Home | History | Annotate | Download | only in complete
      1 #include "llvm/Analysis/Passes.h"
      2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      3 #include "llvm/ExecutionEngine/MCJIT.h"
      4 #include "llvm/ExecutionEngine/ObjectCache.h"
      5 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
      6 #include "llvm/IR/DataLayout.h"
      7 #include "llvm/IR/DerivedTypes.h"
      8 #include "llvm/IR/IRBuilder.h"
      9 #include "llvm/IR/LLVMContext.h"
     10 #include "llvm/IR/LegacyPassManager.h"
     11 #include "llvm/IR/Module.h"
     12 #include "llvm/IR/Verifier.h"
     13 #include "llvm/IRReader/IRReader.h"
     14 #include "llvm/Support/CommandLine.h"
     15 #include "llvm/Support/FileSystem.h"
     16 #include "llvm/Support/Path.h"
     17 #include "llvm/Support/SourceMgr.h"
     18 #include "llvm/Support/TargetSelect.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 #include "llvm/Transforms/Scalar.h"
     21 #include <cctype>
     22 #include <cstdio>
     23 #include <map>
     24 #include <string>
     25 #include <vector>
     26 
     27 using namespace llvm;
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Command-line options
     31 //===----------------------------------------------------------------------===//
     32 
     33 namespace {
     34   cl::opt<std::string>
     35   InputIR("input-IR",
     36               cl::desc("Specify the name of an IR file to load for function definitions"),
     37               cl::value_desc("input IR file name"));
     38 
     39   cl::opt<bool>
     40   VerboseOutput("verbose",
     41                 cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
     42                 cl::init(false));
     43 
     44   cl::opt<bool>
     45   SuppressPrompts("suppress-prompts",
     46                   cl::desc("Disable printing the 'ready' prompt"),
     47                   cl::init(false));
     48 
     49   cl::opt<bool>
     50   DumpModulesOnExit("dump-modules",
     51                   cl::desc("Dump IR from modules to stderr on shutdown"),
     52                   cl::init(false));
     53 
     54   cl::opt<bool> EnableLazyCompilation(
     55     "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
     56     cl::init(true));
     57 
     58   cl::opt<bool> UseObjectCache(
     59     "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
     60     cl::init(false));
     61 } // namespace
     62 
     63 //===----------------------------------------------------------------------===//
     64 // Lexer
     65 //===----------------------------------------------------------------------===//
     66 
     67 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     68 // of these for known things.
     69 enum Token {
     70   tok_eof = -1,
     71 
     72   // commands
     73   tok_def = -2, tok_extern = -3,
     74 
     75   // primary
     76   tok_identifier = -4, tok_number = -5,
     77 
     78   // control
     79   tok_if = -6, tok_then = -7, tok_else = -8,
     80   tok_for = -9, tok_in = -10,
     81 
     82   // operators
     83   tok_binary = -11, tok_unary = -12,
     84 
     85   // var definition
     86   tok_var = -13
     87 };
     88 
     89 static std::string IdentifierStr;  // Filled in if tok_identifier
     90 static double NumVal;              // Filled in if tok_number
     91 
     92 /// gettok - Return the next token from standard input.
     93 static int gettok() {
     94   static int LastChar = ' ';
     95 
     96   // Skip any whitespace.
     97   while (isspace(LastChar))
     98     LastChar = getchar();
     99 
    100   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    101     IdentifierStr = LastChar;
    102     while (isalnum((LastChar = getchar())))
    103       IdentifierStr += LastChar;
    104 
    105     if (IdentifierStr == "def") return tok_def;
    106     if (IdentifierStr == "extern") return tok_extern;
    107     if (IdentifierStr == "if") return tok_if;
    108     if (IdentifierStr == "then") return tok_then;
    109     if (IdentifierStr == "else") return tok_else;
    110     if (IdentifierStr == "for") return tok_for;
    111     if (IdentifierStr == "in") return tok_in;
    112     if (IdentifierStr == "binary") return tok_binary;
    113     if (IdentifierStr == "unary") return tok_unary;
    114     if (IdentifierStr == "var") return tok_var;
    115     return tok_identifier;
    116   }
    117 
    118   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    119     std::string NumStr;
    120     do {
    121       NumStr += LastChar;
    122       LastChar = getchar();
    123     } while (isdigit(LastChar) || LastChar == '.');
    124 
    125     NumVal = strtod(NumStr.c_str(), 0);
    126     return tok_number;
    127   }
    128 
    129   if (LastChar == '#') {
    130     // Comment until end of line.
    131     do LastChar = getchar();
    132     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    133 
    134     if (LastChar != EOF)
    135       return gettok();
    136   }
    137 
    138   // Check for end of file.  Don't eat the EOF.
    139   if (LastChar == EOF)
    140     return tok_eof;
    141 
    142   // Otherwise, just return the character as its ascii value.
    143   int ThisChar = LastChar;
    144   LastChar = getchar();
    145   return ThisChar;
    146 }
    147 
    148 //===----------------------------------------------------------------------===//
    149 // Abstract Syntax Tree (aka Parse Tree)
    150 //===----------------------------------------------------------------------===//
    151 
    152 /// ExprAST - Base class for all expression nodes.
    153 class ExprAST {
    154 public:
    155   virtual ~ExprAST() {}
    156   virtual Value *Codegen() = 0;
    157 };
    158 
    159 /// NumberExprAST - Expression class for numeric literals like "1.0".
    160 class NumberExprAST : public ExprAST {
    161   double Val;
    162 public:
    163   NumberExprAST(double val) : Val(val) {}
    164   virtual Value *Codegen();
    165 };
    166 
    167 /// VariableExprAST - Expression class for referencing a variable, like "a".
    168 class VariableExprAST : public ExprAST {
    169   std::string Name;
    170 public:
    171   VariableExprAST(const std::string &name) : Name(name) {}
    172   const std::string &getName() const { return Name; }
    173   virtual Value *Codegen();
    174 };
    175 
    176 /// UnaryExprAST - Expression class for a unary operator.
    177 class UnaryExprAST : public ExprAST {
    178   char Opcode;
    179   ExprAST *Operand;
    180 public:
    181   UnaryExprAST(char opcode, ExprAST *operand)
    182     : Opcode(opcode), Operand(operand) {}
    183   virtual Value *Codegen();
    184 };
    185 
    186 /// BinaryExprAST - Expression class for a binary operator.
    187 class BinaryExprAST : public ExprAST {
    188   char Op;
    189   ExprAST *LHS, *RHS;
    190 public:
    191   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    192     : Op(op), LHS(lhs), RHS(rhs) {}
    193   virtual Value *Codegen();
    194 };
    195 
    196 /// CallExprAST - Expression class for function calls.
