1 #define MINIMAL_STDERR_OUTPUT 2 3 #include "llvm/Analysis/Passes.h" 4 #include "llvm/ExecutionEngine/ExecutionEngine.h" 5 #include "llvm/ExecutionEngine/MCJIT.h" 6 #include "llvm/ExecutionEngine/ObjectCache.h" 7 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 8 #include "llvm/IR/DataLayout.h" 9 #include "llvm/IR/DerivedTypes.h" 10 #include "llvm/IR/IRBuilder.h" 11 #include "llvm/IR/LLVMContext.h" 12 #include "llvm/IR/LegacyPassManager.h" 13 #include "llvm/IR/Module.h" 14 #include "llvm/IR/Verifier.h" 15 #include "llvm/IRReader/IRReader.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/FileSystem.h" 18 #include "llvm/Support/Path.h" 19 #include "llvm/Support/SourceMgr.h" 20 #include "llvm/Support/TargetSelect.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Transforms/Scalar.h" 23 #include <cctype> 24 #include <cstdio> 25 #include <map> 26 #include <string> 27 #include <vector> 28 using namespace llvm; 29 30 //===----------------------------------------------------------------------===// 31 // Command-line options 32 //===----------------------------------------------------------------------===// 33 34 cl::opt<std::string> 35 InputIR("input-IR", 36 cl::desc("Specify the name of an IR file to load for function definitions"), 37 cl::value_desc("input IR file name")); 38 39 cl::opt<bool> 40 UseObjectCache("use-object-cache", 41 cl::desc("Enable use of the MCJIT object caching"), 42 cl::init(false)); 43 44 //===----------------------------------------------------------------------===// 45 // Lexer 46 //===----------------------------------------------------------------------===// 47 48 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 49 // of these for known things. 50 enum Token { 51 tok_eof = -1, 52 53 // commands 54 tok_def = -2, tok_extern = -3, 55 56 // primary 57 tok_identifier = -4, tok_number = -5, 58 59 // control 60 tok_if = -6, tok_then = -7, tok_else = -8, 61 tok_for = -9, tok_in = -10, 62 63 // operators 64 tok_binary = -11, tok_unary = -12, 65 66 // var definition 67 tok_var = -13 68 }; 69 70 static std::string IdentifierStr; // Filled in if tok_identifier 71 static double NumVal; // Filled in if tok_number 72 73 /// gettok - Return the next token from standard input. 74 static int gettok() { 75 static int LastChar = ' '; 76 77 // Skip any whitespace. 78 while (isspace(LastChar)) 79 LastChar = getchar(); 80 81 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 82 IdentifierStr = LastChar; 83 while (isalnum((LastChar = getchar()))) 84 IdentifierStr += LastChar; 85 86 if (IdentifierStr == "def") return tok_def; 87 if (IdentifierStr == "extern") return tok_extern; 88 if (IdentifierStr == "if") return tok_if; 89 if (IdentifierStr == "then") return tok_then; 90 if (IdentifierStr == "else") return tok_else; 91 if (IdentifierStr == "for") return tok_for; 92 if (IdentifierStr == "in") return tok_in; 93 if (IdentifierStr == "binary") return tok_binary; 94 if (IdentifierStr == "unary") return tok_unary; 95 if (IdentifierStr == "var") return tok_var; 96 return tok_identifier; 97 } 98 99 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 100 std::string NumStr; 101 do { 102 NumStr += LastChar; 103 LastChar = getchar(); 104 } while (isdigit(LastChar) || LastChar == '.'); 105 106 NumVal = strtod(NumStr.c_str(), 0); 107 return tok_number; 108 } 109 110 if (LastChar == '#') { 111 // Comment until end of line. 112 do LastChar = getchar(); 113 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 114 115 if (LastChar != EOF) 116 return gettok(); 117 } 118 119 // Check for end of file. Don't eat the EOF. 120 if (LastChar == EOF) 121 return tok_eof; 122 123 // Otherwise, just return the character as its ascii value. 124 int ThisChar = LastChar; 125 LastChar = getchar(); 126 return ThisChar; 127 } 128 129 //===----------------------------------------------------------------------===// 130 // Abstract Syntax Tree (aka Parse Tree) 131 //===----------------------------------------------------------------------===// 132 133 /// ExprAST - Base class for all expression nodes. 134 class ExprAST { 135 public: 136 virtual ~ExprAST() {} 137 virtual Value *Codegen() = 0; 138 }; 139 140 /// NumberExprAST - Expression class for numeric literals like "1.0". 141 class NumberExprAST : public ExprAST { 142 double Val; 143 public: 144 NumberExprAST(double val) : Val(val) {} 145 virtual Value *Codegen(); 146 }; 147 148 /// VariableExprAST - Expression class for referencing a variable, like "a". 149 class VariableExprAST : public ExprAST { 150 std::string Name; 151 public: 152 VariableExprAST(const std::string &name) : Name(name) {} 153 const std::string &getName() const { return Name; } 154 virtual Value *Codegen(); 155 }; 156 157 /// UnaryExprAST - Expression class for a unary operator. 158 class UnaryExprAST : public ExprAST { 159 char Opcode; 160 ExprAST *Operand; 161 public: 162 UnaryExprAST(char opcode, ExprAST *operand) 163 : Opcode(opcode), Operand(operand) {} 164 virtual Value *Codegen(); 165 }; 166 167 /// BinaryExprAST - Expression class for a binary operator. 168 class BinaryExprAST : public ExprAST { 169 char Op; 170 ExprAST *LHS, *RHS; 171 public: 172 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 173 : Op(op), LHS(lhs), RHS(rhs) {} 174 virtual Value *Codegen(); 175 }; 176 177 /// CallExprAST - Expression class for function calls. 