1 ===================== 2 YAML I/O 3 ===================== 4 5 .. contents:: 6 :local: 7 8 Introduction to YAML 9 ==================== 10 11 YAML is a human readable data serialization language. The full YAML language 12 spec can be read at `yaml.org 13 <http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of 14 yaml is just "scalars", "mappings", and "sequences". A scalar is any number 15 or string. The pound/hash symbol (#) begins a comment line. A mapping is 16 a set of key-value pairs where the key ends with a colon. For example: 17 18 .. code-block:: yaml 19 20 # a mapping 21 name: Tom 22 hat-size: 7 23 24 A sequence is a list of items where each item starts with a leading dash ('-'). 25 For example: 26 27 .. code-block:: yaml 28 29 # a sequence 30 - x86 31 - x86_64 32 - PowerPC 33 34 You can combine mappings and sequences by indenting. For example a sequence 35 of mappings in which one of the mapping values is itself a sequence: 36 37 .. code-block:: yaml 38 39 # a sequence of mappings with one key's value being a sequence 40 - name: Tom 41 cpus: 42 - x86 43 - x86_64 44 - name: Bob 45 cpus: 46 - x86 47 - name: Dan 48 cpus: 49 - PowerPC 50 - x86 51 52 Sometime sequences are known to be short and the one entry per line is too 53 verbose, so YAML offers an alternate syntax for sequences called a "Flow 54 Sequence" in which you put comma separated sequence elements into square 55 brackets. The above example could then be simplified to : 56 57 58 .. code-block:: yaml 59 60 # a sequence of mappings with one key's value being a flow sequence 61 - name: Tom 62 cpus: [ x86, x86_64 ] 63 - name: Bob 64 cpus: [ x86 ] 65 - name: Dan 66 cpus: [ PowerPC, x86 ] 67 68 69 Introduction to YAML I/O 70 ======================== 71 72 The use of indenting makes the YAML easy for a human to read and understand, 73 but having a program read and write YAML involves a lot of tedious details. 74 The YAML I/O library structures and simplifies reading and writing YAML 75 documents. 76 77 YAML I/O assumes you have some "native" data structures which you want to be 78 able to dump as YAML and recreate from YAML. The first step is to try 79 writing example YAML for your data structures. You may find after looking at 80 possible YAML representations that a direct mapping of your data structures 81 to YAML is not very readable. Often the fields are not in the order that 82 a human would find readable. Or the same information is replicated in multiple 83 locations, making it hard for a human to write such YAML correctly. 84 85 In relational database theory there is a design step called normalization in 86 which you reorganize fields and tables. The same considerations need to 87 go into the design of your YAML encoding. But, you may not want to change 88 your existing native data structures. Therefore, when writing out YAML 89 there may be a normalization step, and when reading YAML there would be a 90 corresponding denormalization step. 91 92 YAML I/O uses a non-invasive, traits based design. YAML I/O defines some 93 abstract base templates. You specialize those templates on your data types. 94 For instance, if you have an enumerated type FooBar you could specialize 95 ScalarEnumerationTraits on that type and define the enumeration() method: 96 97 .. code-block:: c++ 98 99 using llvm::yaml::ScalarEnumerationTraits; 100 using llvm::yaml::IO; 101 102 template <> 103 struct ScalarEnumerationTraits<FooBar> { 104 static void enumeration(IO &io, FooBar &value) { 105 ... 106 } 107 }; 108 109 110 As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 111 both reading and writing YAML. That is, the mapping between in-memory enum 112 values and the YAML string representation is only in one place. 113 This assures that the code for writing and parsing of YAML stays in sync. 114 115 To specify a YAML mappings, you define a specialization on 116 llvm::yaml::MappingTraits. 117 If your native data structure happens to be a struct that is already normalized, 118 then the specialization is simple. For example: 119 120 .. code-block:: c++ 121 122 using llvm::yaml::MappingTraits; 123 using llvm::yaml::IO; 124 125 template <> 126 struct MappingTraits<Person> { 127 static void mapping(IO &io, Person &info) { 128 io.mapRequired("name", info.name); 129 io.mapOptional("hat-size", info.hatSize); 130 } 131 }; 132 133 134 A YAML sequence is automatically inferred if you data type has begin()/end() 135 iterators and a push_back() method. Therefore any of the STL containers 136 (such as std::vector<>) will automatically translate to YAML sequences. 