    197 class CallExprAST : public ExprAST {
    198   std::string Callee;
    199   std::vector<ExprAST*> Args;
    200 public:
    201   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    202     : Callee(callee), Args(args) {}
    203   virtual Value *Codegen();
    204 };
    205 
    206 /// IfExprAST - Expression class for if/then/else.
    207 class IfExprAST : public ExprAST {
    208   ExprAST *Cond, *Then, *Else;
    209 public:
    210   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    211   : Cond(cond), Then(then), Else(_else) {}
    212   virtual Value *Codegen();
    213 };
    214 
    215 /// ForExprAST - Expression class for for/in.
    216 class ForExprAST : public ExprAST {
    217   std::string VarName;
    218   ExprAST *Start, *End, *Step, *Body;
    219 public:
    220   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    221              ExprAST *step, ExprAST *body)
    222     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    223   virtual Value *Codegen();
    224 };
    225 
    226 /// VarExprAST - Expression class for var/in
    227 class VarExprAST : public ExprAST {
    228   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    229   ExprAST *Body;
    230 public:
    231   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    232              ExprAST *body)
    233   : VarNames(varnames), Body(body) {}
    234 
    235   virtual Value *Codegen();
    236 };
    237 
    238 /// PrototypeAST - This class represents the "prototype" for a function,
    239 /// which captures its argument names as well as if it is an operator.
    240 class PrototypeAST {
    241   std::string Name;
    242   std::vector<std::string> Args;
    243   bool isOperator;
    244   unsigned Precedence;  // Precedence if a binary op.
    245 public:
    246   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    247                bool isoperator = false, unsigned prec = 0)
    248   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    249 
    250   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    251   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    252 
    253   char getOperatorName() const {
    254     assert(isUnaryOp() || isBinaryOp());
    255     return Name[Name.size()-1];
    256   }
    257 
    258   unsigned getBinaryPrecedence() const { return Precedence; }
    259 
    260   Function *Codegen();
    261 
    262   void CreateArgumentAllocas(Function *F);
    263 };
    264 
    265 /// FunctionAST - This class represents a function definition itself.
    266 class FunctionAST {
    267   PrototypeAST *Proto;
    268   ExprAST *Body;
    269 public:
    270   FunctionAST(PrototypeAST *proto, ExprAST *body)
    271     : Proto(proto), Body(body) {}
    272 
    273   Function *Codegen();
    274 };
    275 
    276 //===----------------------------------------------------------------------===//
    277 // Parser
    278 //===----------------------------------------------------------------------===//
    279 
    280 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    281 /// token the parser is looking at.  getNextToken reads another token from the
    282 /// lexer and updates CurTok with its results.
    283 static int CurTok;
    284 static int getNextToken() {
    285   return CurTok = gettok();
    286 }
    287 
    288 /// BinopPrecedence - This holds the precedence for each binary operator that is
    289 /// defined.
    290 static std::map<char, int> BinopPrecedence;
    291 
    292 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    293 static int GetTokPrecedence() {
    294   if (!isascii(CurTok))
    295     return -1;
    296 
    297   // Make sure it's a declared binop.
    298   int TokPrec = BinopPrecedence[CurTok];
    299   if (TokPrec <= 0) return -1;
    300   return TokPrec;
    301 }
    302 
    303 /// Error* - These are little helper functions for error handling.
    304 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    305 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    306 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    307 
    308 static ExprAST *ParseExpression();
    309 
    310 /// identifierexpr
    311 ///   ::= identifier
    312 ///   ::= identifier '(' expression* ')'
    313 static ExprAST *ParseIdentifierExpr() {
    314   std::string IdName = IdentifierStr;
    315 
    316   getNextToken();  // eat identifier.
    317 
    318   if (CurTok != '(') // Simple variable ref.
    319     return new VariableExprAST(IdName);
    320 
    321   // Call.
    322   getNextToken();  // eat (
    323   std::vector<ExprAST*> Args;
    324   if (CurTok != ')') {
    325     while (1) {
    326       ExprAST *Arg = ParseExpression();
    327       if (!Arg) return 0;
    328       Args.push_back(Arg);
    329 
    330       if (CurTok == ')') break;
    331 
    332       if (CurTok != ',')
    333         return Error("Expected ')' or ',' in argument list");
    334       getNextToken();
    335     }
    336   }
    337 
    338   // Eat the ')'.
    339   getNextToken();
    340 
    341   return new CallExprAST(IdName, Args);
    342 }
    343 
    344 /// numberexpr ::= number
    345 static ExprAST *ParseNumberExpr() {
    346   ExprAST *Result = new NumberExprAST(NumVal);
    347   getNextToken(); // consume the number
    348   return Result;
    349 }
    350 
    351 /// parenexpr ::= '(' expression ')'
    352 static ExprAST *ParseParenExpr() {
    353   getNextToken();  // eat (.
    354   ExprAST *V = ParseExpression();
    355   if (!V) return 0;
    356 
    357   if (CurTok != ')')
    358     return Error("expected ')'");
    359   getNextToken();  // eat ).
    360   return V;
    361 }
    362 
    363 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    364 static ExprAST *ParseIfExpr() {
    365   getNextToken();  // eat the if.
    366 
    367   // condition.
    368   ExprAST *Cond = ParseExpression();
    369   if (!Cond) return 0;
    370 
    371   if (CurTok != tok_then)
    372     return Error("expected then");
    373   getNextToken();  // eat the then
    374 
    375   ExprAST *Then = ParseExpression();
    376   if (Then == 0) return 0;
    377 
    378   if (CurTok != tok_else)
    379     return Error("expected else");
    380 
    381   getNextToken();
    382 
    383   ExprAST *Else = ParseExpression();
    384   if (!Else) return 0;
    385 
    386   return new IfExprAST(Cond, Then, Else);
    387 }
    388 
    389 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    390 static ExprAST *ParseForExpr() {
    391   getNextToken();  // eat the for.
    392 
    393   if (CurTok != tok_identifier)
    394     return Error("expected identifier after for");
    395 
    396   std::string IdName = IdentifierStr;
    397   getNextToken();  // eat identifier.
    398 
    399   if (CurTok != '=')
    400     return Error("expected '=' after for");
    401   getNextToken();  // eat '='.
    402 
    403 
    404   ExprAST *Start = ParseExpression();
    405   if (Start == 0) return 0;
    406   if (CurTok != ',')
    407     return Error("expected ',' after for start value");
    408   getNextToken();
    409 
    410   ExprAST *End = ParseExpression();
    411   if (End == 0) return 0;
    412 
    413   // The step value is optional.
    414   ExprAST *Step = 0;
    415   if (CurTok == ',') {
    416     getNextToken();
    417     Step = ParseExpression();
    418     if (Step == 0) return 0;
    419   }
    420 
    421   if (CurTok != tok_in)
    422     return Error("expected 'in' after for");
    423   getNextToken();  // eat 'in'.