178 class CallExprAST : public ExprAST { 179 std::string Callee; 180 std::vector<ExprAST*> Args; 181 public: 182 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 183 : Callee(callee), Args(args) {} 184 virtual Value *Codegen(); 185 }; 186 187 /// IfExprAST - Expression class for if/then/else. 188 class IfExprAST : public ExprAST { 189 ExprAST *Cond, *Then, *Else; 190 public: 191 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 192 : Cond(cond), Then(then), Else(_else) {} 193 virtual Value *Codegen(); 194 }; 195 196 /// ForExprAST - Expression class for for/in. 197 class ForExprAST : public ExprAST { 198 std::string VarName; 199 ExprAST *Start, *End, *Step, *Body; 200 public: 201 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 202 ExprAST *step, ExprAST *body) 203 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 204 virtual Value *Codegen(); 205 }; 206 207 /// VarExprAST - Expression class for var/in 208 class VarExprAST : public ExprAST { 209 std::vector<std::pair<std::string, ExprAST*> > VarNames; 210 ExprAST *Body; 211 public: 212 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 213 ExprAST *body) 214 : VarNames(varnames), Body(body) {} 215 216 virtual Value *Codegen(); 217 }; 218 219 /// PrototypeAST - This class represents the "prototype" for a function, 220 /// which captures its argument names as well as if it is an operator. 221 class PrototypeAST { 222 std::string Name; 223 std::vector<std::string> Args; 224 bool isOperator; 225 unsigned Precedence; // Precedence if a binary op. 226 public: 227 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 228 bool isoperator = false, unsigned prec = 0) 229 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 230 231 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 232 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 233 234 char getOperatorName() const { 235 assert(isUnaryOp() || isBinaryOp()); 236 return Name[Name.size()-1]; 237 } 238 239 unsigned getBinaryPrecedence() const { return Precedence; } 240 241 Function *Codegen(); 242 243 void CreateArgumentAllocas(Function *F); 244 }; 245 246 /// FunctionAST - This class represents a function definition itself. 247 class FunctionAST { 248 PrototypeAST *Proto; 249 ExprAST *Body; 250 public: 251 FunctionAST(PrototypeAST *proto, ExprAST *body) 252 : Proto(proto), Body(body) {} 253 254 Function *Codegen(); 255 }; 256 257 //===----------------------------------------------------------------------===// 258 // Parser 259 //===----------------------------------------------------------------------===// 260 261 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 262 /// token the parser is looking at. getNextToken reads another token from the 263 /// lexer and updates CurTok with its results. 264 static int CurTok; 265 static int getNextToken() { 266 return CurTok = gettok(); 267 } 268 269 /// BinopPrecedence - This holds the precedence for each binary operator that is 270 /// defined. 271 static std::map<char, int> BinopPrecedence; 272 273 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 274 static int GetTokPrecedence() { 275 if (!isascii(CurTok)) 276 return -1; 277 278 // Make sure it's a declared binop. 279 int TokPrec = BinopPrecedence[CurTok]; 280 if (TokPrec <= 0) return -1; 281 return TokPrec; 282 } 283 284 /// Error* - These are little helper functions for error handling. 285 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 286 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 287 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 288 289 static ExprAST *ParseExpression(); 290 291 /// identifierexpr 292 /// ::= identifier 293 /// ::= identifier '(' expression* ')' 294 static ExprAST *ParseIdentifierExpr() { 295 std::string IdName = IdentifierStr; 296 297 getNextToken(); // eat identifier. 298 299 if (CurTok != '(') // Simple variable ref. 300 return new VariableExprAST(IdName); 301 302 // Call. 303 getNextToken(); // eat ( 304 std::vector<ExprAST*> Args; 305 if (CurTok != ')') { 306 while (1) { 307 ExprAST *Arg = ParseExpression(); 308 if (!Arg) return 0; 309 Args.push_back(Arg); 310 311 if (CurTok == ')') break; 312 313 if (CurTok != ',') 314 return Error("Expected ')' or ',' in argument list"); 315 getNextToken(); 316 } 317 } 318 319 // Eat the ')'. 320 getNextToken(); 321 322 return new CallExprAST(IdName, Args); 323 } 324 325 /// numberexpr ::= number 326 static ExprAST *ParseNumberExpr() { 327 ExprAST *Result = new NumberExprAST(NumVal); 328 getNextToken(); // consume the number 329 return Result; 330 } 331 332 /// parenexpr ::= '(' expression ')' 333 static ExprAST *ParseParenExpr() { 334 getNextToken(); // eat (. 335 ExprAST *V = ParseExpression(); 336 if (!V) return 0; 337 338 if (CurTok != ')') 339 return Error("expected ')'"); 340 getNextToken(); // eat ). 341 return V; 342 } 343 344 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 345 static ExprAST *ParseIfExpr() { 346 getNextToken(); // eat the if. 347 348 // condition. 349 ExprAST *Cond = ParseExpression(); 350 if (!Cond) return 0; 351 352 if (CurTok != tok_then) 353 return Error("expected then"); 354 getNextToken(); // eat the then 355 356 ExprAST *Then = ParseExpression(); 357 if (Then == 0) return 0; 358 359 if (CurTok != tok_else) 360 return Error("expected else"); 361 362 getNextToken(); 363 364 ExprAST *Else = ParseExpression(); 365 if (!Else) return 0; 366 367 return new IfExprAST(Cond, Then, Else); 368 } 369 370 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 371 static ExprAST *ParseForExpr() { 372 getNextToken(); // eat the for. 373 374 if (CurTok != tok_identifier) 375 return Error("expected identifier after for"); 376 377 std::string IdName = IdentifierStr; 378 getNextToken(); // eat identifier. 379 380 if (CurTok != '=') 381 return Error("expected '=' after for"); 382 getNextToken(); // eat '='. 383 384 385 ExprAST *Start = ParseExpression(); 386 if (Start == 0) return 0; 387 if (CurTok != ',') 388 return Error("expected ',' after for start value"); 389 getNextToken(); 390 391 ExprAST *End = ParseExpression(); 392 if (End == 0) return 0; 393 394 // The step value is optional. 395 ExprAST *Step = 0; 396 if (CurTok == ',') { 397 getNextToken(); 398 Step = ParseExpression(); 399 if (Step == 0) return 0; 400 } 401 402 if (CurTok != tok_in) 403 return Error("expected 'in' after for"); 404 getNextToken(); // eat 'in'. 