Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jquant1.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009, D. R. Commander
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains 1-pass color quantization (color mapping) routines.
     11  * These routines provide mapping to a fixed color map using equally spaced
     12  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 
     19 #ifdef QUANT_1PASS_SUPPORTED
     20 
     21 
     22 /*
     23  * The main purpose of 1-pass quantization is to provide a fast, if not very
     24  * high quality, colormapped output capability.  A 2-pass quantizer usually
     25  * gives better visual quality; however, for quantized grayscale output this
     26  * quantizer is perfectly adequate.  Dithering is highly recommended with this
     27  * quantizer, though you can turn it off if you really want to.
     28  *
     29  * In 1-pass quantization the colormap must be chosen in advance of seeing the
     30  * image.  We use a map consisting of all combinations of Ncolors[i] color
     31  * values for the i'th component.  The Ncolors[] values are chosen so that
     32  * their product, the total number of colors, is no more than that requested.
     33  * (In most cases, the product will be somewhat less.)
     34  *
     35  * Since the colormap is orthogonal, the representative value for each color
     36  * component can be determined without considering the other components;
     37  * then these indexes can be combined into a colormap index by a standard
     38  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
     39  * can be precalculated and stored in the lookup table colorindex[].
     40  * colorindex[i][j] maps pixel value j in component i to the nearest
     41  * representative value (grid plane) for that component; this index is
     42  * multiplied by the array stride for component i, so that the
     43  * index of the colormap entry closest to a given pixel value is just
     44  *    sum( colorindex[component-number][pixel-component-value] )
     45  * Aside from being fast, this scheme allows for variable spacing between
     46  * representative values with no additional lookup cost.
     47  *
     48  * If gamma correction has been applied in color conversion, it might be wise
     49  * to adjust the color grid spacing so that the representative colors are
     50  * equidistant in linear space.  At this writing, gamma correction is not
     51  * implemented by jdcolor, so nothing is done here.
     52  */
     53 
     54 
     55 /* Declarations for ordered dithering.
     56  *
     57  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
     58  * dithering is described in many references, for instance Dale Schumacher's
     59  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
     60  * In place of Schumacher's comparisons against a "threshold" value, we add a
     61  * "dither" value to the input pixel and then round the result to the nearest
     62  * output value.  The dither value is equivalent to (0.5 - threshold) times
     63  * the distance between output values.  For ordered dithering, we assume that
     64  * the output colors are equally spaced; if not, results will probably be
     65  * worse, since the dither may be too much or too little at a given point.
     66  *
     67  * The normal calculation would be to form pixel value + dither, range-limit
     68  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
     69  * We can skip the separate range-limiting step by extending the colorindex
     70  * table in both directions.
     71  */
     72 
     73 #define ODITHER_SIZE  16        /* dimension of dither matrix */
     74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
     75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
     76 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
     77 
     78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
     79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
     80 
     81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
     82   /* Bayer's order-4 dither array.  Generated by the code given in
     83    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
     84    * The values in this array must range from 0 to ODITHER_CELLS-1.
     85    */
     86   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
     87   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
     88   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
     89   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
     90   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
     91   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
     92   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
     93   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
     94   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
     95   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
     96   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
     97   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
     98   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
     99   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
    100   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
    101   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
    102 };
    103 
    104 
    105 /* Declarations for Floyd-Steinberg dithering.
    106  *
    107  * Errors are accumulated into the array fserrors[], at a resolution of
    108  * 1/16th of a pixel count.  The error at a given pixel is propagated
    109  * to its not-yet-processed neighbors using the standard F-S fractions,
    110  *              ...     (here)  7/16
    111  *              3/16    5/16    1/16
    112  * We work left-to-right on even rows, right-to-left on odd rows.
    113  *
    114  * We can get away with a single array (holding one row's worth of errors)
    115  * by using it to store the current row's errors at pixel columns not yet
    116  * processed, but the next row's errors at columns already processed.  We
    117  * need only a few extra variables to hold the errors immediately around the
    118  * current column.  (If we are lucky, those variables are in registers, but
    119  * even if not, they're probably cheaper to access than array elements are.)
    120  *
    121  * The fserrors[] array is indexed [component#][position].
    122  * We provide (#columns + 2) entries per component; the extra entry at each
    123  * end saves us from special-casing the first and last pixels.