    424 
    425   ExprAST *Body = ParseExpression();
    426   if (Body == 0) return 0;
    427 
    428   return new ForExprAST(IdName, Start, End, Step, Body);
    429 }
    430 
    431 /// varexpr ::= 'var' identifier ('=' expression)?
    432 //                    (',' identifier ('=' expression)?)* 'in' expression
    433 static ExprAST *ParseVarExpr() {
    434   getNextToken();  // eat the var.
    435 
    436   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    437 
    438   // At least one variable name is required.
    439   if (CurTok != tok_identifier)
    440     return Error("expected identifier after var");
    441 
    442   while (1) {
    443     std::string Name = IdentifierStr;
    444     getNextToken();  // eat identifier.
    445 
    446     // Read the optional initializer.
    447     ExprAST *Init = 0;
    448     if (CurTok == '=') {
    449       getNextToken(); // eat the '='.
    450 
    451       Init = ParseExpression();
    452       if (Init == 0) return 0;
    453     }
    454 
    455     VarNames.push_back(std::make_pair(Name, Init));
    456 
    457     // End of var list, exit loop.
    458     if (CurTok != ',') break;
    459     getNextToken(); // eat the ','.
    460 
    461     if (CurTok != tok_identifier)
    462       return Error("expected identifier list after var");
    463   }
    464 
    465   // At this point, we have to have 'in'.
    466   if (CurTok != tok_in)
    467     return Error("expected 'in' keyword after 'var'");
    468   getNextToken();  // eat 'in'.
    469 
    470   ExprAST *Body = ParseExpression();
    471   if (Body == 0) return 0;
    472 
    473   return new VarExprAST(VarNames, Body);
    474 }
    475 
    476 /// primary
    477 ///   ::= identifierexpr
    478 ///   ::= numberexpr
    479 ///   ::= parenexpr
    480 ///   ::= ifexpr
    481 ///   ::= forexpr
    482 ///   ::= varexpr
    483 static ExprAST *ParsePrimary() {
    484   switch (CurTok) {
    485   default: return Error("unknown token when expecting an expression");
    486   case tok_identifier: return ParseIdentifierExpr();
    487   case tok_number:     return ParseNumberExpr();
    488   case '(':            return ParseParenExpr();
    489   case tok_if:         return ParseIfExpr();
    490   case tok_for:        return ParseForExpr();
    491   case tok_var:        return ParseVarExpr();
    492   }
    493 }
    494 
    495 /// unary
    496 ///   ::= primary
    497 ///   ::= '!' unary
    498 static ExprAST *ParseUnary() {
    499   // If the current token is not an operator, it must be a primary expr.
    500   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    501     return ParsePrimary();
    502 
    503   // If this is a unary operator, read it.
    504   int Opc = CurTok;
    505   getNextToken();
    506   if (ExprAST *Operand = ParseUnary())
    507     return new UnaryExprAST(Opc, Operand);
    508   return 0;
    509 }
    510 
    511 /// binoprhs
    512 ///   ::= ('+' unary)*
    513 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    514   // If this is a binop, find its precedence.
    515   while (1) {
    516     int TokPrec = GetTokPrecedence();
    517 
    518     // If this is a binop that binds at least as tightly as the current binop,
    519     // consume it, otherwise we are done.
    520     if (TokPrec < ExprPrec)
    521       return LHS;
    522 
    523     // Okay, we know this is a binop.
    524     int BinOp = CurTok;
    525     getNextToken();  // eat binop
    526 
    527     // Parse the unary expression after the binary operator.
    528     ExprAST *RHS = ParseUnary();
    529     if (!RHS) return 0;
    530 
    531     // If BinOp binds less tightly with RHS than the operator after RHS, let
    532     // the pending operator take RHS as its LHS.
    533     int NextPrec = GetTokPrecedence();
    534     if (TokPrec < NextPrec) {
    535       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    536       if (RHS == 0) return 0;
    537     }
    538 
    539     // Merge LHS/RHS.
    540     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    541   }
    542 }
    543 
    544 /// expression
    545 ///   ::= unary binoprhs
    546 ///
    547 static ExprAST *ParseExpression() {
    548   ExprAST *LHS = ParseUnary();
    549   if (!LHS) return 0;
    550 
    551   return ParseBinOpRHS(0, LHS);
    552 }
    553 
    554 /// prototype
    555 ///   ::= id '(' id* ')'
    556 ///   ::= binary LETTER number? (id, id)
    557 ///   ::= unary LETTER (id)
    558 static PrototypeAST *ParsePrototype() {
    559   std::string FnName;
    560 
    561   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    562   unsigned BinaryPrecedence = 30;
    563 
    564   switch (CurTok) {
    565   default:
    566     return ErrorP("Expected function name in prototype");
    567   case tok_identifier:
    568     FnName = IdentifierStr;
    569     Kind = 0;
    570     getNextToken();
    571     break;
    572   case tok_unary:
    573     getNextToken();
    574     if (!isascii(CurTok))
    575       return ErrorP("Expected unary operator");
    576     FnName = "unary";
    577     FnName += (char)CurTok;
    578     Kind = 1;
    579     getNextToken();
    580     break;
    581   case tok_binary:
    582     getNextToken();
    583     if (!isascii(CurTok))
    584       return ErrorP("Expected binary operator");
    585     FnName = "binary";
    586     FnName += (char)CurTok;
    587     Kind = 2;
    588     getNextToken();
    589 
    590     // Read the precedence if present.
    591     if (CurTok == tok_number) {
    592       if (NumVal < 1 || NumVal > 100)
    593         return ErrorP("Invalid precedecnce: must be 1..100");
    594       BinaryPrecedence = (unsigned)NumVal;
    595       getNextToken();
    596     }
    597     break;
    598   }
    599 
    600   if (CurTok != '(')
    601     return ErrorP("Expected '(' in prototype");
    602 
    603   std::vector<std::string> ArgNames;
    604   while (getNextToken() == tok_identifier)
    605     ArgNames.push_back(IdentifierStr);
    606   if (CurTok != ')')
    607     return ErrorP("Expected ')' in prototype");
    608 
    609   // success.
    610   getNextToken();  // eat ')'.
    611 
    612   // Verify right number of names for operator.
    613   if (Kind && ArgNames.size() != Kind)
    614     return ErrorP("Invalid number of operands for operator");
    615 
    616   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    617 }
    618 
    619 /// definition ::= 'def' prototype expression
    620 static FunctionAST *ParseDefinition() {
    621   getNextToken();  // eat def.
    622   PrototypeAST *Proto = ParsePrototype();
    623   if (Proto == 0) return 0;
    624 
    625   if (ExprAST *E = ParseExpression())
    626     return new FunctionAST(Proto, E);
    627   return 0;
    628 }
    629 
    630 /// toplevelexpr ::= expression
    631 static FunctionAST *ParseTopLevelExpr() {
    632   if (ExprAST *E = ParseExpression()) {
    633     // Make an anonymous proto.