405 406 ExprAST *Body = ParseExpression(); 407 if (Body == 0) return 0; 408 409 return new ForExprAST(IdName, Start, End, Step, Body); 410 } 411 412 /// varexpr ::= 'var' identifier ('=' expression)? 413 // (',' identifier ('=' expression)?)* 'in' expression 414 static ExprAST *ParseVarExpr() { 415 getNextToken(); // eat the var. 416 417 std::vector<std::pair<std::string, ExprAST*> > VarNames; 418 419 // At least one variable name is required. 420 if (CurTok != tok_identifier) 421 return Error("expected identifier after var"); 422 423 while (1) { 424 std::string Name = IdentifierStr; 425 getNextToken(); // eat identifier. 426 427 // Read the optional initializer. 428 ExprAST *Init = 0; 429 if (CurTok == '=') { 430 getNextToken(); // eat the '='. 431 432 Init = ParseExpression(); 433 if (Init == 0) return 0; 434 } 435 436 VarNames.push_back(std::make_pair(Name, Init)); 437 438 // End of var list, exit loop. 439 if (CurTok != ',') break; 440 getNextToken(); // eat the ','. 441 442 if (CurTok != tok_identifier) 443 return Error("expected identifier list after var"); 444 } 445 446 // At this point, we have to have 'in'. 447 if (CurTok != tok_in) 448 return Error("expected 'in' keyword after 'var'"); 449 getNextToken(); // eat 'in'. 450 451 ExprAST *Body = ParseExpression(); 452 if (Body == 0) return 0; 453 454 return new VarExprAST(VarNames, Body); 455 } 456 457 /// primary 458 /// ::= identifierexpr 459 /// ::= numberexpr 460 /// ::= parenexpr 461 /// ::= ifexpr 462 /// ::= forexpr 463 /// ::= varexpr 464 static ExprAST *ParsePrimary() { 465 switch (CurTok) { 466 default: return Error("unknown token when expecting an expression"); 467 case tok_identifier: return ParseIdentifierExpr(); 468 case tok_number: return ParseNumberExpr(); 469 case '(': return ParseParenExpr(); 470 case tok_if: return ParseIfExpr(); 471 case tok_for: return ParseForExpr(); 472 case tok_var: return ParseVarExpr(); 473 } 474 } 475 476 /// unary 477 /// ::= primary 478 /// ::= '!' unary 479 static ExprAST *ParseUnary() { 480 // If the current token is not an operator, it must be a primary expr. 481 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 482 return ParsePrimary(); 483 484 // If this is a unary operator, read it. 485 int Opc = CurTok; 486 getNextToken(); 487 if (ExprAST *Operand = ParseUnary()) 488 return new UnaryExprAST(Opc, Operand); 489 return 0; 490 } 491 492 /// binoprhs 493 /// ::= ('+' unary)* 494 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 495 // If this is a binop, find its precedence. 496 while (1) { 497 int TokPrec = GetTokPrecedence(); 498 499 // If this is a binop that binds at least as tightly as the current binop, 500 // consume it, otherwise we are done. 501 if (TokPrec < ExprPrec) 502 return LHS; 503 504 // Okay, we know this is a binop. 505 int BinOp = CurTok; 506 getNextToken(); // eat binop 507 508 // Parse the unary expression after the binary operator. 509 ExprAST *RHS = ParseUnary(); 510 if (!RHS) return 0; 511 512 // If BinOp binds less tightly with RHS than the operator after RHS, let 513 // the pending operator take RHS as its LHS. 514 int NextPrec = GetTokPrecedence(); 515 if (TokPrec < NextPrec) { 516 RHS = ParseBinOpRHS(TokPrec+1, RHS); 517 if (RHS == 0) return 0; 518 } 519 520 // Merge LHS/RHS. 521 LHS = new BinaryExprAST(BinOp, LHS, RHS); 522 } 523 } 524 525 /// expression 526 /// ::= unary binoprhs 527 /// 528 static ExprAST *ParseExpression() { 529 ExprAST *LHS = ParseUnary(); 530 if (!LHS) return 0; 531 532 return ParseBinOpRHS(0, LHS); 533 } 534 535 /// prototype 536 /// ::= id '(' id* ')' 537 /// ::= binary LETTER number? (id, id) 538 /// ::= unary LETTER (id) 539 static PrototypeAST *ParsePrototype() { 540 std::string FnName; 541 542 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 543 unsigned BinaryPrecedence = 30; 544 545 switch (CurTok) { 546 default: 547 return ErrorP("Expected function name in prototype"); 548 case tok_identifier: 549 FnName = IdentifierStr; 550 Kind = 0; 551 getNextToken(); 552 break; 553 case tok_unary: 554 getNextToken(); 555 if (!isascii(CurTok)) 556 return ErrorP("Expected unary operator"); 557 FnName = "unary"; 558 FnName += (char)CurTok; 559 Kind = 1; 560 getNextToken(); 561 break; 562 case tok_binary: 563 getNextToken(); 564 if (!isascii(CurTok)) 565 return ErrorP("Expected binary operator"); 566 FnName = "binary"; 567 FnName += (char)CurTok; 568 Kind = 2; 569 getNextToken(); 570 571 // Read the precedence if present. 572 if (CurTok == tok_number) { 573 if (NumVal < 1 || NumVal > 100) 574 return ErrorP("Invalid precedecnce: must be 1..100"); 575 BinaryPrecedence = (unsigned)NumVal; 576 getNextToken(); 577 } 578 break; 579 } 580 581 if (CurTok != '(') 582 return ErrorP("Expected '(' in prototype"); 583 584 std::vector<std::string> ArgNames; 585 while (getNextToken() == tok_identifier) 586 ArgNames.push_back(IdentifierStr); 587 if (CurTok != ')') 588 return ErrorP("Expected ')' in prototype"); 589 590 // success. 591 getNextToken(); // eat ')'. 592 593 // Verify right number of names for operator. 594 if (Kind && ArgNames.size() != Kind) 595 return ErrorP("Invalid number of operands for operator"); 596 597 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 598 } 599 600 /// definition ::= 'def' prototype expression 601 static FunctionAST *ParseDefinition() { 602 getNextToken(); // eat def. 603 PrototypeAST *Proto = ParsePrototype(); 604 if (Proto == 0) return 0; 605 606 if (ExprAST *E = ParseExpression()) 607 return new FunctionAST(Proto, E); 608 return 0; 609 } 610 611 /// toplevelexpr ::= expression 612 static FunctionAST *ParseTopLevelExpr() { 613 if (ExprAST *E = ParseExpression()) { 614 // Make an anonymous proto. 