1 ============================== 2 TableGen Language Introduction 3 ============================== 4 5 .. contents:: 6 :local: 7 8 .. warning:: 9 This document is extremely rough. If you find something lacking, please 10 fix it, file a documentation bug, or ask about it on llvm-dev. 11 12 Introduction 13 ============ 14 15 This document is not meant to be a normative spec about the TableGen language 16 in and of itself (i.e. how to understand a given construct in terms of how 17 it affects the final set of records represented by the TableGen file). For 18 the formal language specification, see :doc:`LangRef`. 19 20 TableGen syntax 21 =============== 22 23 TableGen doesn't care about the meaning of data (that is up to the backend to 24 define), but it does care about syntax, and it enforces a simple type system. 25 This section describes the syntax and the constructs allowed in a TableGen file. 26 27 TableGen primitives 28 ------------------- 29 30 TableGen comments 31 ^^^^^^^^^^^^^^^^^ 32 33 TableGen supports C++ style "``//``" comments, which run to the end of the 34 line, and it also supports **nestable** "``/* */``" comments. 35 36 .. _TableGen type: 37 38 The TableGen type system 39 ^^^^^^^^^^^^^^^^^^^^^^^^ 40 41 TableGen files are strongly typed, in a simple (but complete) type-system. 42 These types are used to perform automatic conversions, check for errors, and to 43 help interface designers constrain the input that they allow. Every `value 44 definition`_ is required to have an associated type. 45 46 TableGen supports a mixture of very low-level types (such as ``bit``) and very 47 high-level types (such as ``dag``). This flexibility is what allows it to 48 describe a wide range of information conveniently and compactly. The TableGen 49 types are: 50 51 ``bit`` 52 A 'bit' is a boolean value that can hold either 0 or 1. 53 54 ``int`` 55 The 'int' type represents a simple 32-bit integer value, such as 5. 56 57 ``string`` 58 The 'string' type represents an ordered sequence of characters of arbitrary 59 length. 60 61 ``bits<n>`` 62 A 'bits' type is an arbitrary, but fixed, size integer that is broken up 63 into individual bits. This type is useful because it can handle some bits 64 being defined while others are undefined. 65 66 ``list<ty>`` 67 This type represents a list whose elements are some other type. The 68 contained type is arbitrary: it can even be another list type. 69 70 Class type 71 Specifying a class name in a type context means that the defined value must 72 be a subclass of the specified class. This is useful in conjunction with 73 the ``list`` type, for example, to constrain the elements of the list to a 74 common base class (e.g., a ``list<Register>`` can only contain definitions 75 derived from the "``Register``" class). 76 77 ``dag`` 78 This type represents a nestable directed graph of elements. 79 80 To date, these types have been sufficient for describing things that TableGen 81 has been used for, but it is straight-forward to extend this list if needed. 82 83 .. _TableGen expressions: 84 85 TableGen values and expressions 86 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 87 88 TableGen allows for a pretty reasonable number of different expression forms 89 when building up values. These forms allow the TableGen file to be written in a 90 natural syntax and flavor for the application. The current expression forms 91 supported include: 92 93 ``?`` 94 uninitialized field 95 96 ``0b1001011`` 97 binary integer value. 98 Note that this is sized by the number of bits given and will not be 99 silently extended/truncated. 100 101 ``07654321`` 102 octal integer value (indicated by a leading 0) 103 104 ``7`` 105 decimal integer value 106 107 ``0x7F`` 108 hexadecimal integer value 109 110 ``"foo"`` 111 string value 112 113 ``[{ ... }]`` 114 usually called a "code fragment", but is just a multiline string literal 115 116 ``[ X, Y, Z ]<type>`` 117 list value. <type> is the type of the list element and is usually optional. 118 In rare cases, TableGen is unable to deduce the element type in which case 119 the user must specify it explicitly. 