
    227 
    228 LOCAL(void)
    229 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
    230 /* Emit some bits, unless we are in gather mode */
    231 {
    232   /* This routine is heavily used, so it's worth coding tightly. */
    233   register INT32 put_buffer = (INT32) code;
    234   register int put_bits = entropy->put_bits;
    235 
    236   /* if size is 0, caller used an invalid Huffman table entry */
    237   if (size == 0)
    238     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    239 
    240   if (entropy->gather_statistics)
    241     return;                     /* do nothing if we're only getting stats */
    242 
    243   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    244 
    245   put_bits += size;             /* new number of bits in buffer */
    246 
    247   put_buffer <<= 24 - put_bits; /* align incoming bits */
    248 
    249   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
    250 
    251   while (put_bits >= 8) {
    252     int c = (int) ((put_buffer >> 16) & 0xFF);
    253 
    254     emit_byte(entropy, c);
    255     if (c == 0xFF) {            /* need to stuff a zero byte? */
    256       emit_byte(entropy, 0);
    257     }
    258     put_buffer <<= 8;
    259     put_bits -= 8;
    260   }
    261 
    262   entropy->put_buffer = put_buffer; /* update variables */
    263   entropy->put_bits = put_bits;
    264 }
    265 
    266 
    267 LOCAL(void)
    268 flush_bits (phuff_entropy_ptr entropy)
    269 {
    270   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
    271   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
    272   entropy->put_bits = 0;
    273 }
    274 
    275 
    276 /*
    277  * Emit (or just count) a Huffman symbol.
    278  */
    279 
    280 LOCAL(void)
    281 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
    282 {
    283   if (entropy->gather_statistics)
    284     entropy->count_ptrs[tbl_no][symbol]++;
    285   else {
    286     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
    287     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    288   }
    289 }
    290 
    291 
    292 /*
    293  * Emit bits from a correction bit buffer.
    294  */
    295 
    296 LOCAL(void)
    297 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
    298                     unsigned int nbits)
    299 {
    300   if (entropy->gather_statistics)
    301     return;                     /* no real work */
    302 
    303   while (nbits > 0) {
    304     emit_bits(entropy, (unsigned int) (*bufstart), 1);
    305     bufstart++;
    306     nbits--;
    307   }
    308 }
    309 
    310 
    311 /*
    312  * Emit any pending EOBRUN symbol.
    313  */
    314 
    315 LOCAL(void)
    316 emit_eobrun (phuff_entropy_ptr entropy)
    317 {
    318   register int temp, nbits;
    319 
    320   if (entropy->EOBRUN > 0) {    /* if there is any pending EOBRUN */
    321     temp = entropy->EOBRUN;
    322     nbits = 0;
    323     while ((temp >>= 1))
    324       nbits++;
    325     /* safety check: shouldn't happen given limited correction-bit buffer */
    326     if (nbits > 14)
    327       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    328 
    329     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
    330     if (nbits)
    331       emit_bits(entropy, entropy->EOBRUN, nbits);
    332 
    333     entropy->EOBRUN = 0;
    334 
    335     /* Emit any buffered correction bits */
    336     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
    337     entropy->BE = 0;
    338   }
    339 }
    340 
    341 
    342 /*
    343  * Emit a restart marker & resynchronize predictions.
    344  */
    345 
    346 LOCAL(void)
    347 emit_restart (phuff_entropy_ptr entropy, int restart_num)
    348 {
    349   int ci;
    350 
    351   emit_eobrun(entropy);
    352 
    353   if (! entropy->gather_statistics) {
    354     flush_bits(entropy);
    355     emit_byte(entropy, 0xFF);
    356     emit_byte(entropy, JPEG_RST0 + restart_num);
    357   }
    358 
    359   if (entropy->cinfo->Ss == 0) {
    360     /* Re-initialize DC predictions to 0 */
    361     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
    362       entropy->last_dc_val[ci] = 0;
    363   } else {
    364     /* Re-initialize all AC-related fields to 0 */
    365     entropy->EOBRUN = 0;
    366     entropy->BE = 0;
    367   }
    368 }
    369 
    370 
    371 /*
    372  * MCU encoding for DC initial scan (either spectral selection,
    373  * or first pass of successive approximation).