615 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 616 return new FunctionAST(Proto, E); 617 } 618 return 0; 619 } 620 621 /// external ::= 'extern' prototype 622 static PrototypeAST *ParseExtern() { 623 getNextToken(); // eat extern. 624 return ParsePrototype(); 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Quick and dirty hack 629 //===----------------------------------------------------------------------===// 630 631 // FIXME: Obviously we can do better than this 632 std::string GenerateUniqueName(const char *root) 633 { 634 static int i = 0; 635 char s[16]; 636 sprintf(s, "%s%d", root, i++); 637 std::string S = s; 638 return S; 639 } 640 641 std::string MakeLegalFunctionName(std::string Name) 642 { 643 std::string NewName; 644 if (!Name.length()) 645 return GenerateUniqueName("anon_func_"); 646 647 // Start with what we have 648 NewName = Name; 649 650 // Look for a numberic first character 651 if (NewName.find_first_of("0123456789") == 0) { 652 NewName.insert(0, 1, 'n'); 653 } 654 655 // Replace illegal characters with their ASCII equivalent 656 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 657 size_t pos; 658 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { 659 char old_c = NewName.at(pos); 660 char new_str[16]; 661 sprintf(new_str, "%d", (int)old_c); 662 NewName = NewName.replace(pos, 1, new_str); 663 } 664 665 return NewName; 666 } 667 668 //===----------------------------------------------------------------------===// 669 // MCJIT object cache class 670 //===----------------------------------------------------------------------===// 671 672 class MCJITObjectCache : public ObjectCache { 673 public: 674 MCJITObjectCache() { 675 // Set IR cache directory 676 sys::fs::current_path(CacheDir); 677 sys::path::append(CacheDir, "toy_object_cache"); 678 } 679 680 virtual ~MCJITObjectCache() { 681 } 682 683 virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) { 684 // Get the ModuleID 685 const std::string ModuleID = M->getModuleIdentifier(); 686 687 // If we've flagged this as an IR file, cache it 688 if (0 == ModuleID.compare(0, 3, "IR:")) { 689 std::string IRFileName = ModuleID.substr(3); 690 SmallString<128>IRCacheFile = CacheDir; 691 sys::path::append(IRCacheFile, IRFileName); 692 if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) { 693 fprintf(stderr, "Unable to create cache directory\n"); 694 return; 695 } 696 std::string ErrStr; 697 raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary); 698 IRObjectFile << Obj->getBuffer(); 699 } 700 } 701 702 // MCJIT will call this function before compiling any module 703 // MCJIT takes ownership of both the MemoryBuffer object and the memory 704 // to which it refers. 705 virtual MemoryBuffer* getObject(const Module* M) { 706 // Get the ModuleID 707 const std::string ModuleID = M->getModuleIdentifier(); 708 709 // If we've flagged this as an IR file, cache it 710 if (0 == ModuleID.compare(0, 3, "IR:")) { 711 std::string IRFileName = ModuleID.substr(3); 712 SmallString<128> IRCacheFile = CacheDir; 713 sys::path::append(IRCacheFile, IRFileName); 714 if (!sys::fs::exists(IRCacheFile.str())) { 715 // This file isn't in our cache 716 return NULL; 717 } 718 std::unique_ptr<MemoryBuffer> IRObjectBuffer; 719 MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false); 720 // MCJIT will want to write into this buffer, and we don't want that 721 // because the file has probably just been mmapped. Instead we make 722 // a copy. The filed-based buffer will be released when it goes 723 // out of scope. 724 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer()); 725 } 726 727 return NULL; 728 } 729 730 private: 731 SmallString<128> CacheDir; 732 }; 733 734 //===----------------------------------------------------------------------===// 735 // MCJIT helper class 736 //===----------------------------------------------------------------------===// 737 738 class MCJITHelper 739 { 740 public: 741 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {} 742 ~MCJITHelper(); 743 744 Function *getFunction(const std::string FnName); 745 Module *getModuleForNewFunction(); 746 void *getPointerToFunction(Function* F); 747 void *getPointerToNamedFunction(const std::string &Name); 748 ExecutionEngine *compileModule(Module *M); 749 void closeCurrentModule(); 750 void addModule(Module *M); 751 void dump(); 752 753 private: 754 typedef std::vector<Module*> ModuleVector; 755 756 LLVMContext &Context; 757 Module *OpenModule; 758 ModuleVector Modules; 759 std::map<Module *, ExecutionEngine *> EngineMap; 760 MCJITObjectCache OurObjectCache; 761 }; 762 763 class HelpingMemoryManager : public SectionMemoryManager 764 { 765 HelpingMemoryManager(const HelpingMemoryManager&) = delete; 766 void operator=(const HelpingMemoryManager&) = delete; 767 768 public: 769 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} 770 virtual ~HelpingMemoryManager() {} 771 772 /// This method returns the address of the specified function. 773 /// Our implementation will attempt to find functions in other 774 /// modules associated with the MCJITHelper to cross link functions 775 /// from one generated module to another. 776 /// 777 /// If \p AbortOnFailure is false and no function with the given name is 778 /// found, this function returns a null pointer. Otherwise, it prints a 779 /// message to stderr and aborts. 780 virtual void *getPointerToNamedFunction(const std::string &Name, 781 bool AbortOnFailure = true); 782 private: 783 MCJITHelper *MasterHelper; 784 }; 785 786 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, 787 bool AbortOnFailure) 788 { 789 // Try the standard symbol resolution first, but ask it not to abort. 790 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false); 791 if (pfn) 792 return pfn; 793 794 pfn = MasterHelper->getPointerToNamedFunction(Name); 795 if (!pfn && AbortOnFailure) 796 report_fatal_error("Program used external function '" + Name + 797 "' which could not be resolved!"); 798 return pfn; 799 } 800 801 MCJITHelper::~MCJITHelper() 802 { 803 // Walk the vector of modules. 