120 121 ``{ a, b, 0b10 }`` 122 initializer for a "bits<4>" value. 123 1-bit from "a", 1-bit from "b", 2-bits from 0b10. 124 125 ``value`` 126 value reference 127 128 ``value{17}`` 129 access to one bit of a value 130 131 ``value{15-17}`` 132 access to multiple bits of a value 133 134 ``DEF`` 135 reference to a record definition 136 137 ``CLASS<val list>`` 138 reference to a new anonymous definition of CLASS with the specified template 139 arguments. 140 141 ``X.Y`` 142 reference to the subfield of a value 143 144 ``list[4-7,17,2-3]`` 145 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it. 146 Elements may be included multiple times. 147 148 ``foreach <var> = [ <list> ] in { <body> }`` 149 150 ``foreach <var> = [ <list> ] in <def>`` 151 Replicate <body> or <def>, replacing instances of <var> with each value 152 in <list>. <var> is scoped at the level of the ``foreach`` loop and must 153 not conflict with any other object introduced in <body> or <def>. Currently 154 only ``def``\s are expanded within <body>. 155 156 ``foreach <var> = 0-15 in ...`` 157 158 ``foreach <var> = {0-15,32-47} in ...`` 159 Loop over ranges of integers. The braces are required for multiple ranges. 160 161 ``(DEF a, b)`` 162 a dag value. The first element is required to be a record definition, the 163 remaining elements in the list may be arbitrary other values, including 164 nested ```dag``' values. 165 166 ``!listconcat(a, b, ...)`` 167 A list value that is the result of concatenating the 'a' and 'b' lists. 168 The lists must have the same element type. 169 More than two arguments are accepted with the result being the concatenation 170 of all the lists given. 171 172 ``!strconcat(a, b, ...)`` 173 A string value that is the result of concatenating the 'a' and 'b' strings. 174 More than two arguments are accepted with the result being the concatenation 175 of all the strings given. 176 177 ``str1#str2`` 178 "#" (paste) is a shorthand for !strconcat. It may concatenate things that 179 are not quoted strings, in which case an implicit !cast<string> is done on 180 the operand of the paste. 181 182 ``!cast<type>(a)`` 183 A symbol of type *type* obtained by looking up the string 'a' in the symbol 184 table. If the type of 'a' does not match *type*, TableGen aborts with an 185 error. !cast<string> is a special case in that the argument must be an 186 object defined by a 'def' construct. 187 188 ``!subst(a, b, c)`` 189 If 'a' and 'b' are of string type or are symbol references, substitute 'b' 190 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make. 191 192 ``!foreach(a, b, c)`` 193 For each member of dag or list 'b' apply operator 'c.' 'a' is a dummy 194 variable that should be declared as a member variable of an instantiated 195 class. This operation is analogous to $(foreach) in GNU make. 196 197 ``!head(a)`` 198 The first element of list 'a.' 199 200 ``!tail(a)`` 201 The 2nd-N elements of list 'a.' 202 203 ``!empty(a)`` 204 An integer {0,1} indicating whether list 'a' is empty. 205 206 ``!if(a,b,c)`` 207 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise. 208 209 ``!eq(a,b)`` 210 'bit 1' if string a is equal to string b, 0 otherwise. This only operates 211 on string, int and bit objects. Use !cast<string> to compare other types of 212 objects. 213 214 ``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)`` ``!add(a,b)`` ``!and(a,b)`` 215 The usual binary and arithmetic operators. 216 217 Note that all of the values have rules specifying how they convert to values 218 for different types. These rules allow you to assign a value like "``7``" 219 to a "``bits<4>``" value, for example. 220 221 Classes and definitions 222 ----------------------- 223 224 As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as 225 'records') in TableGen are the main high-level unit of information that TableGen 226 collects. Records are defined with a ``def`` or ``class`` keyword, the record 227 name, and an optional list of "`template arguments`_". If the record has 228 superclasses, they are specified as a comma separated list that starts with a 229 colon character ("``:``"). If `value definitions`_ or `let expressions`_ are 230 needed for the class, they are enclosed in curly braces ("``{}``"); otherwise, 231 the record ends with a semicolon. 