137 138 Once you have defined specializations for your data types, you can 139 programmatically use YAML I/O to write a YAML document: 140 141 .. code-block:: c++ 142 143 using llvm::yaml::Output; 144 145 Person tom; 146 tom.name = "Tom"; 147 tom.hatSize = 8; 148 Person dan; 149 dan.name = "Dan"; 150 dan.hatSize = 7; 151 std::vector<Person> persons; 152 persons.push_back(tom); 153 persons.push_back(dan); 154 155 Output yout(llvm::outs()); 156 yout << persons; 157 158 This would write the following: 159 160 .. code-block:: yaml 161 162 - name: Tom 163 hat-size: 8 164 - name: Dan 165 hat-size: 7 166 167 And you can also read such YAML documents with the following code: 168 169 .. code-block:: c++ 170 171 using llvm::yaml::Input; 172 173 typedef std::vector<Person> PersonList; 174 std::vector<PersonList> docs; 175 176 Input yin(document.getBuffer()); 177 yin >> docs; 178 179 if ( yin.error() ) 180 return; 181 182 // Process read document 183 for ( PersonList &pl : docs ) { 184 for ( Person &person : pl ) { 185 cout << "name=" << person.name; 186 } 187 } 188 189 One other feature of YAML is the ability to define multiple documents in a 190 single file. That is why reading YAML produces a vector of your document type. 191 192 193 194 Error Handling 195 ============== 196 197 When parsing a YAML document, if the input does not match your schema (as 198 expressed in your XxxTraits<> specializations). YAML I/O 199 will print out an error message and your Input object's error() method will 200 return true. For instance the following document: 201 202 .. code-block:: yaml 203 204 - name: Tom 205 shoe-size: 12 206 - name: Dan 207 hat-size: 7 208 209 Has a key (shoe-size) that is not defined in the schema. YAML I/O will 210 automatically generate this error: 211 212 .. code-block:: yaml 213 214 YAML:2:2: error: unknown key 'shoe-size' 215 shoe-size: 12 216 ^~~~~~~~~ 217 218 Similar errors are produced for other input not conforming to the schema. 219 220 221 Scalars 222 ======= 223 224 YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O 225 library provides support for translating between YAML scalars and specific 226 C++ types. 227 228 229 Built-in types 230 -------------- 231 The following types have built-in support in YAML I/O: 232 233 * bool 234 * float 235 * double 236 * StringRef 237 * std::string 238 * int64_t 239 * int32_t 240 * int16_t 241 * int8_t 242 * uint64_t 243 * uint32_t 244 * uint16_t 245 * uint8_t 246 247 That is, you can use those types in fields of MappingTraits or as element type 248 in sequence. When reading, YAML I/O will validate that the string found 249 is convertible to that type and error out if not. 250 251 252 Unique types 253 ------------ 254 Given that YAML I/O is trait based, the selection of how to convert your data 255 to YAML is based on the type of your data. But in C++ type matching, typedefs 256 do not generate unique type names. That means if you have two typedefs of 257 unsigned int, to YAML I/O both types look exactly like unsigned int. To 258 facilitate make unique type names, YAML I/O provides a macro which is used 259 like a typedef on built-in types, but expands to create a class with conversion 260 operators to and from the base type. For example: 261 262 .. code-block:: c++ 263 264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags) 265 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags) 266 267 This generates two classes MyFooFlags and MyBarFlags which you can use in your 268 native data structures instead of uint32_t. They are implicitly 269 converted to and from uint32_t. The point of creating these unique types 270 is that you can now specify traits on them to get different YAML conversions. 271 272 Hex types 273 --------- 274 An example use of a unique type is that YAML I/O provides fixed sized unsigned 275 integers that are written with YAML I/O as hexadecimal instead of the decimal 276 format used by the built-in integer types: 277 278 * Hex64 279 * Hex32 280 * Hex16 281 * Hex8 282 283 You can use llvm::yaml::Hex32 instead of uint32_t and the only different will 284 be that when YAML I/O writes out that type it will be formatted in hexadecimal. 