Home | History | Annotate | Download | only in TableGen
      1 ==============================
      2 TableGen Language Introduction
      3 ==============================
      4 
      5 .. contents::
      6    :local:
      7 
      8 .. warning::
      9    This document is extremely rough. If you find something lacking, please
     10    fix it, file a documentation bug, or ask about it on llvm-dev.
     11 
     12 Introduction
     13 ============
     14 
     15 This document is not meant to be a normative spec about the TableGen language
     16 in and of itself (i.e. how to understand a given construct in terms of how
     17 it affects the final set of records represented by the TableGen file). For
     18 the formal language specification, see :doc:`LangRef`.
     19 
     20 TableGen syntax
     21 ===============
     22 
     23 TableGen doesn't care about the meaning of data (that is up to the backend to
     24 define), but it does care about syntax, and it enforces a simple type system.
     25 This section describes the syntax and the constructs allowed in a TableGen file.
     26 
     27 TableGen primitives
     28 -------------------
     29 
     30 TableGen comments
     31 ^^^^^^^^^^^^^^^^^
     32 
     33 TableGen supports C++ style "``//``" comments, which run to the end of the
     34 line, and it also supports **nestable** "``/* */``" comments.
     35 
     36 .. _TableGen type:
     37 
     38 The TableGen type system
     39 ^^^^^^^^^^^^^^^^^^^^^^^^
     40 
     41 TableGen files are strongly typed, in a simple (but complete) type-system.
     42 These types are used to perform automatic conversions, check for errors, and to
     43 help interface designers constrain the input that they allow.  Every `value
     44 definition`_ is required to have an associated type.
     45 
     46 TableGen supports a mixture of very low-level types (such as ``bit``) and very
     47 high-level types (such as ``dag``).  This flexibility is what allows it to
     48 describe a wide range of information conveniently and compactly.  The TableGen
     49 types are:
     50 
     51 ``bit``
     52     A 'bit' is a boolean value that can hold either 0 or 1.
     53 
     54 ``int``
     55     The 'int' type represents a simple 32-bit integer value, such as 5.
     56 
     57 ``string``
     58     The 'string' type represents an ordered sequence of characters of arbitrary
     59     length.
     60 
     61 ``bits<n>``
     62     A 'bits' type is an arbitrary, but fixed, size integer that is broken up
     63     into individual bits.  This type is useful because it can handle some bits
     64     being defined while others are undefined.
     65 
     66 ``list<ty>``
     67     This type represents a list whose elements are some other type.  The
     68     contained type is arbitrary: it can even be another list type.
     69 
     70 Class type
     71     Specifying a class name in a type context means that the defined value must
     72     be a subclass of the specified class.  This is useful in conjunction with
     73     the ``list`` type, for example, to constrain the elements of the list to a
     74     common base class (e.g., a ``list<Register>`` can only contain definitions
     75     derived from the "``Register``" class).
     76 
     77 ``dag``
     78     This type represents a nestable directed graph of elements.
     79 
     80 To date, these types have been sufficient for describing things that TableGen
     81 has been used for, but it is straight-forward to extend this list if needed.
     82 
     83 .. _TableGen expressions:
     84 
     85 TableGen values and expressions
     86 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     87 
     88 TableGen allows for a pretty reasonable number of different expression forms
     89 when building up values.  These forms allow the TableGen file to be written in a
     90 natural syntax and flavor for the application.  The current expression forms
     91 supported include:
     92 
     93 ``?``
     94     uninitialized field
     95 
     96 ``0b1001011``
     97     binary integer value.
     98     Note that this is sized by the number of bits given and will not be
     99     silently extended/truncated.
    100 
    101 ``07654321``
    102     octal integer value (indicated by a leading 0)
    103 
    104 ``7``
    105     decimal integer value
    106 
    107 ``0x7F``
    108     hexadecimal integer value
    109 
    110 ``"foo"``
    111     string value
    112 
    113 ``[{ ... }]``
    114     usually called a "code fragment", but is just a multiline string literal
    115 
    116 ``[ X, Y, Z ]<type>``
    117     list value.  <type> is the type of the list element and is usually optional.
    118     In rare cases, TableGen is unable to deduce the element type in which case
    119     the user must specify it explicitly.
    120 
    121 ``{ a, b, 0b10 }``
    122     initializer for a "bits<4>" value.
    123     1-bit from "a", 1-bit from "b", 2-bits from 0b10.