232 233 Here is a simple TableGen file: 234 235 .. code-block:: llvm 236 237 class C { bit V = 1; } 238 def X : C; 239 def Y : C { 240 string Greeting = "hello"; 241 } 242 243 This example defines two definitions, ``X`` and ``Y``, both of which derive from 244 the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y`` 245 definition also gets the Greeting member as well. 246 247 In general, classes are useful for collecting together the commonality between a 248 group of records and isolating it in a single place. Also, classes permit the 249 specification of default values for their subclasses, allowing the subclasses to 250 override them as they wish. 251 252 .. _value definition: 253 .. _value definitions: 254 255 Value definitions 256 ^^^^^^^^^^^^^^^^^ 257 258 Value definitions define named entries in records. A value must be defined 259 before it can be referred to as the operand for another value definition or 260 before the value is reset with a `let expression`_. A value is defined by 261 specifying a `TableGen type`_ and a name. If an initial value is available, it 262 may be specified after the type with an equal sign. Value definitions require 263 terminating semicolons. 264 265 .. _let expression: 266 .. _let expressions: 267 .. _"let" expressions within a record: 268 269 'let' expressions 270 ^^^^^^^^^^^^^^^^^ 271 272 A record-level let expression is used to change the value of a value definition 273 in a record. This is primarily useful when a superclass defines a value that a 274 derived class or definition wants to override. Let expressions consist of the 275 '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new 276 value. For example, a new class could be added to the example above, redefining 277 the ``V`` field for all of its subclasses: 278 279 .. code-block:: llvm 280 281 class D : C { let V = 0; } 282 def Z : D; 283 284 In this case, the ``Z`` definition will have a zero value for its ``V`` value, 285 despite the fact that it derives (indirectly) from the ``C`` class, because the 286 ``D`` class overrode its value. 287 288 .. _template arguments: 289 290 Class template arguments 291 ^^^^^^^^^^^^^^^^^^^^^^^^ 292 293 TableGen permits the definition of parameterized classes as well as normal 294 concrete classes. Parameterized TableGen classes specify a list of variable 295 bindings (which may optionally have defaults) that are bound when used. Here is 296 a simple example: 297 298 .. code-block:: llvm 299 300 class FPFormat<bits<3> val> { 301 bits<3> Value = val; 302 } 303 def NotFP : FPFormat<0>; 304 def ZeroArgFP : FPFormat<1>; 305 def OneArgFP : FPFormat<2>; 306 def OneArgFPRW : FPFormat<3>; 307 def TwoArgFP : FPFormat<4>; 308 def CompareFP : FPFormat<5>; 309 def CondMovFP : FPFormat<6>; 310 def SpecialFP : FPFormat<7>; 311 312 In this case, template arguments are used as a space efficient way to specify a 313 list of "enumeration values", each with a "``Value``" field set to the specified 314 integer. 315 316 The more esoteric forms of `TableGen expressions`_ are useful in conjunction 317 with template arguments. As an example: 318 319 .. code-block:: llvm 320 321 class ModRefVal<bits<2> val> { 322 bits<2> Value = val; 323 } 324 325 def None : ModRefVal<0>; 326 def Mod : ModRefVal<1>; 327 def Ref : ModRefVal<2>; 328 def ModRef : ModRefVal<3>; 329 330 class Value<ModRefVal MR> { 331 // Decode some information into a more convenient format, while providing 332 // a nice interface to the user of the "Value" class. 333 bit isMod = MR.Value{0}; 334 bit isRef = MR.Value{1}; 335 336 // other stuff... 