285 286 287 ScalarEnumerationTraits 288 ----------------------- 289 YAML I/O supports translating between in-memory enumerations and a set of string 290 values in YAML documents. This is done by specializing ScalarEnumerationTraits<> 291 on your enumeration type and define a enumeration() method. 292 For instance, suppose you had an enumeration of CPUs and a struct with it as 293 a field: 294 295 .. code-block:: c++ 296 297 enum CPUs { 298 cpu_x86_64 = 5, 299 cpu_x86 = 7, 300 cpu_PowerPC = 8 301 }; 302 303 struct Info { 304 CPUs cpu; 305 uint32_t flags; 306 }; 307 308 To support reading and writing of this enumeration, you can define a 309 ScalarEnumerationTraits specialization on CPUs, which can then be used 310 as a field type: 311 312 .. code-block:: c++ 313 314 using llvm::yaml::ScalarEnumerationTraits; 315 using llvm::yaml::MappingTraits; 316 using llvm::yaml::IO; 317 318 template <> 319 struct ScalarEnumerationTraits<CPUs> { 320 static void enumeration(IO &io, CPUs &value) { 321 io.enumCase(value, "x86_64", cpu_x86_64); 322 io.enumCase(value, "x86", cpu_x86); 323 io.enumCase(value, "PowerPC", cpu_PowerPC); 324 } 325 }; 326 327 template <> 328 struct MappingTraits<Info> { 329 static void mapping(IO &io, Info &info) { 330 io.mapRequired("cpu", info.cpu); 331 io.mapOptional("flags", info.flags, 0); 332 } 333 }; 334 335 When reading YAML, if the string found does not match any of the strings 336 specified by enumCase() methods, an error is automatically generated. 337 When writing YAML, if the value being written does not match any of the values 338 specified by the enumCase() methods, a runtime assertion is triggered. 339 340 341 BitValue 342 -------- 343 Another common data structure in C++ is a field where each bit has a unique 344 meaning. This is often used in a "flags" field. YAML I/O has support for 345 converting such fields to a flow sequence. For instance suppose you 346 had the following bit flags defined: 347 348 .. code-block:: c++ 349 350 enum { 351 flagsPointy = 1 352 flagsHollow = 2 353 flagsFlat = 4 354 flagsRound = 8 355 }; 356 357 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags) 358 359 To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> 360 on MyFlags and provide the bit values and their names. 361 362 .. code-block:: c++ 363 364 using llvm::yaml::ScalarBitSetTraits; 365 using llvm::yaml::MappingTraits; 366 using llvm::yaml::IO; 367 368 template <> 369 struct ScalarBitSetTraits<MyFlags> { 370 static void bitset(IO &io, MyFlags &value) { 371 io.bitSetCase(value, "hollow", flagHollow); 372 io.bitSetCase(value, "flat", flagFlat); 373 io.bitSetCase(value, "round", flagRound); 374 io.bitSetCase(value, "pointy", flagPointy); 375 } 376 }; 377 378 struct Info { 379 StringRef name; 380 MyFlags flags; 381 }; 382 383 template <> 384 struct MappingTraits<Info> { 385 static void mapping(IO &io, Info& info) { 386 io.mapRequired("name", info.name); 387 io.mapRequired("flags", info.flags); 388 } 389 }; 390 391 With the above, YAML I/O (when writing) will test mask each value in the 392 bitset trait against the flags field, and each that matches will 393 cause the corresponding string to be added to the flow sequence. The opposite 394 is done when reading and any unknown string values will result in a error. With 395 the above schema, a same valid YAML document is: 396 397 .. code-block:: yaml 398 399 name: Tom 400 flags: [ pointy, flat ] 401 402 Sometimes a "flags" field might contains an enumeration part 403 defined by a bit-mask. 404 405 .. code-block:: c++ 406 407 enum { 408 flagsFeatureA = 1, 409 flagsFeatureB = 2, 410 flagsFeatureC = 4, 411 412 flagsCPUMask = 24, 413 414 flagsCPU1 = 8, 415 flagsCPU2 = 16 416 }; 417 418 To support reading and writing such fields, you need to use the maskedBitSet() 419 method and provide the bit values, their names and the enumeration mask. 420 421 .. code-block:: c++ 422 423 template <> 424 struct ScalarBitSetTraits<MyFlags> { 425 static void bitset(IO &io, MyFlags &value) { 426 io.bitSetCase(value, "featureA", flagsFeatureA); 427 io.bitSetCase(value, "featureB", flagsFeatureB); 428 io.bitSetCase(value, "featureC", flagsFeatureC); 429 io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask); 430 io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask); 431 } 432 }; 433 434 YAML I/O (when writing) will apply the enumeration mask to the flags field, 435 and compare the result and values from the bitset. As in case of a regular 436 bitset, each that matches will cause the corresponding string to be added 437 to the flow sequence. 