Home | History | Annotate | Download | only in common
      1 /* Functions to compute MD5 message digest of files or memory blocks.
      2    according to the definition of MD5 in RFC 1321 from April 1992.
      3    Copyright (C) 1995,1996,1997,1999,2000,2001,2005
      4     Free Software Foundation, Inc.
      5    This file is part of the GNU C Library.
      6 
      7    The GNU C Library is free software; you can redistribute it and/or
      8    modify it under the terms of the GNU Lesser General Public
      9    License as published by the Free Software Foundation; either
     10    version 2.1 of the License, or (at your option) any later version.
     11 
     12    The GNU C Library is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     15    Lesser General Public License for more details.
     16 
     17    You should have received a copy of the GNU Lesser General Public
     18    License along with the GNU C Library; if not, write to the Free
     19    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
     20    02111-1307 USA.  */
     21 
     22 /* Written by Ulrich Drepper <drepper (at) gnu.ai.mit.edu>, 1995.  */
     23 
     24 #include <sys/types.h>
     25 
     26 # include <stdlib.h>
     27 # include <string.h>
     28 
     29 #include "md5.h"
     30 
     31 /* #ifdef _LIBC */
     32 # include <endian.h>
     33 # if __BYTE_ORDER == __BIG_ENDIAN
     34 #  define WORDS_BIGENDIAN 1
     35 # endif
     36 /* We need to keep the namespace clean so define the MD5 function
     37    protected using leading __ .  */
     38 # define md5_init_ctx __md5_init_ctx
     39 # define md5_process_block __md5_process_block
     40 # define md5_process_bytes __md5_process_bytes
     41 # define md5_finish_ctx __md5_finish_ctx
     42 # define md5_read_ctx __md5_read_ctx
     43 # define md5_stream __md5_stream
     44 # define md5_buffer __md5_buffer
     45 /* #endif */
     46 
     47 #ifdef WORDS_BIGENDIAN
     48 # define SWAP(n)                                                        \
     49     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
     50 #else
     51 # define SWAP(n) (n)
     52 #endif
     53 
     54 void
     55 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx);
     56 void
     57 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx);
     58 
     59 /* This array contains the bytes used to pad the buffer to the next
     60    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
     61 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
     62 
     63 
     64 /* Initialize structure containing state of computation.
     65    (RFC 1321, 3.3: Step 3)  */
     66 void
     67 md5_init_ctx (ctx)
     68      struct md5_ctx *ctx;
     69 {
     70   ctx->A = 0x67452301;
     71   ctx->B = 0xefcdab89;
     72   ctx->C = 0x98badcfe;
     73   ctx->D = 0x10325476;
     74 
     75   ctx->total[0] = ctx->total[1] = 0;
     76   ctx->buflen = 0;
     77 }
     78 
     79 /* Put result from CTX in first 16 bytes following RESBUF.  The result
     80    must be in little endian byte order.
     81 
     82    IMPORTANT: On some systems it is required that RESBUF is correctly
     83    aligned for a 32 bits value.  */
     84 void *
     85 md5_read_ctx (ctx, resbuf)
     86      const struct md5_ctx *ctx;
     87      void *resbuf;
     88 {
     89   ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
     90   ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
     91   ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
     92   ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
     93 
     94   return resbuf;
     95 }
     96 
     97 /* Process the remaining bytes in the internal buffer and the usual
     98    prolog according to the standard and write the result to RESBUF.
     99 
    100    IMPORTANT: On some systems it is required that RESBUF is correctly
    101    aligned for a 32 bits value.  */
    102 void *
    103 md5_finish_ctx (ctx, resbuf)
    104      struct md5_ctx *ctx;
    105      void *resbuf;
    106 {
    107   /* Take yet unprocessed bytes into account.  */
    108   md5_uint32 bytes = ctx->buflen;
    109   size_t pad;
    110 
    111   /* Now count remaining bytes.  */
    112   ctx->total[0] += bytes;
    113   if (ctx->total[0] < bytes)
    114     ++ctx->total[1];
    115 
    116   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
    117   memcpy (&ctx->buffer[bytes], fillbuf, pad);
    118 
    119   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
    120   *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
    121   *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
    122                             (ctx->total[0] >> 29));
    123 
    124   /* Process last bytes.  */
    125   md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
    126 
    127   return md5_read_ctx (ctx, resbuf);
    128 }
    129 
    130 /* Compute MD5 message digest for bytes read from STREAM.  The
    131    resulting message digest number will be written into the 16 bytes
    132    beginning at RESBLOCK.  */
    133 int
    134 md5_stream (stream, resblock)
    135      FILE *stream;
    136      void *resblock;
    137 {
    138   /* Important: BLOCKSIZE must be a multiple of 64.  */