    124 
    125 ``value``
    126     value reference
    127 
    128 ``value{17}``
    129     access to one bit of a value
    130 
    131 ``value{15-17}``
    132     access to multiple bits of a value
    133 
    134 ``DEF``
    135     reference to a record definition
    136 
    137 ``CLASS<val list>``
    138     reference to a new anonymous definition of CLASS with the specified template
    139     arguments.
    140 
    141 ``X.Y``
    142     reference to the subfield of a value
    143 
    144 ``list[4-7,17,2-3]``
    145     A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
    146     Elements may be included multiple times.
    147 
    148 ``foreach <var> = [ <list> ] in { <body> }``
    149 
    150 ``foreach <var> = [ <list> ] in <def>``
    151     Replicate <body> or <def>, replacing instances of <var> with each value
    152     in <list>.  <var> is scoped at the level of the ``foreach`` loop and must
    153     not conflict with any other object introduced in <body> or <def>.  Currently
    154     only ``def``\s are expanded within <body>.
    155 
    156 ``foreach <var> = 0-15 in ...``
    157 
    158 ``foreach <var> = {0-15,32-47} in ...``
    159     Loop over ranges of integers. The braces are required for multiple ranges.
    160 
    161 ``(DEF a, b)``
    162     a dag value.  The first element is required to be a record definition, the
    163     remaining elements in the list may be arbitrary other values, including
    164     nested ```dag``' values.
    165 
    166 ``!listconcat(a, b, ...)``
    167     A list value that is the result of concatenating the 'a' and 'b' lists.
    168     The lists must have the same element type.
    169     More than two arguments are accepted with the result being the concatenation
    170     of all the lists given.
    171 
    172 ``!strconcat(a, b, ...)``
    173     A string value that is the result of concatenating the 'a' and 'b' strings.
    174     More than two arguments are accepted with the result being the concatenation
    175     of all the strings given.
    176 
    177 ``str1#str2``
    178     "#" (paste) is a shorthand for !strconcat.  It may concatenate things that
    179     are not quoted strings, in which case an implicit !cast<string> is done on
    180     the operand of the paste.
    181 
    182 ``!cast<type>(a)``
    183     A symbol of type *type* obtained by looking up the string 'a' in the symbol
    184     table.  If the type of 'a' does not match *type*, TableGen aborts with an
    185     error. !cast<string> is a special case in that the argument must be an
    186     object defined by a 'def' construct.
    187 
    188 ``!subst(a, b, c)``
    189     If 'a' and 'b' are of string type or are symbol references, substitute 'b'
    190     for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.
    191 
    192 ``!foreach(a, b, c)``
    193     For each member of dag or list 'b' apply operator 'c.'  'a' is a dummy
    194     variable that should be declared as a member variable of an instantiated
    195     class.  This operation is analogous to $(foreach) in GNU make.
    196 
    197 ``!head(a)``
    198     The first element of list 'a.'
    199 
    200 ``!tail(a)``
    201     The 2nd-N elements of list 'a.'
    202 
    203 ``!empty(a)``
    204     An integer {0,1} indicating whether list 'a' is empty.
    205 
    206 ``!if(a,b,c)``
    207   'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
    208 
    209 ``!eq(a,b)``
    210     'bit 1' if string a is equal to string b, 0 otherwise.  This only operates
    211     on string, int and bit objects.  Use !cast<string> to compare other types of
    212     objects.
    213 
    214 ``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)`` ``!add(a,b)`` ``!and(a,b)``
    215     The usual binary and arithmetic operators.
    216 
    217 Note that all of the values have rules specifying how they convert to values
    218 for different types.  These rules allow you to assign a value like "``7``"
    219 to a "``bits<4>``" value, for example.
    220 
    221 Classes and definitions
    222 -----------------------
    223 
    224 As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
    225 'records') in TableGen are the main high-level unit of information that TableGen
    226 collects.  Records are defined with a ``def`` or ``class`` keyword, the record
    227 name, and an optional list of "`template arguments`_".  If the record has
    228 superclasses, they are specified as a comma separated list that starts with a
    229 colon character ("``:``").  If `value definitions`_ or `let expressions`_ are
    230 needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
    231 the record ends with a semicolon.