    124  */
    125 
    126 #if BITS_IN_JSAMPLE == 8
    127 typedef INT16 FSERROR;          /* 16 bits should be enough */
    128 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
    129 #else
    130 typedef INT32 FSERROR;          /* may need more than 16 bits */
    131 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
    132 #endif
    133 
    134 typedef FSERROR *FSERRPTR;  /* pointer to error array */
    135 
    136 
    137 /* Private subobject */
    138 
    139 #define MAX_Q_COMPS 4           /* max components I can handle */
    140 
    141 typedef struct {
    142   struct jpeg_color_quantizer pub; /* public fields */
    143 
    144   /* Initially allocated colormap is saved here */
    145   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
    146   int sv_actual;                /* number of entries in use */
    147 
    148   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
    149   /* colorindex[i][j] = index of color closest to pixel value j in component i,
    150    * premultiplied as described above.  Since colormap indexes must fit into
    151    * JSAMPLEs, the entries of this array will too.
    152    */
    153   boolean is_padded;            /* is the colorindex padded for odither? */
    154 
    155   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
    156 
    157   /* Variables for ordered dithering */
    158   int row_index;                /* cur row's vertical index in dither matrix */
    159   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
    160 
    161   /* Variables for Floyd-Steinberg dithering */
    162   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
    163   boolean on_odd_row;           /* flag to remember which row we are on */
    164 } my_cquantizer;
    165 
    166 typedef my_cquantizer * my_cquantize_ptr;
    167 
    168 
    169 /*
    170  * Policy-making subroutines for create_colormap and create_colorindex.
    171  * These routines determine the colormap to be used.  The rest of the module
    172  * only assumes that the colormap is orthogonal.
    173  *
    174  *  * select_ncolors decides how to divvy up the available colors
    175  *    among the components.
    176  *  * output_value defines the set of representative values for a component.
    177  *  * largest_input_value defines the mapping from input values to
    178  *    representative values for a component.
    179  * Note that the latter two routines may impose different policies for
    180  * different components, though this is not currently done.
    181  */
    182 
    183 
    184 LOCAL(int)
    185 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
    186 /* Determine allocation of desired colors to components, */
    187 /* and fill in Ncolors[] array to indicate choice. */
    188 /* Return value is total number of colors (product of Ncolors[] values). */
    189 {
    190   int nc = cinfo->out_color_components; /* number of color components */
    191   int max_colors = cinfo->desired_number_of_colors;
    192   int total_colors, iroot, i, j;
    193   boolean changed;
    194   long temp;
    195   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
    196   RGB_order[0] = rgb_green[cinfo->out_color_space];
    197   RGB_order[1] = rgb_red[cinfo->out_color_space];
    198   RGB_order[2] = rgb_blue[cinfo->out_color_space];
    199 
    200   /* We can allocate at least the nc'th root of max_colors per component. */
    201   /* Compute floor(nc'th root of max_colors). */
    202   iroot = 1;
    203   do {
    204     iroot++;
    205     temp = iroot;               /* set temp = iroot ** nc */
    206     for (i = 1; i < nc; i++)
    207       temp *= iroot;
    208   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
    209   iroot--;                      /* now iroot = floor(root) */
    210 
    211   /* Must have at least 2 color values per component */
    212   if (iroot < 2)
    213     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
    214 
    215   /* Initialize to iroot color values for each component */
    216   total_colors = 1;
    217   for (i = 0; i < nc; i++) {
    218     Ncolors[i] = iroot;
    219     total_colors *= iroot;
    220   }
    221   /* We may be able to increment the count for one or more components without
    222    * exceeding max_colors, though we know not all can be incremented.
    223    * Sometimes, the first component can be incremented more than once!
    224    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
    225    * In RGB colorspace, try to increment G first, then R, then B.
    226    */
    227   do {
    228     changed = FALSE;
    229     for (i = 0; i < nc; i++) {
    230       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
    231       /* calculate new total_colors if Ncolors[j] is incremented */
    232       temp = total_colors / Ncolors[j];
    233       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
    234       if (temp > (long) max_colors)
    235         break;                  /* won't fit, done with this pass */
    236       Ncolors[j]++;             /* OK, apply the increment */
    237       total_colors = (int) temp;
    238       changed = TRUE;
    239     }
    240   } while (changed);
    241 
    242   return total_colors;
    243 }
    244 
    245 
    246 LOCAL(int)
    247 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    248 /* Return j'th output value, where j will range from 0 to maxj */
    249 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
    250 {
    251   /* We always provide values 0 and MAXJSAMPLE for each component;
    252    * any additional values are equally spaced between these limits.