    374  */
    375 
    376 METHODDEF(boolean)
    377 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    378 {
    379   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    380   register int temp, temp2;
    381   register int nbits;
    382   int blkn, ci;
    383   int Al = cinfo->Al;
    384   JBLOCKROW block;
    385   jpeg_component_info * compptr;
    386   ISHIFT_TEMPS
    387 
    388   entropy->next_output_byte = cinfo->dest->next_output_byte;
    389   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    390 
    391   /* Emit restart marker if needed */
    392   if (cinfo->restart_interval)
    393     if (entropy->restarts_to_go == 0)
    394       emit_restart(entropy, entropy->next_restart_num);
    395 
    396   /* Encode the MCU data blocks */
    397   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    398     block = MCU_data[blkn];
    399     ci = cinfo->MCU_membership[blkn];
    400     compptr = cinfo->cur_comp_info[ci];
    401 
    402     /* Compute the DC value after the required point transform by Al.
    403      * This is simply an arithmetic right shift.
    404      */
    405     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
    406 
    407     /* DC differences are figured on the point-transformed values. */
    408     temp = temp2 - entropy->last_dc_val[ci];
    409     entropy->last_dc_val[ci] = temp2;
    410 
    411     /* Encode the DC coefficient difference per section G.1.2.1 */
    412     temp2 = temp;
    413     if (temp < 0) {
    414       temp = -temp;             /* temp is abs value of input */
    415       /* For a negative input, want temp2 = bitwise complement of abs(input) */
    416       /* This code assumes we are on a two's complement machine */
    417       temp2--;
    418     }
    419 
    420     /* Find the number of bits needed for the magnitude of the coefficient */
    421     nbits = 0;
    422     while (temp) {
    423       nbits++;
    424       temp >>= 1;
    425     }
    426     /* Check for out-of-range coefficient values.
    427      * Since we're encoding a difference, the range limit is twice as much.
    428      */
    429     if (nbits > MAX_COEF_BITS+1)
    430       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    431 
    432     /* Count/emit the Huffman-coded symbol for the number of bits */
    433     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
    434 
    435     /* Emit that number of bits of the value, if positive, */
    436     /* or the complement of its magnitude, if negative. */
    437     if (nbits)                  /* emit_bits rejects calls with size 0 */
    438       emit_bits(entropy, (unsigned int) temp2, nbits);
    439   }
    440 
    441   cinfo->dest->next_output_byte = entropy->next_output_byte;
    442   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    443 
    444   /* Update restart-interval state too */
    445   if (cinfo->restart_interval) {
    446     if (entropy->restarts_to_go == 0) {
    447       entropy->restarts_to_go = cinfo->restart_interval;
    448       entropy->next_restart_num++;
    449       entropy->next_restart_num &= 7;
    450     }
    451     entropy->restarts_to_go--;
    452   }
    453 
    454   return TRUE;
    455 }
    456 
    457 
    458 /*
    459  * MCU encoding for AC initial scan (either spectral selection,
    460  * or first pass of successive approximation).
    461  */
    462 
    463 METHODDEF(boolean)
    464 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    465 {
    466   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    467   register int temp, temp2;
    468   register int nbits;
    469   register int r, k;
    470   int Se = cinfo->Se;
    471   int Al = cinfo->Al;
    472   JBLOCKROW block;
    473 
    474   entropy->next_output_byte = cinfo->dest->next_output_byte;
    475   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    476 
    477   /* Emit restart marker if needed */
    478   if (cinfo->restart_interval)
    479     if (entropy->restarts_to_go == 0)
    480       emit_restart(entropy, entropy->next_restart_num);
    481 
    482   /* Encode the MCU data block */
    483   block = MCU_data[0];
    484 
    485   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    486 
    487   r = 0;                        /* r = run length of zeros */
    488 
    489   for (k = cinfo->Ss; k <= Se; k++) {
    490     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
    491       r++;
    492       continue;
    493     }
    494     /* We must apply the point transform by Al.  For AC coefficients this
    495      * is an integer division with rounding towards 0.  To do this portably
    496      * in C, we shift after obtaining the absolute value; so the code is
    497      * interwoven with finding the abs value (temp) and output bits (temp2).