    634     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    635     return new FunctionAST(Proto, E);
    636   }
    637   return 0;
    638 }
    639 
    640 /// external ::= 'extern' prototype
    641 static PrototypeAST *ParseExtern() {
    642   getNextToken();  // eat extern.
    643   return ParsePrototype();
    644 }
    645 
    646 //===----------------------------------------------------------------------===//
    647 // Quick and dirty hack
    648 //===----------------------------------------------------------------------===//
    649 
    650 // FIXME: Obviously we can do better than this
    651 std::string GenerateUniqueName(const char *root)
    652 {
    653   static int i = 0;
    654   char s[16];
    655   sprintf(s, "%s%d", root, i++);
    656   std::string S = s;
    657   return S;
    658 }
    659 
    660 std::string MakeLegalFunctionName(std::string Name)
    661 {
    662   std::string NewName;
    663   if (!Name.length())
    664       return GenerateUniqueName("anon_func_");
    665 
    666   // Start with what we have
    667   NewName = Name;
    668 
    669   // Look for a numberic first character
    670   if (NewName.find_first_of("0123456789") == 0) {
    671     NewName.insert(0, 1, 'n');
    672   }
    673 
    674   // Replace illegal characters with their ASCII equivalent
    675   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    676   size_t pos;
    677   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    678     char old_c = NewName.at(pos);
    679     char new_str[16];
    680     sprintf(new_str, "%d", (int)old_c);
    681     NewName = NewName.replace(pos, 1, new_str);
    682   }
    683 
    684   return NewName;
    685 }
    686 
    687 //===----------------------------------------------------------------------===//
    688 // MCJIT object cache class
    689 //===----------------------------------------------------------------------===//
    690 
    691 class MCJITObjectCache : public ObjectCache {
    692 public:
    693   MCJITObjectCache() {
    694     // Set IR cache directory
    695     sys::fs::current_path(CacheDir);
    696     sys::path::append(CacheDir, "toy_object_cache");
    697   }
    698 
    699   virtual ~MCJITObjectCache() {
    700   }
    701 
    702   virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
    703     // Get the ModuleID
    704     const std::string ModuleID = M->getModuleIdentifier();
    705 
    706     // If we've flagged this as an IR file, cache it
    707     if (0 == ModuleID.compare(0, 3, "IR:")) {
    708       std::string IRFileName = ModuleID.substr(3);
    709       SmallString<128>IRCacheFile = CacheDir;
    710       sys::path::append(IRCacheFile, IRFileName);
    711       if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
    712         fprintf(stderr, "Unable to create cache directory\n");
    713         return;
    714       }
    715       std::string ErrStr;
    716       raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
    717       IRObjectFile << Obj->getBuffer();
    718     }
    719   }
    720 
    721   // MCJIT will call this function before compiling any module
    722   // MCJIT takes ownership of both the MemoryBuffer object and the memory
    723   // to which it refers.
    724   virtual MemoryBuffer* getObject(const Module* M) {
    725     // Get the ModuleID
    726     const std::string ModuleID = M->getModuleIdentifier();
    727 
    728     // If we've flagged this as an IR file, cache it
    729     if (0 == ModuleID.compare(0, 3, "IR:")) {
    730       std::string IRFileName = ModuleID.substr(3);
    731       SmallString<128> IRCacheFile = CacheDir;
    732       sys::path::append(IRCacheFile, IRFileName);
    733       if (!sys::fs::exists(IRCacheFile.str())) {
    734         // This file isn't in our cache
    735         return NULL;
    736       }
    737       std::unique_ptr<MemoryBuffer> IRObjectBuffer;
    738       MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
    739       // MCJIT will want to write into this buffer, and we don't want that
    740       // because the file has probably just been mmapped.  Instead we make
    741       // a copy.  The filed-based buffer will be released when it goes
    742       // out of scope.
    743       return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
    744     }
    745 
    746     return NULL;
    747   }
    748 
    749 private:
    750   SmallString<128> CacheDir;
    751 };
    752 
    753 //===----------------------------------------------------------------------===//
    754 // IR input file handler
    755 //===----------------------------------------------------------------------===//
    756 
    757 Module* parseInputIR(std::string InputFile, LLVMContext &Context) {
    758   SMDiagnostic Err;
    759   Module *M = ParseIRFile(InputFile, Err, Context);
    760   if (!M) {
    761     Err.print("IR parsing failed: ", errs());
    762     return NULL;
    763   }
    764 
    765   char ModID[256];
    766   sprintf(ModID, "IR:%s", InputFile.c_str());
    767   M->setModuleIdentifier(ModID);
    768   return M;
    769 }
    770 
    771 //===----------------------------------------------------------------------===//
    772 // Helper class for execution engine abstraction
    773 //===----------------------------------------------------------------------===//
    774 
    775 class BaseHelper
    776 {
    777 public:
    778   BaseHelper() {}
    779   virtual ~BaseHelper() {}
    780 
    781   virtual Function *getFunction(const std::string FnName) = 0;
    782   virtual Module *getModuleForNewFunction() = 0;
    783   virtual void *getPointerToFunction(Function* F) = 0;
    784   virtual void *getPointerToNamedFunction(const std::string &Name) = 0;
    785   virtual void closeCurrentModule() = 0;
    786   virtual void runFPM(Function &F) = 0;
    787   virtual void dump();
    788 };
    789 
    790 //===----------------------------------------------------------------------===//
    791 // MCJIT helper class
    792 //===----------------------------------------------------------------------===//
    793 
    794 class MCJITHelper : public BaseHelper
    795 {
    796 public:
    797   MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) {
    798     if (!InputIR.empty()) {
    799       Module *M = parseInputIR(InputIR, Context);
    800       Modules.push_back(M);
    801       if (!EnableLazyCompilation)
    802         compileModule(M);
    803     }
    804   }
    805   ~MCJITHelper();
    806 
    807   Function *getFunction(const std::string FnName);
    808   Module *getModuleForNewFunction();
    809   void *getPointerToFunction(Function* F);
    810   void *getPointerToNamedFunction(const std::string &Name);
    811   void closeCurrentModule();
    812   virtual void runFPM(Function &F) {} // Not needed, see compileModule
    813   void dump();
    814 
    815 protected:
    816   ExecutionEngine *compileModule(Module *M);
    817 
    818 private:
    819   typedef std::vector<Module*> ModuleVector;
    820 
    821   MCJITObjectCache OurObjectCache;
    822 
    823   LLVMContext  &Context;
    824   ModuleVector  Modules;
    825 
    826   std::map<Module *, ExecutionEngine *> EngineMap;
    827 
    828   Module       *CurrentModule;
    829 };
    830 
    831 class HelpingMemoryManager : public SectionMemoryManager
    832 {
    833   HelpingMemoryManager(const HelpingMemoryManager&) = delete;
    834   void operator=(const HelpingMemoryManager&) = delete;
    835 
    836 public:
    837   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
    838   virtual ~HelpingMemoryManager() {}
    839 
    840   /// This method returns the address of the specified function.