438 439 Custom Scalar 440 ------------- 441 Sometimes for readability a scalar needs to be formatted in a custom way. For 442 instance your internal data structure may use a integer for time (seconds since 443 some epoch), but in YAML it would be much nicer to express that integer in 444 some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support 445 custom formatting and parsing of scalar types by specializing ScalarTraits<> on 446 your data type. When writing, YAML I/O will provide the native type and 447 your specialization must create a temporary llvm::StringRef. When reading, 448 YAML I/O will provide an llvm::StringRef of scalar and your specialization 449 must convert that to your native data type. An outline of a custom scalar type 450 looks like: 451 452 .. code-block:: c++ 453 454 using llvm::yaml::ScalarTraits; 455 using llvm::yaml::IO; 456 457 template <> 458 struct ScalarTraits<MyCustomType> { 459 static void output(const T &value, void*, llvm::raw_ostream &out) { 460 out << value; // do custom formatting here 461 } 462 static StringRef input(StringRef scalar, void*, T &value) { 463 // do custom parsing here. Return the empty string on success, 464 // or an error message on failure. 465 return StringRef(); 466 } 467 // Determine if this scalar needs quotes. 468 static bool mustQuote(StringRef) { return true; } 469 }; 470 471 Block Scalars 472 ------------- 473 474 YAML block scalars are string literals that are represented in YAML using the 475 literal block notation, just like the example shown below: 476 477 .. code-block:: yaml 478 479 text: | 480 First line 481 Second line 482 483 The YAML I/O library provides support for translating between YAML block scalars 484 and specific C++ types by allowing you to specialize BlockScalarTraits<> on 485 your data type. The library doesn't provide any built-in support for block 486 scalar I/O for types like std::string and llvm::StringRef as they are already 487 supported by YAML I/O and use the ordinary scalar notation by default. 488 489 BlockScalarTraits specializations are very similar to the 490 ScalarTraits specialization - YAML I/O will provide the native type and your 491 specialization must create a temporary llvm::StringRef when writing, and 492 it will also provide an llvm::StringRef that has the value of that block scalar 493 and your specialization must convert that to your native data type when reading. 494 An example of a custom type with an appropriate specialization of 495 BlockScalarTraits is shown below: 496 497 .. code-block:: c++ 498 499 using llvm::yaml::BlockScalarTraits; 500 using llvm::yaml::IO; 501 502 struct MyStringType { 503 std::string Str; 504 }; 505 506 template <> 507 struct BlockScalarTraits<MyStringType> { 508 static void output(const MyStringType &Value, void *Ctxt, 509 llvm::raw_ostream &OS) { 510 OS << Value.Str; 511 } 512 513 static StringRef input(StringRef Scalar, void *Ctxt, 514 MyStringType &Value) { 515 Value.Str = Scalar.str(); 516 return StringRef(); 517 } 518 }; 519 520 521 522 Mappings 523 ======== 524 525 To be translated to or from a YAML mapping for your type T you must specialize 526 llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 527 method. If your native data structures use pointers to a class everywhere, 528 you can specialize on the class pointer. Examples: 529 530 .. code-block:: c++ 531 532 using llvm::yaml::MappingTraits; 533 using llvm::yaml::IO; 534 535 // Example of struct Foo which is used by value 536 template <> 537 struct MappingTraits<Foo> { 538 static void mapping(IO &io, Foo &foo) { 539 io.mapOptional("size", foo.size); 540 ... 541 } 542 }; 543 544 // Example of struct Bar which is natively always a pointer 545 template <> 546 struct MappingTraits<Bar*> { 547 static void mapping(IO &io, Bar *&bar) { 548 io.mapOptional("size", bar->size); 549 ... 