    253    * (Forcing the upper and lower values to the limits ensures that
    254    * dithering can't produce a color outside the selected gamut.)
    255    */
    256   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
    257 }
    258 
    259 
    260 LOCAL(int)
    261 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    262 /* Return largest input value that should map to j'th output value */
    263 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
    264 {
    265   /* Breakpoints are halfway between values returned by output_value */
    266   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
    267 }
    268 
    269 
    270 /*
    271  * Create the colormap.
    272  */
    273 
    274 LOCAL(void)
    275 create_colormap (j_decompress_ptr cinfo)
    276 {
    277   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    278   JSAMPARRAY colormap;          /* Created colormap */
    279   int total_colors;             /* Number of distinct output colors */
    280   int i,j,k, nci, blksize, blkdist, ptr, val;
    281 
    282   /* Select number of colors for each component */
    283   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
    284 
    285   /* Report selected color counts */
    286   if (cinfo->out_color_components == 3)
    287     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
    288              total_colors, cquantize->Ncolors[0],
    289              cquantize->Ncolors[1], cquantize->Ncolors[2]);
    290   else
    291     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
    292 
    293   /* Allocate and fill in the colormap. */
    294   /* The colors are ordered in the map in standard row-major order, */
    295   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
    296 
    297   colormap = (*cinfo->mem->alloc_sarray)
    298     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    299      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
    300 
    301   /* blksize is number of adjacent repeated entries for a component */
    302   /* blkdist is distance between groups of identical entries for a component */
    303   blkdist = total_colors;
    304 
    305   for (i = 0; i < cinfo->out_color_components; i++) {
    306     /* fill in colormap entries for i'th color component */
    307     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    308     blksize = blkdist / nci;
    309     for (j = 0; j < nci; j++) {
    310       /* Compute j'th output value (out of nci) for component */
    311       val = output_value(cinfo, i, j, nci-1);
    312       /* Fill in all colormap entries that have this value of this component */
    313       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
    314         /* fill in blksize entries beginning at ptr */
    315         for (k = 0; k < blksize; k++)
    316           colormap[i][ptr+k] = (JSAMPLE) val;
    317       }
    318     }
    319     blkdist = blksize;          /* blksize of this color is blkdist of next */
    320   }
    321 
    322   /* Save the colormap in private storage,
    323    * where it will survive color quantization mode changes.
    324    */
    325   cquantize->sv_colormap = colormap;
    326   cquantize->sv_actual = total_colors;
    327 }
    328 
    329 
    330 /*
    331  * Create the color index table.
    332  */
    333 
    334 LOCAL(void)
    335 create_colorindex (j_decompress_ptr cinfo)
    336 {
    337   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    338   JSAMPROW indexptr;
    339   int i,j,k, nci, blksize, val, pad;
    340 
    341   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
    342    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
    343    * This is not necessary in the other dithering modes.  However, we
    344    * flag whether it was done in case user changes dithering mode.
    345    */
    346   if (cinfo->dither_mode == JDITHER_ORDERED) {
    347     pad = MAXJSAMPLE*2;
    348     cquantize->is_padded = TRUE;
    349   } else {
    350     pad = 0;
    351     cquantize->is_padded = FALSE;
    352   }
    353 
    354   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
    355     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    356      (JDIMENSION) (MAXJSAMPLE+1 + pad),
    357      (JDIMENSION) cinfo->out_color_components);
    358 
    359   /* blksize is number of adjacent repeated entries for a component */
    360   blksize = cquantize->sv_actual;
    361 
    362   for (i = 0; i < cinfo->out_color_components; i++) {
    363     /* fill in colorindex entries for i'th color component */
    364     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    365     blksize = blksize / nci;
    366 
    367     /* adjust colorindex pointers to provide padding at negative indexes. */
    368     if (pad)
    369       cquantize->colorindex[i] += MAXJSAMPLE;
    370 
    371     /* in loop, val = index of current output value, */
    372     /* and k = largest j that maps to current val */
    373     indexptr = cquantize->colorindex[i];
    374     val = 0;
    375     k = largest_input_value(cinfo, i, 0, nci-1);
    376     for (j = 0; j <= MAXJSAMPLE; j++) {
    377       while (j > k)             /* advance val if past boundary */
    378         k = largest_input_value(cinfo, i, ++val, nci-1);
    379       /* premultiply so that no multiplication needed in main processing */
    380       indexptr[j] = (JSAMPLE) (val * blksize);
    381     }
    382     /* Pad at both ends if necessary */
    383     if (pad)
    384       for (j = 1; j <= MAXJSAMPLE; j++) {
    385         indexptr[-j] = indexptr[0];
    386         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
    387       }
    388   }
    389 }
    390 
    391 
    392 /*
    393  * Create an ordered-dither array for a component having ncolors
    394  * distinct output values.