    232 
    233 Here is a simple TableGen file:
    234 
    235 .. code-block:: llvm
    236 
    237   class C { bit V = 1; }
    238   def X : C;
    239   def Y : C {
    240     string Greeting = "hello";
    241   }
    242 
    243 This example defines two definitions, ``X`` and ``Y``, both of which derive from
    244 the ``C`` class.  Because of this, they both get the ``V`` bit value.  The ``Y``
    245 definition also gets the Greeting member as well.
    246 
    247 In general, classes are useful for collecting together the commonality between a
    248 group of records and isolating it in a single place.  Also, classes permit the
    249 specification of default values for their subclasses, allowing the subclasses to
    250 override them as they wish.
    251 
    252 .. _value definition:
    253 .. _value definitions:
    254 
    255 Value definitions
    256 ^^^^^^^^^^^^^^^^^
    257 
    258 Value definitions define named entries in records.  A value must be defined
    259 before it can be referred to as the operand for another value definition or
    260 before the value is reset with a `let expression`_.  A value is defined by
    261 specifying a `TableGen type`_ and a name.  If an initial value is available, it
    262 may be specified after the type with an equal sign.  Value definitions require
    263 terminating semicolons.
    264 
    265 .. _let expression:
    266 .. _let expressions:
    267 .. _"let" expressions within a record:
    268 
    269 'let' expressions
    270 ^^^^^^^^^^^^^^^^^
    271 
    272 A record-level let expression is used to change the value of a value definition
    273 in a record.  This is primarily useful when a superclass defines a value that a
    274 derived class or definition wants to override.  Let expressions consist of the
    275 '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
    276 value.  For example, a new class could be added to the example above, redefining
    277 the ``V`` field for all of its subclasses:
    278 
    279 .. code-block:: llvm
    280 
    281   class D : C { let V = 0; }
    282   def Z : D;
    283 
    284 In this case, the ``Z`` definition will have a zero value for its ``V`` value,
    285 despite the fact that it derives (indirectly) from the ``C`` class, because the
    286 ``D`` class overrode its value.
    287 
    288 .. _template arguments:
    289 
    290 Class template arguments
    291 ^^^^^^^^^^^^^^^^^^^^^^^^
    292 
    293 TableGen permits the definition of parameterized classes as well as normal
    294 concrete classes.  Parameterized TableGen classes specify a list of variable
    295 bindings (which may optionally have defaults) that are bound when used.  Here is
    296 a simple example:
    297 
    298 .. code-block:: llvm
    299 
    300   class FPFormat<bits<3> val> {
    301     bits<3> Value = val;
    302   }
    303   def NotFP      : FPFormat<0>;
    304   def ZeroArgFP  : FPFormat<1>;
    305   def OneArgFP   : FPFormat<2>;
    306   def OneArgFPRW : FPFormat<3>;
    307   def TwoArgFP   : FPFormat<4>;
    308   def CompareFP  : FPFormat<5>;
    309   def CondMovFP  : FPFormat<6>;
    310   def SpecialFP  : FPFormat<7>;
    311 
    312 In this case, template arguments are used as a space efficient way to specify a
    313 list of "enumeration values", each with a "``Value``" field set to the specified
    314 integer.
    315 
    316 The more esoteric forms of `TableGen expressions`_ are useful in conjunction
    317 with template arguments.  As an example:
    318 
    319 .. code-block:: llvm
    320 
    321   class ModRefVal<bits<2> val> {
    322     bits<2> Value = val;
    323   }
    324 
    325   def None   : ModRefVal<0>;
    326   def Mod    : ModRefVal<1>;
    327   def Ref    : ModRefVal<2>;
    328   def ModRef : ModRefVal<3>;
    329 
    330   class Value<ModRefVal MR> {
    331     // Decode some information into a more convenient format, while providing
    332     // a nice interface to the user of the "Value" class.
    333     bit isMod = MR.Value{0};
    334     bit isRef = MR.Value{1};
    335 
    336     // other stuff...
    337   }
    338 
    339   // Example uses
    340   def bork : Value<Mod>;
    341   def zork : Value<Ref>;
    342   def hork : Value<ModRef>;
    343 
    344 This is obviously a contrived example, but it shows how template arguments can
    345 be used to decouple the interface provided to the user of the class from the
    346 actual internal data representation expected by the class.  In this case,
    347 running ``llvm-tblgen`` on the example prints the following definitions:
    348 
    349 .. code-block:: llvm
    350 
    351   def bork {      // Value
    352     bit isMod = 1;
    353     bit isRef = 0;
    354   }
    355   def hork {      // Value
    356     bit isMod = 1;
    357     bit isRef = 1;
    358   }
    359   def zork {      // Value
    360     bit isMod = 0;
    361     bit isRef = 1;
    362   }
    363 
    364 This shows that TableGen was able to dig into the argument and extract a piece
    365 of information that was requested by the designer of the "Value" class.  For
    366 more realistic examples, please see existing users of TableGen, such as the X86
    367 backend.