550 } 551 }; 552 553 554 No Normalization 555 ---------------- 556 557 The mapping() method is responsible, if needed, for normalizing and 558 denormalizing. In a simple case where the native data structure requires no 559 normalization, the mapping method just uses mapOptional() or mapRequired() to 560 bind the struct's fields to YAML key names. For example: 561 562 .. code-block:: c++ 563 564 using llvm::yaml::MappingTraits; 565 using llvm::yaml::IO; 566 567 template <> 568 struct MappingTraits<Person> { 569 static void mapping(IO &io, Person &info) { 570 io.mapRequired("name", info.name); 571 io.mapOptional("hat-size", info.hatSize); 572 } 573 }; 574 575 576 Normalization 577 ---------------- 578 579 When [de]normalization is required, the mapping() method needs a way to access 580 normalized values as fields. To help with this, there is 581 a template MappingNormalization<> which you can then use to automatically 582 do the normalization and denormalization. The template is used to create 583 a local variable in your mapping() method which contains the normalized keys. 584 585 Suppose you have native data type 586 Polar which specifies a position in polar coordinates (distance, angle): 587 588 .. code-block:: c++ 589 590 struct Polar { 591 float distance; 592 float angle; 593 }; 594 595 but you've decided the normalized YAML for should be in x,y coordinates. That 596 is, you want the yaml to look like: 597 598 .. code-block:: yaml 599 600 x: 10.3 601 y: -4.7 602 603 You can support this by defining a MappingTraits that normalizes the polar 604 coordinates to x,y coordinates when writing YAML and denormalizes x,y 605 coordinates into polar when reading YAML. 606 607 .. code-block:: c++ 608 609 using llvm::yaml::MappingTraits; 610 using llvm::yaml::IO; 611 612 template <> 613 struct MappingTraits<Polar> { 614 615 class NormalizedPolar { 616 public: 617 NormalizedPolar(IO &io) 618 : x(0.0), y(0.0) { 619 } 620 NormalizedPolar(IO &, Polar &polar) 621 : x(polar.distance * cos(polar.angle)), 622 y(polar.distance * sin(polar.angle)) { 623 } 624 Polar denormalize(IO &) { 625 return Polar(sqrt(x*x+y*y), arctan(x,y)); 626 } 627 628 float x; 629 float y; 630 }; 631 632 static void mapping(IO &io, Polar &polar) { 633 MappingNormalization<NormalizedPolar, Polar> keys(io, polar); 634 635 io.mapRequired("x", keys->x); 636 io.mapRequired("y", keys->y); 637 } 638 }; 639 640 When writing YAML, the local variable "keys" will be a stack allocated 641 instance of NormalizedPolar, constructed from the supplied polar object which 642 initializes it x and y fields. The mapRequired() methods then write out the x 643 and y values as key/value pairs. 644 645 When reading YAML, the local variable "keys" will be a stack allocated instance 646 of NormalizedPolar, constructed by the empty constructor. The mapRequired 647 methods will find the matching key in the YAML document and fill in the x and y 648 fields of the NormalizedPolar object keys. At the end of the mapping() method 649 when the local keys variable goes out of scope, the denormalize() method will 650 automatically be called to convert the read values back to polar coordinates, 651 and then assigned back to the second parameter to mapping(). 652 653 In some cases, the normalized class may be a subclass of the native type and 654 could be returned by the denormalize() method, except that the temporary 655 normalized instance is stack allocated. In these cases, the utility template 656 MappingNormalizationHeap<> can be used instead. It just like 657 MappingNormalization<> except that it heap allocates the normalized object 658 when reading YAML. It never destroys the normalized object. The denormalize() 659 method can this return "this". 660 661 662 Default values 663 -------------- 664 Within a mapping() method, calls to io.mapRequired() mean that that key is 665 required to exist when parsing YAML documents, otherwise YAML I/O will issue an 666 error. 667 668 On the other hand, keys registered with io.mapOptional() are allowed to not 669 exist in the YAML document being read. So what value is put in the field 670 for those optional keys? 671 There are two steps to how those optional fields are filled in. First, the 672 second parameter to the mapping() method is a reference to a native class. That 673 native class must have a default constructor. Whatever value the default 674 constructor initially sets for an optional field will be that field's value. 