804 ModuleVector::iterator it, end; 805 for (it = Modules.begin(), end = Modules.end(); 806 it != end; ++it) { 807 // See if we have an execution engine for this module. 808 std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it); 809 // If we have an EE, the EE owns the module so just delete the EE. 810 if (mapIt != EngineMap.end()) { 811 delete mapIt->second; 812 } else { 813 // Otherwise, we still own the module. Delete it now. 814 delete *it; 815 } 816 } 817 } 818 819 Function *MCJITHelper::getFunction(const std::string FnName) { 820 ModuleVector::iterator begin = Modules.begin(); 821 ModuleVector::iterator end = Modules.end(); 822 ModuleVector::iterator it; 823 for (it = begin; it != end; ++it) { 824 Function *F = (*it)->getFunction(FnName); 825 if (F) { 826 if (*it == OpenModule) 827 return F; 828 829 assert(OpenModule != NULL); 830 831 // This function is in a module that has already been JITed. 832 // We need to generate a new prototype for external linkage. 833 Function *PF = OpenModule->getFunction(FnName); 834 if (PF && !PF->empty()) { 835 ErrorF("redefinition of function across modules"); 836 return 0; 837 } 838 839 // If we don't have a prototype yet, create one. 840 if (!PF) 841 PF = Function::Create(F->getFunctionType(), 842 Function::ExternalLinkage, 843 FnName, 844 OpenModule); 845 return PF; 846 } 847 } 848 return NULL; 849 } 850 851 Module *MCJITHelper::getModuleForNewFunction() { 852 // If we have a Module that hasn't been JITed, use that. 853 if (OpenModule) 854 return OpenModule; 855 856 // Otherwise create a new Module. 857 std::string ModName = GenerateUniqueName("mcjit_module_"); 858 Module *M = new Module(ModName, Context); 859 Modules.push_back(M); 860 OpenModule = M; 861 return M; 862 } 863 864 void *MCJITHelper::getPointerToFunction(Function* F) { 865 // Look for this function in an existing module 866 ModuleVector::iterator begin = Modules.begin(); 867 ModuleVector::iterator end = Modules.end(); 868 ModuleVector::iterator it; 869 std::string FnName = F->getName(); 870 for (it = begin; it != end; ++it) { 871 Function *MF = (*it)->getFunction(FnName); 872 if (MF == F) { 873 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 874 if (eeIt != EngineMap.end()) { 875 void *P = eeIt->second->getPointerToFunction(F); 876 if (P) 877 return P; 878 } else { 879 ExecutionEngine *EE = compileModule(*it); 880 void *P = EE->getPointerToFunction(F); 881 if (P) 882 return P; 883 } 884 } 885 } 886 return NULL; 887 } 888 889 void MCJITHelper::closeCurrentModule() { 890 OpenModule = NULL; 891 } 892 893 ExecutionEngine *MCJITHelper::compileModule(Module *M) { 894 if (M == OpenModule) 895 closeCurrentModule(); 896 897 std::string ErrStr; 898 ExecutionEngine *NewEngine = EngineBuilder(M) 899 .setErrorStr(&ErrStr) 900 .setMCJITMemoryManager(new HelpingMemoryManager(this)) 901 .create(); 902 if (!NewEngine) { 903 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 904 exit(1); 905 } 906 907 if (UseObjectCache) 908 NewEngine->setObjectCache(&OurObjectCache); 909 910 // Get the ModuleID so we can identify IR input files 911 const std::string ModuleID = M->getModuleIdentifier(); 912 913 // If we've flagged this as an IR file, it doesn't need function passes run. 914 if (0 != ModuleID.compare(0, 3, "IR:")) { 915 // Create a function pass manager for this engine 916 FunctionPassManager *FPM = new FunctionPassManager(M); 917 918 // Set up the optimizer pipeline. Start with registering info about how the 919 // target lays out data structures. 920 FPM->add(new DataLayout(*NewEngine->getDataLayout())); 921 // Provide basic AliasAnalysis support for GVN. 922 FPM->add(createBasicAliasAnalysisPass()); 923 // Promote allocas to registers. 924 FPM->add(createPromoteMemoryToRegisterPass()); 925 // Do simple "peephole" optimizations and bit-twiddling optzns. 926 FPM->add(createInstructionCombiningPass()); 927 // Reassociate expressions. 928 FPM->add(createReassociatePass()); 929 // Eliminate Common SubExpressions. 930 FPM->add(createGVNPass()); 931 // Simplify the control flow graph (deleting unreachable blocks, etc). 932 FPM->add(createCFGSimplificationPass()); 933 FPM->doInitialization(); 934 935 // For each function in the module 936 Module::iterator it; 937 Module::iterator end = M->end(); 938 for (it = M->begin(); it != end; ++it) { 939 // Run the FPM on this function 940 FPM->run(*it); 941 } 942 943 // We don't need this anymore 944 delete FPM; 945 } 946 947 // Store this engine 948 EngineMap[M] = NewEngine; 949 NewEngine->finalizeObject(); 950 951 return NewEngine; 952 } 953 954 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) 955 { 956 // Look for the functions in our modules, compiling only as necessary 957 ModuleVector::iterator begin = Modules.begin(); 958 ModuleVector::iterator end = Modules.end(); 959 ModuleVector::iterator it; 960 for (it = begin; it != end; ++it) { 961 Function *F = (*it)->getFunction(Name); 962 if (F && !F->empty()) { 963 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 964 if (eeIt != EngineMap.end()) { 965 void *P = eeIt->second->getPointerToFunction(F); 966 if (P) 967 return P; 968 } else { 969 ExecutionEngine *EE = compileModule(*it); 970 void *P = EE->getPointerToFunction(F); 971 if (P) 972 return P; 973 } 974 } 975 } 976 return NULL; 977 } 978 979 void MCJITHelper::addModule(Module* M) { 980 Modules.push_back(M); 981 } 982 983 void MCJITHelper::dump() 984 { 985 ModuleVector::iterator begin = Modules.begin(); 986 ModuleVector::iterator end = Modules.end(); 987 ModuleVector::iterator it; 988 for (it = begin; it != end; ++it) 989 (*it)->dump(); 990 } 991 992 //===----------------------------------------------------------------------===// 