    395  */
    396 
    397 LOCAL(ODITHER_MATRIX_PTR)
    398 make_odither_array (j_decompress_ptr cinfo, int ncolors)
    399 {
    400   ODITHER_MATRIX_PTR odither;
    401   int j,k;
    402   INT32 num,den;
    403 
    404   odither = (ODITHER_MATRIX_PTR)
    405     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    406                                 sizeof(ODITHER_MATRIX));
    407   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
    408    * Hence the dither value for the matrix cell with fill order f
    409    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
    410    * On 16-bit-int machine, be careful to avoid overflow.
    411    */
    412   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
    413   for (j = 0; j < ODITHER_SIZE; j++) {
    414     for (k = 0; k < ODITHER_SIZE; k++) {
    415       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
    416             * MAXJSAMPLE;
    417       /* Ensure round towards zero despite C's lack of consistency
    418        * about rounding negative values in integer division...
    419        */
    420       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
    421     }
    422   }
    423   return odither;
    424 }
    425 
    426 
    427 /*
    428  * Create the ordered-dither tables.
    429  * Components having the same number of representative colors may
    430  * share a dither table.
    431  */
    432 
    433 LOCAL(void)
    434 create_odither_tables (j_decompress_ptr cinfo)
    435 {
    436   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    437   ODITHER_MATRIX_PTR odither;
    438   int i, j, nci;
    439 
    440   for (i = 0; i < cinfo->out_color_components; i++) {
    441     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    442     odither = NULL;             /* search for matching prior component */
    443     for (j = 0; j < i; j++) {
    444       if (nci == cquantize->Ncolors[j]) {
    445         odither = cquantize->odither[j];
    446         break;
    447       }
    448     }
    449     if (odither == NULL)        /* need a new table? */
    450       odither = make_odither_array(cinfo, nci);
    451     cquantize->odither[i] = odither;
    452   }
    453 }
    454 
    455 
    456 /*
    457  * Map some rows of pixels to the output colormapped representation.
    458  */
    459 
    460 METHODDEF(void)
    461 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    462                 JSAMPARRAY output_buf, int num_rows)
    463 /* General case, no dithering */
    464 {
    465   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    466   JSAMPARRAY colorindex = cquantize->colorindex;
    467   register int pixcode, ci;
    468   register JSAMPROW ptrin, ptrout;
    469   int row;
    470   JDIMENSION col;
    471   JDIMENSION width = cinfo->output_width;
    472   register int nc = cinfo->out_color_components;
    473 
    474   for (row = 0; row < num_rows; row++) {
    475     ptrin = input_buf[row];
    476     ptrout = output_buf[row];
    477     for (col = width; col > 0; col--) {
    478       pixcode = 0;
    479       for (ci = 0; ci < nc; ci++) {
    480         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
    481       }
    482       *ptrout++ = (JSAMPLE) pixcode;
    483     }
    484   }
    485 }
    486 
    487 
    488 METHODDEF(void)
    489 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    490                  JSAMPARRAY output_buf, int num_rows)
    491 /* Fast path for out_color_components==3, no dithering */
    492 {
    493   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    494   register int pixcode;
    495   register JSAMPROW ptrin, ptrout;
    496   JSAMPROW colorindex0 = cquantize->colorindex[0];
    497   JSAMPROW colorindex1 = cquantize->colorindex[1];
    498   JSAMPROW colorindex2 = cquantize->colorindex[2];
    499   int row;
    500   JDIMENSION col;
    501   JDIMENSION width = cinfo->output_width;
    502 
    503   for (row = 0; row < num_rows; row++) {
    504     ptrin = input_buf[row];
    505     ptrout = output_buf[row];
    506     for (col = width; col > 0; col--) {
    507       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
    508       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
    509       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
    510       *ptrout++ = (JSAMPLE) pixcode;
    511     }
    512   }
    513 }
    514 
    515 
    516 METHODDEF(void)
    517 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    518                      JSAMPARRAY output_buf, int num_rows)
    519 /* General case, with ordered dithering */
    520 {
    521   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    522   register JSAMPROW input_ptr;
    523   register JSAMPROW output_ptr;
    524   JSAMPROW colorindex_ci;
    525   int * dither;                 /* points to active row of dither matrix */