    498      */
    499     if (temp < 0) {
    500       temp = -temp;             /* temp is abs value of input */
    501       temp >>= Al;              /* apply the point transform */
    502       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    503       temp2 = ~temp;
    504     } else {
    505       temp >>= Al;              /* apply the point transform */
    506       temp2 = temp;
    507     }
    508     /* Watch out for case that nonzero coef is zero after point transform */
    509     if (temp == 0) {
    510       r++;
    511       continue;
    512     }
    513 
    514     /* Emit any pending EOBRUN */
    515     if (entropy->EOBRUN > 0)
    516       emit_eobrun(entropy);
    517     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    518     while (r > 15) {
    519       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    520       r -= 16;
    521     }
    522 
    523     /* Find the number of bits needed for the magnitude of the coefficient */
    524     nbits = 1;                  /* there must be at least one 1 bit */
    525     while ((temp >>= 1))
    526       nbits++;
    527     /* Check for out-of-range coefficient values */
    528     if (nbits > MAX_COEF_BITS)
    529       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    530 
    531     /* Count/emit Huffman symbol for run length / number of bits */
    532     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
    533 
    534     /* Emit that number of bits of the value, if positive, */
    535     /* or the complement of its magnitude, if negative. */
    536     emit_bits(entropy, (unsigned int) temp2, nbits);
    537 
    538     r = 0;                      /* reset zero run length */
    539   }
    540 
    541   if (r > 0) {                  /* If there are trailing zeroes, */
    542     entropy->EOBRUN++;          /* count an EOB */
    543     if (entropy->EOBRUN == 0x7FFF)
    544       emit_eobrun(entropy);     /* force it out to avoid overflow */
    545   }
    546 
    547   cinfo->dest->next_output_byte = entropy->next_output_byte;
    548   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    549 
    550   /* Update restart-interval state too */
    551   if (cinfo->restart_interval) {
    552     if (entropy->restarts_to_go == 0) {
    553       entropy->restarts_to_go = cinfo->restart_interval;
    554       entropy->next_restart_num++;
    555       entropy->next_restart_num &= 7;
    556     }
    557     entropy->restarts_to_go--;
    558   }
    559 
    560   return TRUE;
    561 }
    562 
    563 
    564 /*
    565  * MCU encoding for DC successive approximation refinement scan.
    566  * Note: we assume such scans can be multi-component, although the spec
    567  * is not very clear on the point.
    568  */
    569 
    570 METHODDEF(boolean)
    571 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    572 {
    573   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    574   register int temp;
    575   int blkn;
    576   int Al = cinfo->Al;
    577   JBLOCKROW block;
    578 
    579   entropy->next_output_byte = cinfo->dest->next_output_byte;
    580   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    581 
    582   /* Emit restart marker if needed */
    583   if (cinfo->restart_interval)
    584     if (entropy->restarts_to_go == 0)
    585       emit_restart(entropy, entropy->next_restart_num);
    586 
    587   /* Encode the MCU data blocks */
    588   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    589     block = MCU_data[blkn];
    590 
    591     /* We simply emit the Al'th bit of the DC coefficient value. */
    592     temp = (*block)[0];
    593     emit_bits(entropy, (unsigned int) (temp >> Al), 1);
    594   }
    595 
    596   cinfo->dest->next_output_byte = entropy->next_output_byte;
    597   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    598 
    599   /* Update restart-interval state too */
    600   if (cinfo->restart_interval) {
    601     if (entropy->restarts_to_go == 0) {
    602       entropy->restarts_to_go = cinfo->restart_interval;
    603       entropy->next_restart_num++;
    604       entropy->next_restart_num &= 7;
    605     }
    606     entropy->restarts_to_go--;
    607   }
    608 
    609   return TRUE;
    610 }
    611 
    612 
    613 /*
    614  * MCU encoding for AC successive approximation refinement scan.