675 Second, the mapOptional() method has an optional third parameter. If provided 676 it is the value that mapOptional() should set that field to if the YAML document 677 does not have that key. 678 679 There is one important difference between those two ways (default constructor 680 and third parameter to mapOptional). When YAML I/O generates a YAML document, 681 if the mapOptional() third parameter is used, if the actual value being written 682 is the same as (using ==) the default value, then that key/value is not written. 683 684 685 Order of Keys 686 -------------- 687 688 When writing out a YAML document, the keys are written in the order that the 689 calls to mapRequired()/mapOptional() are made in the mapping() method. This 690 gives you a chance to write the fields in an order that a human reader of 691 the YAML document would find natural. This may be different that the order 692 of the fields in the native class. 693 694 When reading in a YAML document, the keys in the document can be in any order, 695 but they are processed in the order that the calls to mapRequired()/mapOptional() 696 are made in the mapping() method. That enables some interesting 697 functionality. For instance, if the first field bound is the cpu and the second 698 field bound is flags, and the flags are cpu specific, you can programmatically 699 switch how the flags are converted to and from YAML based on the cpu. 700 This works for both reading and writing. For example: 701 702 .. code-block:: c++ 703 704 using llvm::yaml::MappingTraits; 705 using llvm::yaml::IO; 706 707 struct Info { 708 CPUs cpu; 709 uint32_t flags; 710 }; 711 712 template <> 713 struct MappingTraits<Info> { 714 static void mapping(IO &io, Info &info) { 715 io.mapRequired("cpu", info.cpu); 716 // flags must come after cpu for this to work when reading yaml 717 if ( info.cpu == cpu_x86_64 ) 718 io.mapRequired("flags", *(My86_64Flags*)info.flags); 719 else 720 io.mapRequired("flags", *(My86Flags*)info.flags); 721 } 722 }; 723 724 725 Tags 726 ---- 727 728 The YAML syntax supports tags as a way to specify the type of a node before 729 it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses 730 static typing, so there are limits to how you can use tags with the YAML I/O 731 model. Recently, we added support to YAML I/O for checking/setting the optional 732 tag on a map. Using this functionality it is even possbile to support different 733 mappings, as long as they are convertable. 734 735 To check a tag, inside your mapping() method you can use io.mapTag() to specify 736 what the tag should be. This will also add that tag when writing yaml. 737 738 Validation 739 ---------- 740 741 Sometimes in a yaml map, each key/value pair is valid, but the combination is 742 not. This is similar to something having no syntax errors, but still having 743 semantic errors. To support semantic level checking, YAML I/O allows 744 an optional ``validate()`` method in a MappingTraits template specialization. 745 746 When parsing yaml, the ``validate()`` method is call *after* all key/values in 747 the map have been processed. Any error message returned by the ``validate()`` 748 method during input will be printed just a like a syntax error would be printed. 749 When writing yaml, the ``validate()`` method is called *before* the yaml 750 key/values are written. Any error during output will trigger an ``assert()`` 751 because it is a programming error to have invalid struct values. 752 753 754 .. code-block:: c++ 755 756 using llvm::yaml::MappingTraits; 757 using llvm::yaml::IO; 758 759 struct Stuff { 760 ... 761 }; 762 763 template <> 764 struct MappingTraits<Stuff> { 765 static void mapping(IO &io, Stuff &stuff) { 766 ... 767 } 768 static StringRef validate(IO &io, Stuff &stuff) { 769 // Look at all fields in 'stuff' and if there 770 // are any bad values return a string describing 771 // the error. Otherwise return an empty string. 