    841   /// Our implementation will attempt to find functions in other
    842   /// modules associated with the MCJITHelper to cross link functions
    843   /// from one generated module to another.
    844   ///
    845   /// If \p AbortOnFailure is false and no function with the given name is
    846   /// found, this function returns a null pointer. Otherwise, it prints a
    847   /// message to stderr and aborts.
    848   virtual void *getPointerToNamedFunction(const std::string &Name,
    849                                           bool AbortOnFailure = true);
    850 private:
    851   MCJITHelper *MasterHelper;
    852 };
    853 
    854 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
    855                                         bool AbortOnFailure)
    856 {
    857   // Try the standard symbol resolution first, but ask it not to abort.
    858   void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false);
    859   if (pfn)
    860     return pfn;
    861 
    862   pfn = MasterHelper->getPointerToNamedFunction(Name);
    863   if (!pfn && AbortOnFailure)
    864     report_fatal_error("Program used external function '" + Name +
    865                         "' which could not be resolved!");
    866   return pfn;
    867 }
    868 
    869 MCJITHelper::~MCJITHelper()
    870 {
    871   // Walk the vector of modules.
    872   ModuleVector::iterator it, end;
    873   for (it = Modules.begin(), end = Modules.end();
    874        it != end; ++it) {
    875     // See if we have an execution engine for this module.
    876     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
    877     // If we have an EE, the EE owns the module so just delete the EE.
    878     if (mapIt != EngineMap.end()) {
    879       delete mapIt->second;
    880     } else {
    881       // Otherwise, we still own the module.  Delete it now.
    882       delete *it;
    883     }
    884   }
    885 }
    886 
    887 Function *MCJITHelper::getFunction(const std::string FnName) {
    888   ModuleVector::iterator begin = Modules.begin();
    889   ModuleVector::iterator end = Modules.end();
    890   ModuleVector::iterator it;
    891   for (it = begin; it != end; ++it) {
    892     Function *F = (*it)->getFunction(FnName);
    893     if (F) {
    894       if (*it == CurrentModule)
    895           return F;
    896 
    897       assert(CurrentModule != NULL);
    898 
    899       // This function is in a module that has already been JITed.
    900       // We just need a prototype for external linkage.
    901       Function *PF = CurrentModule->getFunction(FnName);
    902       if (PF && !PF->empty()) {
    903         ErrorF("redefinition of function across modules");
    904         return 0;
    905       }
    906 
    907       // If we don't have a prototype yet, create one.
    908       if (!PF)
    909         PF = Function::Create(F->getFunctionType(),
    910                                       Function::ExternalLinkage,
    911                                       FnName,
    912                                       CurrentModule);
    913       return PF;
    914     }
    915   }
    916   return NULL;
    917 }
    918 
    919 Module *MCJITHelper::getModuleForNewFunction() {
    920   // If we have a Module that hasn't been JITed, use that.
    921   if (CurrentModule)
    922     return CurrentModule;
    923 
    924   // Otherwise create a new Module.
    925   std::string ModName = GenerateUniqueName("mcjit_module_");
    926   Module *M = new Module(ModName, Context);
    927   Modules.push_back(M);
    928   CurrentModule = M;
    929 
    930   return M;
    931 }
    932 
    933 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
    934   assert(EngineMap.find(M) == EngineMap.end());
    935 
    936   if (M == CurrentModule)
    937     closeCurrentModule();
    938 
    939   std::string ErrStr;
    940   ExecutionEngine *EE = EngineBuilder(M)
    941                             .setErrorStr(&ErrStr)
    942                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
    943                             .create();
    944   if (!EE) {
    945     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    946     exit(1);
    947   }
    948 
    949   if (UseObjectCache)
    950     EE->setObjectCache(&OurObjectCache);
    951   // Get the ModuleID so we can identify IR input files
    952   const std::string ModuleID = M->getModuleIdentifier();
    953 
    954   // If we've flagged this as an IR file, it doesn't need function passes run.
    955   if (0 != ModuleID.compare(0, 3, "IR:")) {
    956     FunctionPassManager *FPM = 0;
    957 
    958     // Create a FPM for this module
    959     FPM = new FunctionPassManager(M);
    960 
    961     // Set up the optimizer pipeline.  Start with registering info about how the
    962     // target lays out data structures.
    963     FPM->add(new DataLayout(*EE->getDataLayout()));
    964     // Provide basic AliasAnalysis support for GVN.
    965     FPM->add(createBasicAliasAnalysisPass());
    966     // Promote allocas to registers.
    967     FPM->add(createPromoteMemoryToRegisterPass());
    968     // Do simple "peephole" optimizations and bit-twiddling optzns.
    969     FPM->add(createInstructionCombiningPass());
    970     // Reassociate expressions.
    971     FPM->add(createReassociatePass());
    972     // Eliminate Common SubExpressions.
    973     FPM->add(createGVNPass());
    974     // Simplify the control flow graph (deleting unreachable blocks, etc).