    139 #define BLOCKSIZE 4096
    140   struct md5_ctx ctx;
    141   char buffer[BLOCKSIZE + 72];
    142   size_t sum;
    143 
    144   /* Initialize the computation context.  */
    145   md5_init_ctx (&ctx);
    146 
    147   /* Iterate over full file contents.  */
    148   while (1)
    149     {
    150       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
    151      computation function processes the whole buffer so that with the
    152      next round of the loop another block can be read.  */
    153       size_t n;
    154       sum = 0;
    155 
    156       /* Read block.  Take care for partial reads.  */
    157       do
    158     {
    159       n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
    160 
    161       sum += n;
    162     }
    163       while (sum < BLOCKSIZE && n != 0);
    164       if (n == 0 && ferror (stream))
    165         return 1;
    166 
    167       /* If end of file is reached, end the loop.  */
    168       if (n == 0)
    169     break;
    170 
    171       /* Process buffer with BLOCKSIZE bytes.  Note that
    172             BLOCKSIZE % 64 == 0
    173        */
    174       md5_process_block (buffer, BLOCKSIZE, &ctx);
    175     }
    176 
    177   /* Add the last bytes if necessary.  */
    178   if (sum > 0)
    179     md5_process_bytes (buffer, sum, &ctx);
    180 
    181   /* Construct result in desired memory.  */
    182   md5_finish_ctx (&ctx, resblock);
    183   return 0;
    184 }
    185 
    186 /* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
    187    result is always in little endian byte order, so that a byte-wise
    188    output yields to the wanted ASCII representation of the message
    189    digest.  */
    190 void *
    191 md5_buffer (buffer, len, resblock)
    192      const char *buffer;
    193      size_t len;
    194      void *resblock;
    195 {
    196   struct md5_ctx ctx;
    197 
    198   /* Initialize the computation context.  */
    199   md5_init_ctx (&ctx);
    200 
    201   /* Process whole buffer but last len % 64 bytes.  */
    202   md5_process_bytes (buffer, len, &ctx);
    203 
    204   /* Put result in desired memory area.  */
    205   return md5_finish_ctx (&ctx, resblock);
    206 }
    207 
    208 
    209 void
    210 md5_process_bytes (buffer, len, ctx)
    211      const void *buffer;
    212      size_t len;
    213      struct md5_ctx *ctx;
    214 {
    215   /* When we already have some bits in our internal buffer concatenate
    216      both inputs first.  */
    217   if (ctx->buflen != 0)
    218     {
    219       size_t left_over = ctx->buflen;
    220       size_t add = 128 - left_over > len ? len : 128 - left_over;
    221 
    222       memcpy (&ctx->buffer[left_over], buffer, add);
    223       ctx->buflen += add;
    224 
    225       if (ctx->buflen > 64)
    226     {
    227       md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
    228 
    229       ctx->buflen &= 63;
    230       /* The regions in the following copy operation cannot overlap.  */
    231       memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
    232           ctx->buflen);
    233     }
    234 
    235       buffer = (const char *) buffer + add;
    236       len -= add;
    237     }
    238 
    239   /* Process available complete blocks.  */
    240   if (len >= 64)
    241     {
    242 #if !_STRING_ARCH_unaligned
    243 /* To check alignment gcc has an appropriate operator.  Other
    244    compilers don't.  */
    245 # if __GNUC__ >= 2
    246 #  define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
    247 # else
    248 #  define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
    249 # endif
    250       if (UNALIGNED_P (buffer))
    251     while (len > 64)
    252       {
    253         md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
    254         buffer = (const char *) buffer + 64;
    255         len -= 64;
    256       }
    257       else
    258 #endif
    259     {
    260       md5_process_block (buffer, len & ~63, ctx);
    261       buffer = (const char *) buffer + (len & ~63);
    262       len &= 63;
    263     }
    264     }
    265 
    266   /* Move remaining bytes in internal buffer.  */
    267   if (len > 0)
    268     {
    269       size_t left_over = ctx->buflen;
    270 
    271       memcpy (&ctx->buffer[left_over], buffer, len);
    272       left_over += len;
    273       if (left_over >= 64)
    274     {
    275       md5_process_block (ctx->buffer, 64, ctx);
    276       left_over -= 64;
    277       memcpy (ctx->buffer, &ctx->buffer[64], left_over);
    278     }
    279       ctx->buflen = left_over;
    280     }
    281 }
    282 
    283 
    284 /* These are the four functions used in the four steps of the MD5 algorithm
    285    and defined in the RFC 1321.  The first function is a little bit optimized
    286    (as found in Colin Plumbs public domain implementation).  */
    287 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
    288 #define FF(b, c, d) (d ^ (b & (c ^ d)))
    289 #define FG(b, c, d) FF (d, b, c)
    290 #define FH(b, c, d) (b ^ c ^ d)
    291 #define FI(b, c, d) (c ^ (b | ~d))
    292 
    293 /* Process LEN bytes of BUFFER, accumulating context into CTX.