337 } 338 339 // Example uses 340 def bork : Value<Mod>; 341 def zork : Value<Ref>; 342 def hork : Value<ModRef>; 343 344 This is obviously a contrived example, but it shows how template arguments can 345 be used to decouple the interface provided to the user of the class from the 346 actual internal data representation expected by the class. In this case, 347 running ``llvm-tblgen`` on the example prints the following definitions: 348 349 .. code-block:: llvm 350 351 def bork { // Value 352 bit isMod = 1; 353 bit isRef = 0; 354 } 355 def hork { // Value 356 bit isMod = 1; 357 bit isRef = 1; 358 } 359 def zork { // Value 360 bit isMod = 0; 361 bit isRef = 1; 362 } 363 364 This shows that TableGen was able to dig into the argument and extract a piece 365 of information that was requested by the designer of the "Value" class. For 366 more realistic examples, please see existing users of TableGen, such as the X86 367 backend. 368 369 Multiclass definitions and instances 370 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 371 372 While classes with template arguments are a good way to factor commonality 373 between two instances of a definition, multiclasses allow a convenient notation 374 for defining multiple definitions at once (instances of implicitly constructed 375 classes). For example, consider an 3-address instruction set whose instructions 376 come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``" 377 (e.g. SPARC). In this case, you'd like to specify in one place that this 378 commonality exists, then in a separate place indicate what all the ops are. 379 380 Here is an example TableGen fragment that shows this idea: 381 382 .. code-block:: llvm 383 384 def ops; 385 def GPR; 386 def Imm; 387 class inst<int opc, string asmstr, dag operandlist>; 388 389 multiclass ri_inst<int opc, string asmstr> { 390 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 391 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 392 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 393 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 394 } 395 396 // Instantiations of the ri_inst multiclass. 397 defm ADD : ri_inst<0b111, "add">; 398 defm SUB : ri_inst<0b101, "sub">; 399 defm MUL : ri_inst<0b100, "mul">; 400 ... 401 402 The name of the resultant definitions has the multidef fragment names appended 403 to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may 404 inherit from multiple multiclasses, instantiating definitions from each 405 multiclass. Using a multiclass this way is exactly equivalent to instantiating 406 the classes multiple times yourself, e.g. by writing: 407 408 .. code-block:: llvm 409 410 def ops; 411 def GPR; 412 def Imm; 413 class inst<int opc, string asmstr, dag operandlist>; 414 415 class rrinst<int opc, string asmstr> 416 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 417 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 418 419 class riinst<int opc, string asmstr> 420 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 421 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 422 423 // Instantiations of the ri_inst multiclass. 424 def ADD_rr : rrinst<0b111, "add">; 425 def ADD_ri : riinst<0b111, "add">; 426 def SUB_rr : rrinst<0b101, "sub">; 427 def SUB_ri : riinst<0b101, "sub">; 428 def MUL_rr : rrinst<0b100, "mul">; 429 def MUL_ri : riinst<0b100, "mul">; 430 ... 431 432 A ``defm`` can also be used inside a multiclass providing several levels of 433 multiclass instantiations. 434 435 .. code-block:: llvm 436 437 class Instruction<bits<4> opc, string Name> { 438 bits<4> opcode = opc; 439 string name = Name; 440 } 441 442 multiclass basic_r<bits<4> opc> { 443 def rr : Instruction<opc, "rr">; 444 def rm : Instruction<opc, "rm">; 445 } 446 447 multiclass basic_s<bits<4> opc> { 448 defm SS : basic_r<opc>; 449 defm SD : basic_r<opc>; 450 def X : Instruction<opc, "x">; 451 } 452 453 multiclass basic_p<bits<4> opc> { 454 defm PS : basic_r<opc>; 455 defm PD : basic_r<opc>; 456 def Y : Instruction<opc, "y">; 457 } 458 459 defm ADD : basic_s<0xf>, basic_p<0xf>; 460 ... 461 462 // Results 463 def ADDPDrm { ... 464 def ADDPDrr { ... 465 def ADDPSrm { ... 466 def ADDPSrr { ... 467 def ADDSDrm { ... 468 def ADDSDrr { ... 469 def ADDY { ... 470 def ADDX { ... 