    526   int row_index, col_index;     /* current indexes into dither matrix */
    527   int nc = cinfo->out_color_components;
    528   int ci;
    529   int row;
    530   JDIMENSION col;
    531   JDIMENSION width = cinfo->output_width;
    532 
    533   for (row = 0; row < num_rows; row++) {
    534     /* Initialize output values to 0 so can process components separately */
    535     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
    536     row_index = cquantize->row_index;
    537     for (ci = 0; ci < nc; ci++) {
    538       input_ptr = input_buf[row] + ci;
    539       output_ptr = output_buf[row];
    540       colorindex_ci = cquantize->colorindex[ci];
    541       dither = cquantize->odither[ci][row_index];
    542       col_index = 0;
    543 
    544       for (col = width; col > 0; col--) {
    545         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
    546          * select output value, accumulate into output code for this pixel.
    547          * Range-limiting need not be done explicitly, as we have extended
    548          * the colorindex table to produce the right answers for out-of-range
    549          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
    550          * required amount of padding.
    551          */
    552         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
    553         input_ptr += nc;
    554         output_ptr++;
    555         col_index = (col_index + 1) & ODITHER_MASK;
    556       }
    557     }
    558     /* Advance row index for next row */
    559     row_index = (row_index + 1) & ODITHER_MASK;
    560     cquantize->row_index = row_index;
    561   }
    562 }
    563 
    564 
    565 METHODDEF(void)
    566 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    567                       JSAMPARRAY output_buf, int num_rows)
    568 /* Fast path for out_color_components==3, with ordered dithering */
    569 {
    570   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    571   register int pixcode;
    572   register JSAMPROW input_ptr;
    573   register JSAMPROW output_ptr;
    574   JSAMPROW colorindex0 = cquantize->colorindex[0];
    575   JSAMPROW colorindex1 = cquantize->colorindex[1];
    576   JSAMPROW colorindex2 = cquantize->colorindex[2];
    577   int * dither0;                /* points to active row of dither matrix */
    578   int * dither1;
    579   int * dither2;
    580   int row_index, col_index;     /* current indexes into dither matrix */
    581   int row;
    582   JDIMENSION col;
    583   JDIMENSION width = cinfo->output_width;
    584 
    585   for (row = 0; row < num_rows; row++) {
    586     row_index = cquantize->row_index;
    587     input_ptr = input_buf[row];
    588     output_ptr = output_buf[row];
    589     dither0 = cquantize->odither[0][row_index];
    590     dither1 = cquantize->odither[1][row_index];
    591     dither2 = cquantize->odither[2][row_index];
    592     col_index = 0;
    593 
    594     for (col = width; col > 0; col--) {
    595       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
    596                                         dither0[col_index]]);
    597       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
    598                                         dither1[col_index]]);
    599       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
    600                                         dither2[col_index]]);
    601       *output_ptr++ = (JSAMPLE) pixcode;
    602       col_index = (col_index + 1) & ODITHER_MASK;
    603     }
    604     row_index = (row_index + 1) & ODITHER_MASK;
    605     cquantize->row_index = row_index;
    606   }
    607 }
    608 
    609 
    610 METHODDEF(void)
    611 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    612                     JSAMPARRAY output_buf, int num_rows)
    613 /* General case, with Floyd-Steinberg dithering */
    614 {
    615   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    616   register LOCFSERROR cur;      /* current error or pixel value */
    617   LOCFSERROR belowerr;          /* error for pixel below cur */
    618   LOCFSERROR bpreverr;          /* error for below/prev col */
    619   LOCFSERROR bnexterr;          /* error for below/next col */
    620   LOCFSERROR delta;
    621   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
    622   register JSAMPROW input_ptr;
    623   register JSAMPROW output_ptr;
    624   JSAMPROW colorindex_ci;
    625   JSAMPROW colormap_ci;
    626   int pixcode;
    627   int nc = cinfo->out_color_components;
    628   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
    629   int dirnc;                    /* dir * nc */
    630   int ci;
    631   int row;
    632   JDIMENSION col;
    633   JDIMENSION width = cinfo->output_width;
    634   JSAMPLE *range_limit = cinfo->sample_range_limit;