    368 
    369 Multiclass definitions and instances
    370 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    371 
    372 While classes with template arguments are a good way to factor commonality
    373 between two instances of a definition, multiclasses allow a convenient notation
    374 for defining multiple definitions at once (instances of implicitly constructed
    375 classes).  For example, consider an 3-address instruction set whose instructions
    376 come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
    377 (e.g. SPARC). In this case, you'd like to specify in one place that this
    378 commonality exists, then in a separate place indicate what all the ops are.
    379 
    380 Here is an example TableGen fragment that shows this idea:
    381 
    382 .. code-block:: llvm
    383 
    384   def ops;
    385   def GPR;
    386   def Imm;
    387   class inst<int opc, string asmstr, dag operandlist>;
    388 
    389   multiclass ri_inst<int opc, string asmstr> {
    390     def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    391                    (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
    392     def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    393                    (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
    394   }
    395 
    396   // Instantiations of the ri_inst multiclass.
    397   defm ADD : ri_inst<0b111, "add">;
    398   defm SUB : ri_inst<0b101, "sub">;
    399   defm MUL : ri_inst<0b100, "mul">;
    400   ...
    401 
    402 The name of the resultant definitions has the multidef fragment names appended
    403 to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc.  A defm may
    404 inherit from multiple multiclasses, instantiating definitions from each
    405 multiclass.  Using a multiclass this way is exactly equivalent to instantiating
    406 the classes multiple times yourself, e.g. by writing:
    407 
    408 .. code-block:: llvm
    409 
    410   def ops;
    411   def GPR;
    412   def Imm;
    413   class inst<int opc, string asmstr, dag operandlist>;
    414 
    415   class rrinst<int opc, string asmstr>
    416     : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    417            (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
    418 
    419   class riinst<int opc, string asmstr>
    420     : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    421            (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
    422 
    423   // Instantiations of the ri_inst multiclass.
    424   def ADD_rr : rrinst<0b111, "add">;
    425   def ADD_ri : riinst<0b111, "add">;
    426   def SUB_rr : rrinst<0b101, "sub">;
    427   def SUB_ri : riinst<0b101, "sub">;
    428   def MUL_rr : rrinst<0b100, "mul">;
    429   def MUL_ri : riinst<0b100, "mul">;
    430   ...
    431 
    432 A ``defm`` can also be used inside a multiclass providing several levels of
    433 multiclass instantiations.
    434 
    435 .. code-block:: llvm
    436 
    437   class Instruction<bits<4> opc, string Name> {
    438     bits<4> opcode = opc;
    439     string name = Name;
    440   }
    441 
    442   multiclass basic_r<bits<4> opc> {
    443     def rr : Instruction<opc, "rr">;
    444     def rm : Instruction<opc, "rm">;
    445   }
    446 
    447   multiclass basic_s<bits<4> opc> {
    448     defm SS : basic_r<opc>;
    449     defm SD : basic_r<opc>;
    450     def X : Instruction<opc, "x">;
    451   }
    452 
    453   multiclass basic_p<bits<4> opc> {
    454     defm PS : basic_r<opc>;
    455     defm PD : basic_r<opc>;
    456     def Y : Instruction<opc, "y">;
    457   }
    458 
    459   defm ADD : basic_s<0xf>, basic_p<0xf>;
    460   ...
    461 
    462   // Results
    463   def ADDPDrm { ...
    464   def ADDPDrr { ...
    465   def ADDPSrm { ...
    466   def ADDPSrr { ...
    467   def ADDSDrm { ...
    468   def ADDSDrr { ...
    469   def ADDY { ...
    470   def ADDX { ...
    471 
    472 ``defm`` declarations can inherit from classes too, the rule to follow is that
    473 the class list must start after the last multiclass, and there must be at least
    474 one multiclass before them.