772 return StringRef(); 773 } 774 }; 775 776 Flow Mapping 777 ------------ 778 A YAML "flow mapping" is a mapping that uses the inline notation 779 (e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be 780 written in YAML using flow mapping, your MappingTraits specialization should 781 add "static const bool flow = true;". For instance: 782 783 .. code-block:: c++ 784 785 using llvm::yaml::MappingTraits; 786 using llvm::yaml::IO; 787 788 struct Stuff { 789 ... 790 }; 791 792 template <> 793 struct MappingTraits<Stuff> { 794 static void mapping(IO &io, Stuff &stuff) { 795 ... 796 } 797 798 static const bool flow = true; 799 } 800 801 Flow mappings are subject to line wrapping according to the Output object 802 configuration. 803 804 Sequence 805 ======== 806 807 To be translated to or from a YAML sequence for your type T you must specialize 808 llvm::yaml::SequenceTraits on T and implement two methods: 809 ``size_t size(IO &io, T&)`` and 810 ``T::value_type& element(IO &io, T&, size_t indx)``. For example: 811 812 .. code-block:: c++ 813 814 template <> 815 struct SequenceTraits<MySeq> { 816 static size_t size(IO &io, MySeq &list) { ... } 817 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... } 818 }; 819 820 The size() method returns how many elements are currently in your sequence. 821 The element() method returns a reference to the i'th element in the sequence. 822 When parsing YAML, the element() method may be called with an index one bigger 823 than the current size. Your element() method should allocate space for one 824 more element (using default constructor if element is a C++ object) and returns 825 a reference to that new allocated space. 826 827 828 Flow Sequence 829 ------------- 830 A YAML "flow sequence" is a sequence that when written to YAML it uses the 831 inline notation (e.g [ foo, bar ] ). To specify that a sequence type should 832 be written in YAML as a flow sequence, your SequenceTraits specialization should 833 add "static const bool flow = true;". For instance: 834 835 .. code-block:: c++ 836 837 template <> 838 struct SequenceTraits<MyList> { 839 static size_t size(IO &io, MyList &list) { ... } 840 static MyListEl &element(IO &io, MyList &list, size_t index) { ... } 841 842 // The existence of this member causes YAML I/O to use a flow sequence 843 static const bool flow = true; 844 }; 845 846 With the above, if you used MyList as the data type in your native data 847 structures, then when converted to YAML, a flow sequence of integers 848 will be used (e.g. [ 10, -3, 4 ]). 849 850 Flow sequences are subject to line wrapping according to the Output object 851 configuration. 852 853 Utility Macros 854 -------------- 855 Since a common source of sequences is std::vector<>, YAML I/O provides macros: 856 LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which 857 can be used to easily specify SequenceTraits<> on a std::vector type. YAML 858 I/O does not partial specialize SequenceTraits on std::vector<> because that 859 would force all vectors to be sequences. An example use of the macros: 860 861 .. code-block:: c++ 862 863 std::vector<MyType1>; 864 std::vector<MyType2>; 865 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1) 866 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2) 867 868 869 870 Document List 871 ============= 872 873 YAML allows you to define multiple "documents" in a single YAML file. Each 874 new document starts with a left aligned "---" token. The end of all documents 875 is denoted with a left aligned "..." token. Many users of YAML will never 876 have need for multiple documents. The top level node in their YAML schema 877 will be a mapping or sequence. For those cases, the following is not needed. 878 But for cases where you do want multiple documents, you can specify a 879 trait for you document list type. The trait has the same methods as 880 SequenceTraits but is named DocumentListTraits. For example: 881 882 .. code-block:: c++ 883 884 template <> 885 struct DocumentListTraits<MyDocList> { 886 static size_t size(IO &io, MyDocList &list) { ... } 887 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... } 888 }; 889 890 891 User Context Data 892 ================= 893 When an llvm::yaml::Input or llvm::yaml::Output object is created their 894 constructors take an optional "context" parameter. This is a pointer to 895 whatever state information you might need. 896 897 For instance, in a previous example we showed how the conversion type for a 898 flags field could be determined at runtime based on the value of another field 899 in the mapping. But what if an inner mapping needs to know some field value 900 of an outer mapping? That is where the "context" parameter comes in. You 901 can set values in the context in the outer map's mapping() method and 902 retrieve those values in the inner map's mapping() method. 