993 // Code Generation 994 //===----------------------------------------------------------------------===// 995 996 static MCJITHelper *TheHelper; 997 static IRBuilder<> Builder(getGlobalContext()); 998 static std::map<std::string, AllocaInst*> NamedValues; 999 1000 Value *ErrorV(const char *Str) { Error(Str); return 0; } 1001 1002 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 1003 /// the function. This is used for mutable variables etc. 1004 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 1005 const std::string &VarName) { 1006 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 1007 TheFunction->getEntryBlock().begin()); 1008 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, 1009 VarName.c_str()); 1010 } 1011 1012 Value *NumberExprAST::Codegen() { 1013 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 1014 } 1015 1016 Value *VariableExprAST::Codegen() { 1017 // Look this variable up in the function. 1018 Value *V = NamedValues[Name]; 1019 char ErrStr[256]; 1020 sprintf(ErrStr, "Unknown variable name %s", Name.c_str()); 1021 if (V == 0) return ErrorV(ErrStr); 1022 1023 // Load the value. 1024 return Builder.CreateLoad(V, Name.c_str()); 1025 } 1026 1027 Value *UnaryExprAST::Codegen() { 1028 Value *OperandV = Operand->Codegen(); 1029 if (OperandV == 0) return 0; 1030 1031 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 1032 if (F == 0) 1033 return ErrorV("Unknown unary operator"); 1034 1035 return Builder.CreateCall(F, OperandV, "unop"); 1036 } 1037 1038 Value *BinaryExprAST::Codegen() { 1039 // Special case '=' because we don't want to emit the LHS as an expression. 1040 if (Op == '=') { 1041 // Assignment requires the LHS to be an identifier. 1042 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS); 1043 if (!LHSE) 1044 return ErrorV("destination of '=' must be a variable"); 1045 // Codegen the RHS. 1046 Value *Val = RHS->Codegen(); 1047 if (Val == 0) return 0; 1048 1049 // Look up the name. 1050 Value *Variable = NamedValues[LHSE->getName()]; 1051 if (Variable == 0) return ErrorV("Unknown variable name"); 1052 1053 Builder.CreateStore(Val, Variable); 1054 return Val; 1055 } 1056 1057 Value *L = LHS->Codegen(); 1058 Value *R = RHS->Codegen(); 1059 if (L == 0 || R == 0) return 0; 1060 1061 switch (Op) { 1062 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 1063 case '-': return Builder.CreateFSub(L, R, "subtmp"); 1064 case '*': return Builder.CreateFMul(L, R, "multmp"); 1065 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 1066 case '<': 1067 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 1068 // Convert bool 0/1 to double 0.0 or 1.0 1069 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 1070 "booltmp"); 1071 default: break; 1072 } 1073 1074 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 1075 // a call to it. 1076 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); 1077 assert(F && "binary operator not found!"); 1078 1079 Value *Ops[] = { L, R }; 1080 return Builder.CreateCall(F, Ops, "binop"); 1081 } 1082 1083 Value *CallExprAST::Codegen() { 1084 // Look up the name in the global module table. 1085 Function *CalleeF = TheHelper->getFunction(Callee); 1086 if (CalleeF == 0) 1087 return ErrorV("Unknown function referenced"); 1088 1089 // If argument mismatch error. 1090 if (CalleeF->arg_size() != Args.size()) 1091 return ErrorV("Incorrect # arguments passed"); 1092 1093 std::vector<Value*> ArgsV; 1094 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 1095 ArgsV.push_back(Args[i]->Codegen()); 1096 if (ArgsV.back() == 0) return 0; 1097 } 1098 1099 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 1100 } 1101 1102 Value *IfExprAST::Codegen() { 1103 Value *CondV = Cond->Codegen(); 1104 if (CondV == 0) return 0; 1105 1106 // Convert condition to a bool by comparing equal to 0.0. 1107 CondV = Builder.CreateFCmpONE(CondV, 1108 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 1109 "ifcond"); 1110 1111 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1112 1113 // Create blocks for the then and else cases. Insert the 'then' block at the 1114 // end of the function. 1115 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 1116 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 1117 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 1118 1119 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 1120 1121 // Emit then value. 1122 Builder.SetInsertPoint(ThenBB); 1123 1124 Value *ThenV = Then->Codegen(); 1125 if (ThenV == 0) return 0; 1126 1127 Builder.CreateBr(MergeBB); 1128 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 1129 ThenBB = Builder.GetInsertBlock(); 1130 1131 // Emit else block. 1132 TheFunction->getBasicBlockList().push_back(ElseBB); 1133 Builder.SetInsertPoint(ElseBB); 1134 1135 Value *ElseV = Else->Codegen(); 1136 if (ElseV == 0) return 0; 1137 1138 Builder.CreateBr(MergeBB); 1139 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 1140 ElseBB = Builder.GetInsertBlock(); 1141 1142 // Emit merge block. 1143 TheFunction->getBasicBlockList().push_back(MergeBB); 1144 Builder.SetInsertPoint(MergeBB); 1145 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 1146 "iftmp"); 1147 1148 PN->addIncoming(ThenV, ThenBB); 1149 PN->addIncoming(ElseV, ElseBB); 1150 return PN; 1151 } 1152 1153 Value *ForExprAST::Codegen() { 1154 // Output this as: 1155 // var = alloca double 1156 // ... 1157 // start = startexpr 1158 // store start -> var 1159 // goto loop 1160 // loop: 1161 // ... 1162 // bodyexpr 1163 // ... 1164 // loopend: 1165 // step = stepexpr 1166 // endcond = endexpr 1167 // 1168 // curvar = load var 1169 // nextvar = curvar + step 1170 // store nextvar -> var 1171 // br endcond, loop, endloop 1172 // outloop: 1173 1174 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1175 1176 // Create an alloca for the variable in the entry block. 