    475 
    476 .. code-block:: llvm
    477 
    478   class XD { bits<4> Prefix = 11; }
    479   class XS { bits<4> Prefix = 12; }
    480 
    481   class I<bits<4> op> {
    482     bits<4> opcode = op;
    483   }
    484 
    485   multiclass R {
    486     def rr : I<4>;
    487     def rm : I<2>;
    488   }
    489 
    490   multiclass Y {
    491     defm SS : R, XD;
    492     defm SD : R, XS;
    493   }
    494 
    495   defm Instr : Y;
    496 
    497   // Results
    498   def InstrSDrm {
    499     bits<4> opcode = { 0, 0, 1, 0 };
    500     bits<4> Prefix = { 1, 1, 0, 0 };
    501   }
    502   ...
    503   def InstrSSrr {
    504     bits<4> opcode = { 0, 1, 0, 0 };
    505     bits<4> Prefix = { 1, 0, 1, 1 };
    506   }
    507 
    508 File scope entities
    509 -------------------
    510 
    511 File inclusion
    512 ^^^^^^^^^^^^^^
    513 
    514 TableGen supports the '``include``' token, which textually substitutes the
    515 specified file in place of the include directive.  The filename should be
    516 specified as a double quoted string immediately after the '``include``' keyword.
    517 Example:
    518 
    519 .. code-block:: llvm
    520 
    521   include "foo.td"
    522 
    523 'let' expressions
    524 ^^^^^^^^^^^^^^^^^
    525 
    526 "Let" expressions at file scope are similar to `"let" expressions within a
    527 record`_, except they can specify a value binding for multiple records at a
    528 time, and may be useful in certain other cases.  File-scope let expressions are
    529 really just another way that TableGen allows the end-user to factor out
    530 commonality from the records.
    531 
    532 File-scope "let" expressions take a comma-separated list of bindings to apply,
    533 and one or more records to bind the values in.  Here are some examples:
    534 
    535 .. code-block:: llvm
    536 
    537   let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
    538     def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
    539 
    540   let isCall = 1 in
    541     // All calls clobber the non-callee saved registers...
    542     let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
    543                 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    544                 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
    545       def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
    546                              "call\t${dst:call}", []>;
    547       def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
    548                           "call\t{*}$dst", [(X86call GR32:$dst)]>;
    549       def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
    550                           "call\t{*}$dst", []>;
    551     }
    552 
    553 File-scope "let" expressions are often useful when a couple of definitions need
    554 to be added to several records, and the records do not otherwise need to be
    555 opened, as in the case with the ``CALL*`` instructions above.
    556 
    557 It's also possible to use "let" expressions inside multiclasses, providing more
    558 ways to factor out commonality from the records, specially if using several
    559 levels of multiclass instantiations. This also avoids the need of using "let"
    560 expressions within subsequent records inside a multiclass.
    561 
    562 .. code-block:: llvm
    563 
    564   multiclass basic_r<bits<4> opc> {
    565     let Predicates = [HasSSE2] in {
    566       def rr : Instruction<opc, "rr">;
    567       def rm : Instruction<opc, "rm">;
    568     }
    569     let Predicates = [HasSSE3] in
    570       def rx : Instruction<opc, "rx">;
    571   }
    572 
    573   multiclass basic_ss<bits<4> opc> {
    574     let IsDouble = 0 in
    575       defm SS : basic_r<opc>;
    576 
    577     let IsDouble = 1 in
    578       defm SD : basic_r<opc>;
    579   }
    580 
    581   defm ADD : basic_ss<0xf>;
    582 
    583 Looping
    584 ^^^^^^^
    585 
    586 TableGen supports the '``foreach``' block, which textually replicates the loop
    587 body, substituting iterator values for iterator references in the body.
    588 Example:
    589 
    590 .. code-block:: llvm
    591 
    592   foreach i = [0, 1, 2, 3] in {
    593     def R#i : Register<...>;
    594     def F#i : Register<...>;
    595   }
    596 
    597 This will create objects ``R0``, ``R1``, ``R2`` and ``R3``.  ``foreach`` blocks
    598 may be nested. If there is only one item in the body the braces may be
    599 elided:
    600 
    601 .. code-block:: llvm
    602 
    603   foreach i = [0, 1, 2, 3] in
    604     def R#i : Register<...>;
    605 
    606 Code Generator backend info
    607 ===========================
    608 
    609 Expressions used by code generator to describe instructions and isel patterns:
    610 
    611 ``(implicit a)``
    612     an implicitly defined physical register.  This tells the dag instruction
    613     selection emitter the input pattern's extra definitions matches implicit
    614     physical register definitions.
    615 
    616