    975     FPM->add(createCFGSimplificationPass());
    976 
    977     FPM->doInitialization();
    978 
    979     // For each function in the module
    980     Module::iterator it;
    981     Module::iterator end = M->end();
    982     for (it = M->begin(); it != end; ++it) {
    983       // Run the FPM on this function
    984       FPM->run(*it);
    985     }
    986 
    987     delete FPM;
    988   }
    989 
    990   EE->finalizeObject();
    991 
    992   // Store this engine
    993   EngineMap[M] = EE;
    994 
    995   return EE;
    996 }
    997 
    998 void *MCJITHelper::getPointerToFunction(Function* F) {
    999   // Look for this function in an existing module
   1000   ModuleVector::iterator begin = Modules.begin();
   1001   ModuleVector::iterator end = Modules.end();
   1002   ModuleVector::iterator it;
   1003   std::string FnName = F->getName();
   1004   for (it = begin; it != end; ++it) {
   1005     Function *MF = (*it)->getFunction(FnName);
   1006     if (MF == F) {
   1007       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1008       if (eeIt != EngineMap.end()) {
   1009         void *P = eeIt->second->getPointerToFunction(F);
   1010         if (P)
   1011           return P;
   1012       } else {
   1013         ExecutionEngine *EE = compileModule(*it);
   1014         void *P = EE->getPointerToFunction(F);
   1015         if (P)
   1016           return P;
   1017       }
   1018     }
   1019   }
   1020   return NULL;
   1021 }
   1022 
   1023 void MCJITHelper::closeCurrentModule() {
   1024     // If we have an open module (and we should), pack it up
   1025   if (CurrentModule) {
   1026     CurrentModule = NULL;
   1027   }
   1028 }
   1029 
   1030 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
   1031 {
   1032   // Look for the functions in our modules, compiling only as necessary
   1033   ModuleVector::iterator begin = Modules.begin();
   1034   ModuleVector::iterator end = Modules.end();
   1035   ModuleVector::iterator it;
   1036   for (it = begin; it != end; ++it) {
   1037     Function *F = (*it)->getFunction(Name);
   1038     if (F && !F->empty()) {
   1039       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1040       if (eeIt != EngineMap.end()) {
   1041         void *P = eeIt->second->getPointerToFunction(F);
   1042         if (P)
   1043           return P;
   1044       } else {
   1045         ExecutionEngine *EE = compileModule(*it);
   1046         void *P = EE->getPointerToFunction(F);
   1047         if (P)
   1048           return P;
   1049       }
   1050     }
   1051   }
   1052   return NULL;
   1053 }
   1054 
   1055 void MCJITHelper::dump()
   1056 {
   1057   ModuleVector::iterator begin = Modules.begin();
   1058   ModuleVector::iterator end = Modules.end();
   1059   ModuleVector::iterator it;
   1060   for (it = begin; it != end; ++it)
   1061     (*it)->dump();
   1062 }
   1063 
   1064 //===----------------------------------------------------------------------===//
   1065 // Code Generation
   1066 //===----------------------------------------------------------------------===//
   1067 
   1068 static BaseHelper *TheHelper;
   1069 static IRBuilder<> Builder(getGlobalContext());
   1070 static std::map<std::string, AllocaInst*> NamedValues;
   1071 
   1072 Value *ErrorV(const char *Str) { Error(Str); return 0; }
   1073 
   1074 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
   1075 /// the function.  This is used for mutable variables etc.
   1076 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
   1077                                           const std::string &VarName) {
   1078   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
   1079                  TheFunction->getEntryBlock().begin());
   1080   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
   1081                            VarName.c_str());
   1082 }
   1083 
   1084 Value *NumberExprAST::Codegen() {
   1085   return ConstantFP::get(getGlobalContext(), APFloat(Val));
   1086 }
   1087 
   1088 Value *VariableExprAST::Codegen() {
   1089   // Look this variable up in the function.
   1090   Value *V = NamedValues[Name];
   1091   if (V == 0) return ErrorV("Unknown variable name");
   1092 
   1093   // Load the value.
   1094   return Builder.CreateLoad(V, Name.c_str());
   1095 }
   1096 
   1097 Value *UnaryExprAST::Codegen() {
   1098   Value *OperandV = Operand->Codegen();
   1099   if (OperandV == 0) return 0;
   1100   Function *F;
   1101   F = TheHelper->getFunction(
   1102       MakeLegalFunctionName(std::string("unary") + Opcode));
   1103   if (F == 0)
   1104     return ErrorV("Unknown unary operator");
   1105 
   1106   return Builder.CreateCall(F, OperandV, "unop");
   1107 }
   1108 
   1109 Value *BinaryExprAST::Codegen() {
   1110   // Special case '=' because we don't want to emit the LHS as an expression.
   1111   if (Op == '=') {
   1112     // Assignment requires the LHS to be an identifier.
   1113     // This assume we're building without RTTI because LLVM builds that way by
   1114     // default.  If you build LLVM with RTTI this can be changed to a
   1115     // dynamic_cast for automatic error checking.
   1116     VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
   1117     if (!LHSE)
   1118       return ErrorV("destination of '=' must be a variable");
   1119     // Codegen the RHS.
   1120     Value *Val = RHS->Codegen();
   1121     if (Val == 0) return 0;
   1122 
   1123     // Look up the name.
   1124     Value *Variable = NamedValues[LHSE->getName()];
   1125     if (Variable == 0) return ErrorV("Unknown variable name");
   1126 
   1127     Builder.CreateStore(Val, Variable);
   1128     return Val;
   1129   }
   1130 
   1131   Value *L = LHS->Codegen();
   1132   Value *R = RHS->Codegen();
   1133   if (L == 0 || R == 0) return 0;
   1134 
   1135   switch (Op) {
   1136   case '+': return Builder.CreateFAdd(L, R, "addtmp");
   1137   case '-': return Builder.CreateFSub(L, R, "subtmp");
   1138   case '*': return Builder.CreateFMul(L, R, "multmp");
   1139   case '/': return Builder.CreateFDiv(L, R, "divtmp");
   1140   case '<':
   1141     L = Builder.CreateFCmpULT(L, R, "cmptmp");
   1142     // Convert bool 0/1 to double 0.0 or 1.0
   1143     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
   1144                                 "booltmp");
   1145   default: break;
   1146   }
   1147 
   1148   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
   1149   // a call to it.
   1150   Function *F;
   1151   F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
   1152   assert(F && "binary operator not found!");
   1153 
   1154   Value *Ops[] = { L, R };
   1155   return Builder.CreateCall(F, Ops, "binop");
   1156 }
   1157 
   1158 Value *CallExprAST::Codegen() {
   1159   // Look up the name in the global module table.
   1160   Function *CalleeF = TheHelper->getFunction(Callee);
   1161   if (CalleeF == 0) {
   1162     char error_str[64];
   1163     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
   1164     return ErrorV(error_str);
   1165   }
   1166 
   1167   // If argument mismatch error.
   1168   if (CalleeF->arg_size() != Args.size())
   1169     return ErrorV("Incorrect # arguments passed");
   1170 
   1171   std::vector<Value*> ArgsV;
   1172   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   1173     ArgsV.push_back(Args[i]->Codegen());
   1174     if (ArgsV.back() == 0) return 0;
   1175   }
   1176 
   1177   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
   1178 }
   1179 
   1180 Value *IfExprAST::Codegen() {
   1181   Value *CondV = Cond->Codegen();
   1182   if (CondV == 0) return 0;
   1183 
   1184   // Convert condition to a bool by comparing equal to 0.0.
   1185   CondV = Builder.CreateFCmpONE(CondV,
   1186                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1187                                 "ifcond");
   1188 
   1189   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1190 
   1191   // Create blocks for the then and else cases.  Insert the 'then' block at the
   1192   // end of the function.
   1193   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
   1194   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
   1195   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
   1196 
   1197   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
   1198 
   1199   // Emit then value.
   1200   Builder.SetInsertPoint(ThenBB);
   1201 
   1202   Value *ThenV = Then->Codegen();
   1203   if (ThenV == 0) return 0;
   1204 
   1205   Builder.CreateBr(MergeBB);
   1206   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
   1207   ThenBB = Builder.GetInsertBlock();
   1208 
   1209   // Emit else block.