471 472 ``defm`` declarations can inherit from classes too, the rule to follow is that 473 the class list must start after the last multiclass, and there must be at least 474 one multiclass before them. 475 476 .. code-block:: llvm 477 478 class XD { bits<4> Prefix = 11; } 479 class XS { bits<4> Prefix = 12; } 480 481 class I<bits<4> op> { 482 bits<4> opcode = op; 483 } 484 485 multiclass R { 486 def rr : I<4>; 487 def rm : I<2>; 488 } 489 490 multiclass Y { 491 defm SS : R, XD; 492 defm SD : R, XS; 493 } 494 495 defm Instr : Y; 496 497 // Results 498 def InstrSDrm { 499 bits<4> opcode = { 0, 0, 1, 0 }; 500 bits<4> Prefix = { 1, 1, 0, 0 }; 501 } 502 ... 503 def InstrSSrr { 504 bits<4> opcode = { 0, 1, 0, 0 }; 505 bits<4> Prefix = { 1, 0, 1, 1 }; 506 } 507 508 File scope entities 509 ------------------- 510 511 File inclusion 512 ^^^^^^^^^^^^^^ 513 514 TableGen supports the '``include``' token, which textually substitutes the 515 specified file in place of the include directive. The filename should be 516 specified as a double quoted string immediately after the '``include``' keyword. 517 Example: 518 519 .. code-block:: llvm 520 521 include "foo.td" 522 523 'let' expressions 524 ^^^^^^^^^^^^^^^^^ 525 526 "Let" expressions at file scope are similar to `"let" expressions within a 527 record`_, except they can specify a value binding for multiple records at a 528 time, and may be useful in certain other cases. File-scope let expressions are 529 really just another way that TableGen allows the end-user to factor out 530 commonality from the records. 531 532 File-scope "let" expressions take a comma-separated list of bindings to apply, 533 and one or more records to bind the values in. Here are some examples: 534 535 .. code-block:: llvm 536 537 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in 538 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>; 539 540 let isCall = 1 in 541 // All calls clobber the non-callee saved registers... 542 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, 543 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 544 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in { 545 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops), 546 "call\t${dst:call}", []>; 547 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), 548 "call\t{*}$dst", [(X86call GR32:$dst)]>; 549 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), 550 "call\t{*}$dst", []>; 551 } 552 553 File-scope "let" expressions are often useful when a couple of definitions need 554 to be added to several records, and the records do not otherwise need to be 555 opened, as in the case with the ``CALL*`` instructions above. 556 557 It's also possible to use "let" expressions inside multiclasses, providing more 558 ways to factor out commonality from the records, specially if using several 559 levels of multiclass instantiations. This also avoids the need of using "let" 560 expressions within subsequent records inside a multiclass. 561 562 .. code-block:: llvm 563 564 multiclass basic_r<bits<4> opc> { 565 let Predicates = [HasSSE2] in { 566 def rr : Instruction<opc, "rr">; 567 def rm : Instruction<opc, "rm">; 568 } 569 let Predicates = [HasSSE3] in 570 def rx : Instruction<opc, "rx">; 571 } 572 573 multiclass basic_ss<bits<4> opc> { 574 let IsDouble = 0 in 575 defm SS : basic_r<opc>; 576 577 let IsDouble = 1 in 578 defm SD : basic_r<opc>; 579 } 580 581 defm ADD : basic_ss<0xf>; 582 583 Looping 584 ^^^^^^^ 585 586 TableGen supports the '``foreach``' block, which textually replicates the loop 587 body, substituting iterator values for iterator references in the body. 588 Example: 589 590 .. code-block:: llvm 591 592 foreach i = [0, 1, 2, 3] in { 593 def R#i : Register<...>; 594 def F#i : Register<...>; 595 } 596 597 This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks 598 may be nested. If there is only one item in the body the braces may be 599 elided: 600 601 .. code-block:: llvm 602 603 foreach i = [0, 1, 2, 3] in 604 def R#i : Register<...>; 605 606 Code Generator backend info 607 =========================== 608 609 Expressions used by code generator to describe instructions and isel patterns: 610 611 ``(implicit a)`` 612 an implicitly defined physical register. This tells the dag instruction 613 selection emitter the input pattern's extra definitions matches implicit 614 physical register definitions. 615 616