1177 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1178 1179 // Emit the start code first, without 'variable' in scope. 1180 Value *StartVal = Start->Codegen(); 1181 if (StartVal == 0) return 0; 1182 1183 // Store the value into the alloca. 1184 Builder.CreateStore(StartVal, Alloca); 1185 1186 // Make the new basic block for the loop header, inserting after current 1187 // block. 1188 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 1189 1190 // Insert an explicit fall through from the current block to the LoopBB. 1191 Builder.CreateBr(LoopBB); 1192 1193 // Start insertion in LoopBB. 1194 Builder.SetInsertPoint(LoopBB); 1195 1196 // Within the loop, the variable is defined equal to the PHI node. If it 1197 // shadows an existing variable, we have to restore it, so save it now. 1198 AllocaInst *OldVal = NamedValues[VarName]; 1199 NamedValues[VarName] = Alloca; 1200 1201 // Emit the body of the loop. This, like any other expr, can change the 1202 // current BB. Note that we ignore the value computed by the body, but don't 1203 // allow an error. 1204 if (Body->Codegen() == 0) 1205 return 0; 1206 1207 // Emit the step value. 1208 Value *StepVal; 1209 if (Step) { 1210 StepVal = Step->Codegen(); 1211 if (StepVal == 0) return 0; 1212 } else { 1213 // If not specified, use 1.0. 1214 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 1215 } 1216 1217 // Compute the end condition. 1218 Value *EndCond = End->Codegen(); 1219 if (EndCond == 0) return EndCond; 1220 1221 // Reload, increment, and restore the alloca. This handles the case where 1222 // the body of the loop mutates the variable. 1223 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 1224 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 1225 Builder.CreateStore(NextVar, Alloca); 1226 1227 // Convert condition to a bool by comparing equal to 0.0. 1228 EndCond = Builder.CreateFCmpONE(EndCond, 1229 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 1230 "loopcond"); 1231 1232 // Create the "after loop" block and insert it. 1233 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 1234 1235 // Insert the conditional branch into the end of LoopEndBB. 1236 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 1237 1238 // Any new code will be inserted in AfterBB. 1239 Builder.SetInsertPoint(AfterBB); 1240 1241 // Restore the unshadowed variable. 1242 if (OldVal) 1243 NamedValues[VarName] = OldVal; 1244 else 1245 NamedValues.erase(VarName); 1246 1247 1248 // for expr always returns 0.0. 1249 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 1250 } 1251 1252 Value *VarExprAST::Codegen() { 1253 std::vector<AllocaInst *> OldBindings; 1254 1255 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1256 1257 // Register all variables and emit their initializer. 1258 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 1259 const std::string &VarName = VarNames[i].first; 1260 ExprAST *Init = VarNames[i].second; 1261 1262 // Emit the initializer before adding the variable to scope, this prevents 1263 // the initializer from referencing the variable itself, and permits stuff 1264 // like this: 1265 // var a = 1 in 1266 // var a = a in ... # refers to outer 'a'. 1267 Value *InitVal; 1268 if (Init) { 1269 InitVal = Init->Codegen(); 1270 if (InitVal == 0) return 0; 1271 } else { // If not specified, use 0.0. 1272 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); 1273 } 1274 1275 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1276 Builder.CreateStore(InitVal, Alloca); 1277 1278 // Remember the old variable binding so that we can restore the binding when 1279 // we unrecurse. 1280 OldBindings.push_back(NamedValues[VarName]); 1281 1282 // Remember this binding. 1283 NamedValues[VarName] = Alloca; 1284 } 1285 1286 // Codegen the body, now that all vars are in scope. 1287 Value *BodyVal = Body->Codegen(); 1288 if (BodyVal == 0) return 0; 1289 1290 // Pop all our variables from scope. 1291 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1292 NamedValues[VarNames[i].first] = OldBindings[i]; 1293 1294 // Return the body computation. 1295 return BodyVal; 1296 } 1297 1298 Function *PrototypeAST::Codegen() { 1299 // Make the function type: double(double,double) etc. 1300 std::vector<Type*> Doubles(Args.size(), 1301 Type::getDoubleTy(getGlobalContext())); 1302 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 1303 Doubles, false); 1304 1305 std::string FnName = MakeLegalFunctionName(Name); 1306 1307 Module* M = TheHelper->getModuleForNewFunction(); 1308 1309 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); 1310 1311 // If F conflicted, there was already something named 'FnName'. If it has a 1312 // body, don't allow redefinition or reextern. 1313 if (F->getName() != FnName) { 1314 // Delete the one we just made and get the existing one. 1315 F->eraseFromParent(); 1316 F = M->getFunction(Name); 1317 1318 // If F already has a body, reject this. 1319 if (!F->empty()) { 1320 ErrorF("redefinition of function"); 1321 return 0; 1322 } 1323 1324 // If F took a different number of args, reject. 1325 if (F->arg_size() != Args.size()) { 1326 ErrorF("redefinition of function with different # args"); 1327 return 0; 1328 } 1329 } 1330 1331 // Set names for all arguments. 1332 unsigned Idx = 0; 1333 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 1334 ++AI, ++Idx) 1335 AI->setName(Args[Idx]); 1336 1337 return F; 1338 } 1339 1340 /// CreateArgumentAllocas - Create an alloca for each argument and register the 1341 /// argument in the symbol table so that references to it will succeed. 1342 void PrototypeAST::CreateArgumentAllocas(Function *F) { 1343 Function::arg_iterator AI = F->arg_begin(); 1344 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 1345 // Create an alloca for this variable. 