   1210   TheFunction->getBasicBlockList().push_back(ElseBB);
   1211   Builder.SetInsertPoint(ElseBB);
   1212 
   1213   Value *ElseV = Else->Codegen();
   1214   if (ElseV == 0) return 0;
   1215 
   1216   Builder.CreateBr(MergeBB);
   1217   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
   1218   ElseBB = Builder.GetInsertBlock();
   1219 
   1220   // Emit merge block.
   1221   TheFunction->getBasicBlockList().push_back(MergeBB);
   1222   Builder.SetInsertPoint(MergeBB);
   1223   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1224                                   "iftmp");
   1225 
   1226   PN->addIncoming(ThenV, ThenBB);
   1227   PN->addIncoming(ElseV, ElseBB);
   1228   return PN;
   1229 }
   1230 
   1231 Value *ForExprAST::Codegen() {
   1232   // Output this as:
   1233   //   var = alloca double
   1234   //   ...
   1235   //   start = startexpr
   1236   //   store start -> var
   1237   //   goto loop
   1238   // loop:
   1239   //   ...
   1240   //   bodyexpr
   1241   //   ...
   1242   // loopend:
   1243   //   step = stepexpr
   1244   //   endcond = endexpr
   1245   //
   1246   //   curvar = load var
   1247   //   nextvar = curvar + step
   1248   //   store nextvar -> var
   1249   //   br endcond, loop, endloop
   1250   // outloop:
   1251 
   1252   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1253 
   1254   // Create an alloca for the variable in the entry block.
   1255   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1256 
   1257   // Emit the start code first, without 'variable' in scope.
   1258   Value *StartVal = Start->Codegen();
   1259   if (StartVal == 0) return 0;
   1260 
   1261   // Store the value into the alloca.
   1262   Builder.CreateStore(StartVal, Alloca);
   1263 
   1264   // Make the new basic block for the loop header, inserting after current
   1265   // block.
   1266   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1267 
   1268   // Insert an explicit fall through from the current block to the LoopBB.
   1269   Builder.CreateBr(LoopBB);
   1270 
   1271   // Start insertion in LoopBB.
   1272   Builder.SetInsertPoint(LoopBB);
   1273 
   1274   // Within the loop, the variable is defined equal to the PHI node.  If it
   1275   // shadows an existing variable, we have to restore it, so save it now.
   1276   AllocaInst *OldVal = NamedValues[VarName];
   1277   NamedValues[VarName] = Alloca;
   1278 
   1279   // Emit the body of the loop.  This, like any other expr, can change the
   1280   // current BB.  Note that we ignore the value computed by the body, but don't
   1281   // allow an error.
   1282   if (Body->Codegen() == 0)
   1283     return 0;
   1284 
   1285   // Emit the step value.
   1286   Value *StepVal;
   1287   if (Step) {
   1288     StepVal = Step->Codegen();
   1289     if (StepVal == 0) return 0;
   1290   } else {
   1291     // If not specified, use 1.0.
   1292     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1293   }
   1294 
   1295   // Compute the end condition.
   1296   Value *EndCond = End->Codegen();
   1297   if (EndCond == 0) return EndCond;
   1298 
   1299   // Reload, increment, and restore the alloca.  This handles the case where
   1300   // the body of the loop mutates the variable.
   1301   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
   1302   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
   1303   Builder.CreateStore(NextVar, Alloca);
   1304 
   1305   // Convert condition to a bool by comparing equal to 0.0.
   1306   EndCond = Builder.CreateFCmpONE(EndCond,
   1307                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1308                                   "loopcond");
   1309 
   1310   // Create the "after loop" block and insert it.
   1311   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1312 
   1313   // Insert the conditional branch into the end of LoopEndBB.
   1314   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1315 
   1316   // Any new code will be inserted in AfterBB.
   1317   Builder.SetInsertPoint(AfterBB);
   1318 
   1319   // Restore the unshadowed variable.
   1320   if (OldVal)
   1321     NamedValues[VarName] = OldVal;
   1322   else
   1323     NamedValues.erase(VarName);
   1324 
   1325 
   1326   // for expr always returns 0.0.
   1327   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1328 }
   1329 
   1330 Value *VarExprAST::Codegen() {
   1331   std::vector<AllocaInst *> OldBindings;
   1332 
   1333   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1334 
   1335   // Register all variables and emit their initializer.
   1336   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
   1337     const std::string &VarName = VarNames[i].first;
   1338     ExprAST *Init = VarNames[i].second;
   1339 
   1340     // Emit the initializer before adding the variable to scope, this prevents
   1341     // the initializer from referencing the variable itself, and permits stuff
   1342     // like this:
   1343     //  var a = 1 in
   1344     //    var a = a in ...   # refers to outer 'a'.
   1345     Value *InitVal;
   1346     if (Init) {
   1347       InitVal = Init->Codegen();
   1348       if (InitVal == 0) return 0;
   1349     } else { // If not specified, use 0.0.
   1350       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
   1351     }
   1352 
   1353     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1354     Builder.CreateStore(InitVal, Alloca);
   1355 
   1356     // Remember the old variable binding so that we can restore the binding when
   1357     // we unrecurse.
   1358     OldBindings.push_back(NamedValues[VarName]);
   1359 
   1360     // Remember this binding.
   1361     NamedValues[VarName] = Alloca;
   1362   }
   1363 
   1364   // Codegen the body, now that all vars are in scope.
   1365   Value *BodyVal = Body->Codegen();
   1366   if (BodyVal == 0) return 0;
   1367 
   1368   // Pop all our variables from scope.
   1369   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
   1370     NamedValues[VarNames[i].first] = OldBindings[i];
   1371 
   1372   // Return the body computation.
   1373   return BodyVal;
   1374 }
   1375 
   1376 Function *PrototypeAST::Codegen() {
   1377   // Make the function type:  double(double,double) etc.
   1378   std::vector<Type*> Doubles(Args.size(),
   1379                              Type::getDoubleTy(getGlobalContext()));
   1380   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1381                                        Doubles, false);
   1382 
   1383   std::string FnName;
   1384   FnName = MakeLegalFunctionName(Name);
   1385 
   1386   Module* M = TheHelper->getModuleForNewFunction();
   1387   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
   1388 
   1389   // FIXME: Implement duplicate function detection.
   1390   // The check below will only work if the duplicate is in the open module.
   1391   // If F conflicted, there was already something named 'Name'.  If it has a
   1392   // body, don't allow redefinition or reextern.
   1393   if (F->getName() != FnName) {
   1394     // Delete the one we just made and get the existing one.
   1395     F->eraseFromParent();
   1396     F = M->getFunction(FnName);
   1397     // If F already has a body, reject this.
   1398     if (!F->empty()) {
   1399       ErrorF("redefinition of function");
   1400       return 0;
   1401     }
   1402     // If F took a different number of args, reject.