    635   SHIFT_TEMPS
    636 
    637   for (row = 0; row < num_rows; row++) {
    638     /* Initialize output values to 0 so can process components separately */
    639     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
    640     for (ci = 0; ci < nc; ci++) {
    641       input_ptr = input_buf[row] + ci;
    642       output_ptr = output_buf[row];
    643       if (cquantize->on_odd_row) {
    644         /* work right to left in this row */
    645         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
    646         output_ptr += width-1;
    647         dir = -1;
    648         dirnc = -nc;
    649         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
    650       } else {
    651         /* work left to right in this row */
    652         dir = 1;
    653         dirnc = nc;
    654         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
    655       }
    656       colorindex_ci = cquantize->colorindex[ci];
    657       colormap_ci = cquantize->sv_colormap[ci];
    658       /* Preset error values: no error propagated to first pixel from left */
    659       cur = 0;
    660       /* and no error propagated to row below yet */
    661       belowerr = bpreverr = 0;
    662 
    663       for (col = width; col > 0; col--) {
    664         /* cur holds the error propagated from the previous pixel on the
    665          * current line.  Add the error propagated from the previous line
    666          * to form the complete error correction term for this pixel, and
    667          * round the error term (which is expressed * 16) to an integer.
    668          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
    669          * for either sign of the error value.
    670          * Note: errorptr points to *previous* column's array entry.
    671          */
    672         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
    673         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
    674          * The maximum error is +- MAXJSAMPLE; this sets the required size
    675          * of the range_limit array.
    676          */
    677         cur += GETJSAMPLE(*input_ptr);
    678         cur = GETJSAMPLE(range_limit[cur]);
    679         /* Select output value, accumulate into output code for this pixel */
    680         pixcode = GETJSAMPLE(colorindex_ci[cur]);
    681         *output_ptr += (JSAMPLE) pixcode;
    682         /* Compute actual representation error at this pixel */
    683         /* Note: we can do this even though we don't have the final */
    684         /* pixel code, because the colormap is orthogonal. */
    685         cur -= GETJSAMPLE(colormap_ci[pixcode]);
    686         /* Compute error fractions to be propagated to adjacent pixels.
    687          * Add these into the running sums, and simultaneously shift the
    688          * next-line error sums left by 1 column.
    689          */
    690         bnexterr = cur;
    691         delta = cur * 2;
    692         cur += delta;           /* form error * 3 */
    693         errorptr[0] = (FSERROR) (bpreverr + cur);
    694         cur += delta;           /* form error * 5 */
    695         bpreverr = belowerr + cur;
    696         belowerr = bnexterr;
    697         cur += delta;           /* form error * 7 */
    698         /* At this point cur contains the 7/16 error value to be propagated
    699          * to the next pixel on the current line, and all the errors for the
    700          * next line have been shifted over. We are therefore ready to move on.
    701          */
    702         input_ptr += dirnc;     /* advance input ptr to next column */
    703         output_ptr += dir;      /* advance output ptr to next column */
    704         errorptr += dir;        /* advance errorptr to current column */
    705       }
    706       /* Post-loop cleanup: we must unload the final error value into the
    707        * final fserrors[] entry.  Note we need not unload belowerr because
    708        * it is for the dummy column before or after the actual array.
    709        */
    710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
    711     }
    712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
    713   }
    714 }
    715 
    716 
    717 /*
    718  * Allocate workspace for Floyd-Steinberg errors.
    719  */
    720 
    721 LOCAL(void)
    722 alloc_fs_workspace (j_decompress_ptr cinfo)
    723 {
    724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    725   size_t arraysize;
    726   int i;
    727 
    728   arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
    729   for (i = 0; i < cinfo->out_color_components; i++) {
    730     cquantize->fserrors[i] = (FSERRPTR)
    731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
    732   }
    733 }
    734 
    735 
    736 /*
    737  * Initialize for one-pass color quantization.