1346 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 1347 1348 // Store the initial value into the alloca. 1349 Builder.CreateStore(AI, Alloca); 1350 1351 // Add arguments to variable symbol table. 1352 NamedValues[Args[Idx]] = Alloca; 1353 } 1354 } 1355 1356 Function *FunctionAST::Codegen() { 1357 NamedValues.clear(); 1358 1359 Function *TheFunction = Proto->Codegen(); 1360 if (TheFunction == 0) 1361 return 0; 1362 1363 // If this is an operator, install it. 1364 if (Proto->isBinaryOp()) 1365 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 1366 1367 // Create a new basic block to start insertion into. 1368 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 1369 Builder.SetInsertPoint(BB); 1370 1371 // Add all arguments to the symbol table and create their allocas. 1372 Proto->CreateArgumentAllocas(TheFunction); 1373 1374 if (Value *RetVal = Body->Codegen()) { 1375 // Finish off the function. 1376 Builder.CreateRet(RetVal); 1377 1378 // Validate the generated code, checking for consistency. 1379 verifyFunction(*TheFunction); 1380 1381 return TheFunction; 1382 } 1383 1384 // Error reading body, remove function. 1385 TheFunction->eraseFromParent(); 1386 1387 if (Proto->isBinaryOp()) 1388 BinopPrecedence.erase(Proto->getOperatorName()); 1389 return 0; 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // Top-Level parsing and JIT Driver 1394 //===----------------------------------------------------------------------===// 1395 1396 static void HandleDefinition() { 1397 if (FunctionAST *F = ParseDefinition()) { 1398 TheHelper->closeCurrentModule(); 1399 if (Function *LF = F->Codegen()) { 1400 #ifndef MINIMAL_STDERR_OUTPUT 1401 fprintf(stderr, "Read function definition:"); 1402 LF->dump(); 1403 #endif 1404 } 1405 } else { 1406 // Skip token for error recovery. 1407 getNextToken(); 1408 } 1409 } 1410 1411 static void HandleExtern() { 1412 if (PrototypeAST *P = ParseExtern()) { 1413 if (Function *F = P->Codegen()) { 1414 #ifndef MINIMAL_STDERR_OUTPUT 1415 fprintf(stderr, "Read extern: "); 1416 F->dump(); 1417 #endif 1418 } 1419 } else { 1420 // Skip token for error recovery. 1421 getNextToken(); 1422 } 1423 } 1424 1425 static void HandleTopLevelExpression() { 1426 // Evaluate a top-level expression into an anonymous function. 1427 if (FunctionAST *F = ParseTopLevelExpr()) { 1428 if (Function *LF = F->Codegen()) { 1429 // JIT the function, returning a function pointer. 1430 void *FPtr = TheHelper->getPointerToFunction(LF); 1431 1432 // Cast it to the right type (takes no arguments, returns a double) so we 1433 // can call it as a native function. 1434 double (*FP)() = (double (*)())(intptr_t)FPtr; 1435 #ifdef MINIMAL_STDERR_OUTPUT 1436 FP(); 1437 #else 1438 fprintf(stderr, "Evaluated to %f\n", FP()); 1439 #endif 1440 } 1441 } else { 1442 // Skip token for error recovery. 1443 getNextToken(); 1444 } 1445 } 1446 1447 /// top ::= definition | external | expression | ';' 1448 static void MainLoop() { 1449 while (1) { 1450 #ifndef MINIMAL_STDERR_OUTPUT 1451 fprintf(stderr, "ready> "); 1452 #endif 1453 switch (CurTok) { 1454 case tok_eof: return; 1455 case ';': getNextToken(); break; // ignore top-level semicolons. 1456 case tok_def: HandleDefinition(); break; 1457 case tok_extern: HandleExtern(); break; 1458 default: HandleTopLevelExpression(); break; 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // "Library" functions that can be "extern'd" from user code. 1465 //===----------------------------------------------------------------------===// 1466 1467 /// putchard - putchar that takes a double and returns 0. 1468 extern "C" 1469 double putchard(double X) { 1470 putchar((char)X); 1471 return 0; 1472 } 1473 1474 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1475 extern "C" 1476 double printd(double X) { 1477 printf("%f", X); 1478 return 0; 1479 } 1480 1481 extern "C" 1482 double printlf() { 1483 printf("\n"); 1484 return 0; 1485 } 1486 1487 //===----------------------------------------------------------------------===// 1488 // Command line input file handler 1489 //===----------------------------------------------------------------------===// 1490 1491 Module* parseInputIR(std::string InputFile) { 1492 SMDiagnostic Err; 1493 Module *M = ParseIRFile(InputFile, Err, getGlobalContext()); 1494 if (!M) { 1495 Err.print("IR parsing failed: ", errs()); 1496 return NULL; 1497 } 1498 1499 char ModID[256]; 1500 sprintf(ModID, "IR:%s", InputFile.c_str()); 1501 M->setModuleIdentifier(ModID); 1502 1503 TheHelper->addModule(M); 1504 return M; 1505 } 1506 1507 //===----------------------------------------------------------------------===// 1508 // Main driver code. 1509 //===----------------------------------------------------------------------===// 1510 1511 int main(int argc, char **argv) { 1512 InitializeNativeTarget(); 1513 InitializeNativeTargetAsmPrinter(); 1514 InitializeNativeTargetAsmParser(); 1515 LLVMContext &Context = getGlobalContext(); 1516 1517 cl::ParseCommandLineOptions(argc, argv, 1518 "Kaleidoscope example program\n"); 1519 1520 // Install standard binary operators. 1521 // 1 is lowest precedence. 1522 BinopPrecedence['='] = 2; 1523 BinopPrecedence['<'] = 10; 1524 BinopPrecedence['+'] = 20; 1525 BinopPrecedence['-'] = 20; 1526 BinopPrecedence['/'] = 40; 1527 BinopPrecedence['*'] = 40; // highest. 1528 1529 // Prime the first token. 1530 #ifndef MINIMAL_STDERR_OUTPUT 1531 fprintf(stderr, "ready> "); 1532 #endif 1533 getNextToken(); 1534 1535 // Make the helper, which holds all the code. 1536 TheHelper = new MCJITHelper(Context); 1537 1538 if (!InputIR.empty()) { 1539 parseInputIR(InputIR); 1540 } 1541 1542 // Run the main "interpreter loop" now. 1543 MainLoop(); 1544 1545 #ifndef MINIMAL_STDERR_OUTPUT 1546 // Print out all of the generated code. 1547 TheHelper->dump(); 1548 #endif 1549 1550 return 0; 1551 } 1552