   1403     if (F->arg_size() != Args.size()) {
   1404       ErrorF("redefinition of function with different # args");
   1405       return 0;
   1406     }
   1407   }
   1408 
   1409   // Set names for all arguments.
   1410   unsigned Idx = 0;
   1411   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
   1412        ++AI, ++Idx)
   1413     AI->setName(Args[Idx]);
   1414 
   1415   return F;
   1416 }
   1417 
   1418 /// CreateArgumentAllocas - Create an alloca for each argument and register the
   1419 /// argument in the symbol table so that references to it will succeed.
   1420 void PrototypeAST::CreateArgumentAllocas(Function *F) {
   1421   Function::arg_iterator AI = F->arg_begin();
   1422   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
   1423     // Create an alloca for this variable.
   1424     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
   1425 
   1426     // Store the initial value into the alloca.
   1427     Builder.CreateStore(AI, Alloca);
   1428 
   1429     // Add arguments to variable symbol table.
   1430     NamedValues[Args[Idx]] = Alloca;
   1431   }
   1432 }
   1433 
   1434 Function *FunctionAST::Codegen() {
   1435   NamedValues.clear();
   1436 
   1437   Function *TheFunction = Proto->Codegen();
   1438   if (TheFunction == 0)
   1439     return 0;
   1440 
   1441   // If this is an operator, install it.
   1442   if (Proto->isBinaryOp())
   1443     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
   1444 
   1445   // Create a new basic block to start insertion into.
   1446   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1447   Builder.SetInsertPoint(BB);
   1448 
   1449   // Add all arguments to the symbol table and create their allocas.
   1450   Proto->CreateArgumentAllocas(TheFunction);
   1451 
   1452   if (Value *RetVal = Body->Codegen()) {
   1453     // Finish off the function.
   1454     Builder.CreateRet(RetVal);
   1455 
   1456     // Validate the generated code, checking for consistency.
   1457     verifyFunction(*TheFunction);
   1458 
   1459     return TheFunction;
   1460   }
   1461 
   1462   // Error reading body, remove function.
   1463   TheFunction->eraseFromParent();
   1464 
   1465   if (Proto->isBinaryOp())
   1466     BinopPrecedence.erase(Proto->getOperatorName());
   1467   return 0;
   1468 }
   1469 
   1470 //===----------------------------------------------------------------------===//
   1471 // Top-Level parsing and JIT Driver
   1472 //===----------------------------------------------------------------------===//
   1473 
   1474 static void HandleDefinition() {
   1475   if (FunctionAST *F = ParseDefinition()) {
   1476     if (EnableLazyCompilation)
   1477       TheHelper->closeCurrentModule();
   1478     Function *LF = F->Codegen();
   1479     if (LF && VerboseOutput) {
   1480       fprintf(stderr, "Read function definition:");
   1481       LF->dump();
   1482     }
   1483   } else {
   1484     // Skip token for error recovery.
   1485     getNextToken();
   1486   }
   1487 }
   1488 
   1489 static void HandleExtern() {
   1490   if (PrototypeAST *P = ParseExtern()) {
   1491     Function *F = P->Codegen();
   1492     if (F && VerboseOutput) {
   1493       fprintf(stderr, "Read extern: ");
   1494       F->dump();
   1495     }
   1496   } else {
   1497     // Skip token for error recovery.
   1498     getNextToken();
   1499   }
   1500 }
   1501 
   1502 static void HandleTopLevelExpression() {
   1503   // Evaluate a top-level expression into an anonymous function.
   1504   if (FunctionAST *F = ParseTopLevelExpr()) {
   1505     if (Function *LF = F->Codegen()) {
   1506       // JIT the function, returning a function pointer.
   1507       void *FPtr = TheHelper->getPointerToFunction(LF);
   1508       // Cast it to the right type (takes no arguments, returns a double) so we
   1509       // can call it as a native function.
   1510       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1511       double Result = FP();
   1512       if (VerboseOutput)
   1513         fprintf(stderr, "Evaluated to %f\n", Result);
   1514     }
   1515   } else {
   1516     // Skip token for error recovery.
   1517     getNextToken();
   1518   }
   1519 }
   1520 
   1521 /// top ::= definition | external | expression | ';'
   1522 static void MainLoop() {
   1523   while (1) {
   1524     if (!SuppressPrompts)
   1525       fprintf(stderr, "ready> ");
   1526     switch (CurTok) {
   1527     case tok_eof:    return;
   1528     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1529     case tok_def:    HandleDefinition(); break;
   1530     case tok_extern: HandleExtern(); break;
   1531     default:         HandleTopLevelExpression(); break;
   1532     }
   1533   }
   1534 }
   1535 
   1536 //===----------------------------------------------------------------------===//
   1537 // "Library" functions that can be "extern'd" from user code.
   1538 //===----------------------------------------------------------------------===//
   1539 
   1540 /// putchard - putchar that takes a double and returns 0.
   1541 extern "C"
   1542 double putchard(double X) {
   1543   putchar((char)X);
   1544   return 0;
   1545 }
   1546 
   1547 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1548 extern "C"
   1549 double printd(double X) {
   1550   printf("%f", X);
   1551   return 0;
   1552 }
   1553 
   1554 extern "C"
   1555 double printlf() {
   1556   printf("\n");
   1557   return 0;
   1558 }
   1559 
   1560 //===----------------------------------------------------------------------===//
   1561 // Main driver code.
   1562 //===----------------------------------------------------------------------===//
   1563 
   1564 int main(int argc, char **argv) {
   1565   InitializeNativeTarget();
   1566   InitializeNativeTargetAsmPrinter();
   1567   InitializeNativeTargetAsmParser();
   1568   LLVMContext &Context = getGlobalContext();
   1569 
   1570   cl::ParseCommandLineOptions(argc, argv,
   1571                               "Kaleidoscope example program\n");
   1572 
   1573   // Install standard binary operators.
   1574   // 1 is lowest precedence.
   1575   BinopPrecedence['='] = 2;
   1576   BinopPrecedence['<'] = 10;
   1577   BinopPrecedence['+'] = 20;
   1578   BinopPrecedence['-'] = 20;
   1579   BinopPrecedence['/'] = 40;
   1580   BinopPrecedence['*'] = 40;  // highest.
   1581 
   1582   // Make the Helper, which holds all the code.
   1583   TheHelper = new MCJITHelper(Context);
   1584 
   1585   // Prime the first token.
   1586   if (!SuppressPrompts)
   1587     fprintf(stderr, "ready> ");
   1588   getNextToken();
   1589 
   1590   // Run the main "interpreter loop" now.
   1591   MainLoop();
   1592 
   1593   // Print out all of the generated code.
   1594   if (DumpModulesOnExit)
   1595     TheHelper->dump();
   1596 
   1597   return 0;
   1598 }
   1599