    738  */
    739 
    740 METHODDEF(void)
    741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
    742 {
    743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    744   size_t arraysize;
    745   int i;
    746 
    747   /* Install my colormap. */
    748   cinfo->colormap = cquantize->sv_colormap;
    749   cinfo->actual_number_of_colors = cquantize->sv_actual;
    750 
    751   /* Initialize for desired dithering mode. */
    752   switch (cinfo->dither_mode) {
    753   case JDITHER_NONE:
    754     if (cinfo->out_color_components == 3)
    755       cquantize->pub.color_quantize = color_quantize3;
    756     else
    757       cquantize->pub.color_quantize = color_quantize;
    758     break;
    759   case JDITHER_ORDERED:
    760     if (cinfo->out_color_components == 3)
    761       cquantize->pub.color_quantize = quantize3_ord_dither;
    762     else
    763       cquantize->pub.color_quantize = quantize_ord_dither;
    764     cquantize->row_index = 0;   /* initialize state for ordered dither */
    765     /* If user changed to ordered dither from another mode,
    766      * we must recreate the color index table with padding.
    767      * This will cost extra space, but probably isn't very likely.
    768      */
    769     if (! cquantize->is_padded)
    770       create_colorindex(cinfo);
    771     /* Create ordered-dither tables if we didn't already. */
    772     if (cquantize->odither[0] == NULL)
    773       create_odither_tables(cinfo);
    774     break;
    775   case JDITHER_FS:
    776     cquantize->pub.color_quantize = quantize_fs_dither;
    777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
    778     /* Allocate Floyd-Steinberg workspace if didn't already. */
    779     if (cquantize->fserrors[0] == NULL)
    780       alloc_fs_workspace(cinfo);
    781     /* Initialize the propagated errors to zero. */
    782     arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
    783     for (i = 0; i < cinfo->out_color_components; i++)
    784       jzero_far((void *) cquantize->fserrors[i], arraysize);
    785     break;
    786   default:
    787     ERREXIT(cinfo, JERR_NOT_COMPILED);
    788     break;
    789   }
    790 }
    791 
    792 
    793 /*
    794  * Finish up at the end of the pass.
    795  */
    796 
    797 METHODDEF(void)
    798 finish_pass_1_quant (j_decompress_ptr cinfo)
    799 {
    800   /* no work in 1-pass case */
    801 }
    802 
    803 
    804 /*
    805  * Switch to a new external colormap between output passes.
    806  * Shouldn't get to this module!
    807  */
    808 
    809 METHODDEF(void)
    810 new_color_map_1_quant (j_decompress_ptr cinfo)
    811 {
    812   ERREXIT(cinfo, JERR_MODE_CHANGE);
    813 }
    814 
    815 
    816 /*
    817  * Module initialization routine for 1-pass color quantization.
    818  */
    819 
    820 GLOBAL(void)
    821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
    822 {
    823   my_cquantize_ptr cquantize;
    824 
    825   cquantize = (my_cquantize_ptr)
    826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    827                                 sizeof(my_cquantizer));
    828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
    829   cquantize->pub.start_pass = start_pass_1_quant;
    830   cquantize->pub.finish_pass = finish_pass_1_quant;
    831   cquantize->pub.new_color_map = new_color_map_1_quant;
    832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
    833   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
    834 
    835   /* Make sure my internal arrays won't overflow */
    836   if (cinfo->out_color_components > MAX_Q_COMPS)
    837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
    838   /* Make sure colormap indexes can be represented by JSAMPLEs */
    839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
    840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
    841 
    842   /* Create the colormap and color index table. */
    843   create_colormap(cinfo);
    844   create_colorindex(cinfo);
    845 
    846   /* Allocate Floyd-Steinberg workspace now if requested.
    847    * We do this now since it may affect the memory manager's space
    848    * calculations.  If the user changes to FS dither mode in a later pass, we
    849    * will allocate the space then, and will possibly overrun the
    850    * max_memory_to_use setting.
    851    */
    852   if (cinfo->dither_mode == JDITHER_FS)
    853     alloc_fs_workspace(cinfo);
    854 }
    855 
    856 #endif /* QUANT_1PASS_SUPPORTED */
    857