903 904 The context value is just a void*. All your traits which use the context 905 and operate on your native data types, need to agree what the context value 906 actually is. It could be a pointer to an object or struct which your various 907 traits use to shared context sensitive information. 908 909 910 Output 911 ====== 912 913 The llvm::yaml::Output class is used to generate a YAML document from your 914 in-memory data structures, using traits defined on your data types. 915 To instantiate an Output object you need an llvm::raw_ostream, an optional 916 context pointer and an optional wrapping column: 917 918 .. code-block:: c++ 919 920 class Output : public IO { 921 public: 922 Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70); 923 924 Once you have an Output object, you can use the C++ stream operator on it 925 to write your native data as YAML. One thing to recall is that a YAML file 926 can contain multiple "documents". If the top level data structure you are 927 streaming as YAML is a mapping, scalar, or sequence, then Output assumes you 928 are generating one document and wraps the mapping output 929 with "``---``" and trailing "``...``". 930 931 The WrapColumn parameter will cause the flow mappings and sequences to 932 line-wrap when they go over the supplied column. Pass 0 to completely 933 suppress the wrapping. 934 935 .. code-block:: c++ 936 937 using llvm::yaml::Output; 938 939 void dumpMyMapDoc(const MyMapType &info) { 940 Output yout(llvm::outs()); 941 yout << info; 942 } 943 944 The above could produce output like: 945 946 .. code-block:: yaml 947 948 --- 949 name: Tom 950 hat-size: 7 951 ... 952 953 On the other hand, if the top level data structure you are streaming as YAML 954 has a DocumentListTraits specialization, then Output walks through each element 955 of your DocumentList and generates a "---" before the start of each element 956 and ends with a "...". 957 958 .. code-block:: c++ 959 960 using llvm::yaml::Output; 961 962 void dumpMyMapDoc(const MyDocListType &docList) { 963 Output yout(llvm::outs()); 964 yout << docList; 965 } 966 967 The above could produce output like: 968 969 .. code-block:: yaml 970 971 --- 972 name: Tom 973 hat-size: 7 974 --- 975 name: Tom 976 shoe-size: 11 977 ... 978 979 Input 980 ===== 981 982 The llvm::yaml::Input class is used to parse YAML document(s) into your native 983 data structures. To instantiate an Input 984 object you need a StringRef to the entire YAML file, and optionally a context 985 pointer: 986 987 .. code-block:: c++ 988 989 class Input : public IO { 990 public: 991 Input(StringRef inputContent, void *context=NULL); 992 993 Once you have an Input object, you can use the C++ stream operator to read 994 the document(s). If you expect there might be multiple YAML documents in 995 one file, you'll need to specialize DocumentListTraits on a list of your 996 document type and stream in that document list type. Otherwise you can 997 just stream in the document type. Also, you can check if there was 998 any syntax errors in the YAML be calling the error() method on the Input 999 object. For example: 1000 1001 .. code-block:: c++ 1002 1003 // Reading a single document 1004 using llvm::yaml::Input; 1005 1006 Input yin(mb.getBuffer()); 1007 1008 // Parse the YAML file 1009 MyDocType theDoc; 1010 yin >> theDoc; 1011 1012 // Check for error 1013 if ( yin.error() ) 1014 return; 1015 1016 1017 .. code-block:: c++ 1018 1019 // Reading multiple documents in one file 1020 using llvm::yaml::Input; 1021 1022 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>) 1023 1024 Input yin(mb.getBuffer()); 1025 1026 // Parse the YAML file 1027 std::vector<MyDocType> theDocList; 1028 yin >> theDocList; 1029 1030 // Check for error 1031 if ( yin.error() ) 1032 return; 1033 1034 1035