    615  */
    616 
    617 METHODDEF(boolean)
    618 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    619 {
    620   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    621   register int temp;
    622   register int r, k;
    623   int EOB;
    624   char *BR_buffer;
    625   unsigned int BR;
    626   int Se = cinfo->Se;
    627   int Al = cinfo->Al;
    628   JBLOCKROW block;
    629   int absvalues[DCTSIZE2];
    630 
    631   entropy->next_output_byte = cinfo->dest->next_output_byte;
    632   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    633 
    634   /* Emit restart marker if needed */
    635   if (cinfo->restart_interval)
    636     if (entropy->restarts_to_go == 0)
    637       emit_restart(entropy, entropy->next_restart_num);
    638 
    639   /* Encode the MCU data block */
    640   block = MCU_data[0];
    641 
    642   /* It is convenient to make a pre-pass to determine the transformed
    643    * coefficients' absolute values and the EOB position.
    644    */
    645   EOB = 0;
    646   for (k = cinfo->Ss; k <= Se; k++) {
    647     temp = (*block)[jpeg_natural_order[k]];
    648     /* We must apply the point transform by Al.  For AC coefficients this
    649      * is an integer division with rounding towards 0.  To do this portably
    650      * in C, we shift after obtaining the absolute value.
    651      */
    652     if (temp < 0)
    653       temp = -temp;             /* temp is abs value of input */
    654     temp >>= Al;                /* apply the point transform */
    655     absvalues[k] = temp;        /* save abs value for main pass */
    656     if (temp == 1)
    657       EOB = k;                  /* EOB = index of last newly-nonzero coef */
    658   }
    659 
    660   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    661 
    662   r = 0;                        /* r = run length of zeros */
    663   BR = 0;                       /* BR = count of buffered bits added now */
    664   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
    665 
    666   for (k = cinfo->Ss; k <= Se; k++) {
    667     if ((temp = absvalues[k]) == 0) {
    668       r++;
    669       continue;
    670     }
    671 
    672     /* Emit any required ZRLs, but not if they can be folded into EOB */
    673     while (r > 15 && k <= EOB) {
    674       /* emit any pending EOBRUN and the BE correction bits */
    675       emit_eobrun(entropy);
    676       /* Emit ZRL */
    677       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    678       r -= 16;
    679       /* Emit buffered correction bits that must be associated with ZRL */
    680       emit_buffered_bits(entropy, BR_buffer, BR);
    681       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    682       BR = 0;
    683     }
    684 
    685     /* If the coef was previously nonzero, it only needs a correction bit.
    686      * NOTE: a straight translation of the spec's figure G.7 would suggest
    687      * that we also need to test r > 15.  But if r > 15, we can only get here
    688      * if k > EOB, which implies that this coefficient is not 1.
    689      */
    690     if (temp > 1) {
    691       /* The correction bit is the next bit of the absolute value. */
    692       BR_buffer[BR++] = (char) (temp & 1);
    693       continue;
    694     }
    695 
    696     /* Emit any pending EOBRUN and the BE correction bits */
    697     emit_eobrun(entropy);
    698 
    699     /* Count/emit Huffman symbol for run length / number of bits */
    700     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
    701 
    702     /* Emit output bit for newly-nonzero coef */
    703     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
    704     emit_bits(entropy, (unsigned int) temp, 1);
    705 
    706     /* Emit buffered correction bits that must be associated with this code */
    707     emit_buffered_bits(entropy, BR_buffer, BR);
    708     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    709     BR = 0;
    710     r = 0;                      /* reset zero run length */
    711   }
    712 
    713   if (r > 0 || BR > 0) {        /* If there are trailing zeroes, */
    714     entropy->EOBRUN++;          /* count an EOB */
    715     entropy->BE += BR;          /* concat my correction bits to older ones */
    716     /* We force out the EOB if we risk either:
    717      * 1. overflow of the EOB counter;
    718      * 2. overflow of the correction bit buffer during the next MCU.