    294    It is assumed that LEN % 64 == 0.  */
    295 
    296 void
    297 md5_process_block (buffer, len, ctx)
    298      const void *buffer;
    299      size_t len;
    300      struct md5_ctx *ctx;
    301 {
    302   md5_uint32 correct_words[16];
    303   const md5_uint32 *words = buffer;
    304   size_t nwords = len / sizeof (md5_uint32);
    305   const md5_uint32 *endp = words + nwords;
    306   md5_uint32 A = ctx->A;
    307   md5_uint32 B = ctx->B;
    308   md5_uint32 C = ctx->C;
    309   md5_uint32 D = ctx->D;
    310 
    311   /* First increment the byte count.  RFC 1321 specifies the possible
    312      length of the file up to 2^64 bits.  Here we only compute the
    313      number of bytes.  Do a double word increment.  */
    314   ctx->total[0] += len;
    315   if (ctx->total[0] < len)
    316     ++ctx->total[1];
    317 
    318   /* Process all bytes in the buffer with 64 bytes in each round of
    319      the loop.  */
    320   while (words < endp)
    321     {
    322       md5_uint32 *cwp = correct_words;
    323       md5_uint32 A_save = A;
    324       md5_uint32 B_save = B;
    325       md5_uint32 C_save = C;
    326       md5_uint32 D_save = D;
    327 
    328       /* First round: using the given function, the context and a constant
    329      the next context is computed.  Because the algorithms processing
    330      unit is a 32-bit word and it is determined to work on words in
    331      little endian byte order we perhaps have to change the byte order
    332      before the computation.  To reduce the work for the next steps
    333      we store the swapped words in the array CORRECT_WORDS.  */
    334 
    335 #define OP(a, b, c, d, s, T)                                            \
    336       do                                                                \
    337         {                                                               \
    338       a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;         \
    339       ++words;                                                  \
    340       CYCLIC (a, s);                                            \
    341       a += b;                                                   \
    342         }                                                               \
    343       while (0)
    344 
    345       /* It is unfortunate that C does not provide an operator for
    346      cyclic rotation.  Hope the C compiler is smart enough.  */
    347 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
    348 
    349       /* Before we start, one word to the strange constants.
    350      They are defined in RFC 1321 as
    351 
    352      T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
    353        */
    354 
    355       /* Round 1.  */
    356       OP (A, B, C, D,  7, 0xd76aa478);
    357       OP (D, A, B, C, 12, 0xe8c7b756);
    358       OP (C, D, A, B, 17, 0x242070db);
    359       OP (B, C, D, A, 22, 0xc1bdceee);
    360       OP (A, B, C, D,  7, 0xf57c0faf);
    361       OP (D, A, B, C, 12, 0x4787c62a);
    362       OP (C, D, A, B, 17, 0xa8304613);
    363       OP (B, C, D, A, 22, 0xfd469501);
    364       OP (A, B, C, D,  7, 0x698098d8);
    365       OP (D, A, B, C, 12, 0x8b44f7af);
    366       OP (C, D, A, B, 17, 0xffff5bb1);
    367       OP (B, C, D, A, 22, 0x895cd7be);
    368       OP (A, B, C, D,  7, 0x6b901122);
    369       OP (D, A, B, C, 12, 0xfd987193);
    370       OP (C, D, A, B, 17, 0xa679438e);
    371       OP (B, C, D, A, 22, 0x49b40821);
    372 
    373       /* For the second to fourth round we have the possibly swapped words
    374      in CORRECT_WORDS.  Redefine the macro to take an additional first
    375      argument specifying the function to use.  */
    376 #undef OP
    377 #define OP(f, a, b, c, d, k, s, T)                                      \
    378       do                                                                \
    379     {                                                           \
    380       a += f (b, c, d) + correct_words[k] + T;                  \
    381       CYCLIC (a, s);                                            \
    382       a += b;                                                   \
    383     }                                                           \
    384       while (0)
    385 
    386       /* Round 2.  */
    387       OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
    388       OP (FG, D, A, B, C,  6,  9, 0xc040b340);
    389       OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
    390       OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
    391       OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
    392       OP (FG, D, A, B, C, 10,  9, 0x02441453);
    393       OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
    394       OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
    395       OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
    396       OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
    397       OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
    398       OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
    399       OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
    400       OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
    401       OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
    402       OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
    403 
    404       /* Round 3.  */
    405       OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
    406       OP (FH, D, A, B, C,  8, 11, 0x8771f681);
    407       OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
    408       OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
    409       OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
    410       OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
    411       OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
    412       OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
    413       OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
    414       OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
    415       OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
    416       OP (FH, B, C, D, A,  6, 23, 0x04881d05);
    417       OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
    418       OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
    419       OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
    420       OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
    421 
    422       /* Round 4.  */
    423       OP (FI, A, B, C, D,  0,  6, 0xf4292244);
    424       OP (FI, D, A, B, C,  7, 10, 0x432aff97);
    425       OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
    426       OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
    427       OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
    428       OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
    429       OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
    430       OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
    431       OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
    432       OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
    433       OP (FI, C, D, A, B,  6, 15, 0xa3014314);
    434       OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
    435       OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
    436       OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
    437       OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
    438       OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
    439 
    440       /* Add the starting values of the context.  */
    441       A += A_save;
    442       B += B_save;
    443       C += C_save;
    444       D += D_save;
    445     }
    446 
    447   /* Put checksum in context given as argument.  */
    448   ctx->A = A;
    449   ctx->B = B;
    450   ctx->C = C;
    451   ctx->D = D;
    452 }
    453