    719      */
    720     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
    721       emit_eobrun(entropy);
    722   }
    723 
    724   cinfo->dest->next_output_byte = entropy->next_output_byte;
    725   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    726 
    727   /* Update restart-interval state too */
    728   if (cinfo->restart_interval) {
    729     if (entropy->restarts_to_go == 0) {
    730       entropy->restarts_to_go = cinfo->restart_interval;
    731       entropy->next_restart_num++;
    732       entropy->next_restart_num &= 7;
    733     }
    734     entropy->restarts_to_go--;
    735   }
    736 
    737   return TRUE;
    738 }
    739 
    740 
    741 /*
    742  * Finish up at the end of a Huffman-compressed progressive scan.
    743  */
    744 
    745 METHODDEF(void)
    746 finish_pass_phuff (j_compress_ptr cinfo)
    747 {
    748   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    749 
    750   entropy->next_output_byte = cinfo->dest->next_output_byte;
    751   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    752 
    753   /* Flush out any buffered data */
    754   emit_eobrun(entropy);
    755   flush_bits(entropy);
    756 
    757   cinfo->dest->next_output_byte = entropy->next_output_byte;
    758   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    759 }
    760 
    761 
    762 /*
    763  * Finish up a statistics-gathering pass and create the new Huffman tables.
    764  */
    765 
    766 METHODDEF(void)
    767 finish_pass_gather_phuff (j_compress_ptr cinfo)
    768 {
    769   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    770   boolean is_DC_band;
    771   int ci, tbl;
    772   jpeg_component_info * compptr;
    773   JHUFF_TBL **htblptr;
    774   boolean did[NUM_HUFF_TBLS];
    775 
    776   /* Flush out buffered data (all we care about is counting the EOB symbol) */
    777   emit_eobrun(entropy);
    778 
    779   is_DC_band = (cinfo->Ss == 0);
    780 
    781   /* It's important not to apply jpeg_gen_optimal_table more than once
    782    * per table, because it clobbers the input frequency counts!
    783    */
    784   MEMZERO(did, sizeof(did));
    785 
    786   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    787     compptr = cinfo->cur_comp_info[ci];
    788     if (is_DC_band) {
    789       if (cinfo->Ah != 0)       /* DC refinement needs no table */
    790         continue;
    791       tbl = compptr->dc_tbl_no;
    792     } else {
    793       tbl = compptr->ac_tbl_no;
    794     }
    795     if (! did[tbl]) {
    796       if (is_DC_band)
    797         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
    798       else
    799         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
    800       if (*htblptr == NULL)
    801         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    802       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
    803       did[tbl] = TRUE;
    804     }
    805   }
    806 }
    807 
    808 
    809 /*
    810  * Module initialization routine for progressive Huffman entropy encoding.
    811  */
    812 
    813 GLOBAL(void)
    814 jinit_phuff_encoder (j_compress_ptr cinfo)
    815 {
    816   phuff_entropy_ptr entropy;
    817   int i;
    818 
    819   entropy = (phuff_entropy_ptr)
    820     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    821                                 sizeof(phuff_entropy_encoder));
    822   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    823   entropy->pub.start_pass = start_pass_phuff;
    824 
    825   /* Mark tables unallocated */
    826   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    827     entropy->derived_tbls[i] = NULL;
    828     entropy->count_ptrs[i] = NULL;
    829   }
    830   entropy->bit_buffer = NULL;   /* needed only in AC refinement scan */
    831 }
    832 
    833 #endif /* C_PROGRESSIVE_SUPPORTED */
    834