Home | History | Annotate | Download | only in Analysis
      1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This simple pass provides alias and mod/ref information for global values
     11 // that do not have their address taken, and keeps track of whether functions
     12 // read or write memory (are "pure").  For this simple (but very common) case,
     13 // we can provide pretty accurate and useful information.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/GlobalsModRef.h"
     18 #include "llvm/ADT/SCCIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/MemoryBuiltins.h"
     22 #include "llvm/Analysis/TargetLibraryInfo.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/InstIterator.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Module.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Support/CommandLine.h"
     31 using namespace llvm;
     32 
     33 #define DEBUG_TYPE "globalsmodref-aa"
     34 
     35 STATISTIC(NumNonAddrTakenGlobalVars,
     36           "Number of global vars without address taken");
     37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
     38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
     39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
     40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
     41 
     42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
     43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
     44 // rare cases may not be conservatively correct. In particular, in the face of
     45 // transforms which cause assymetry between how effective GetUnderlyingObject
     46 // is for two pointers, it may produce incorrect results.
     47 //
     48 // These unsafe results have been returned by GMR for many years without
     49 // causing significant issues in the wild and so we provide a mechanism to
     50 // re-enable them for users of LLVM that have a particular performance
     51 // sensitivity and no known issues. The option also makes it easy to evaluate
     52 // the performance impact of these results.
     53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
     54     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
     55 
     56 /// The mod/ref information collected for a particular function.
     57 ///
     58 /// We collect information about mod/ref behavior of a function here, both in
     59 /// general and as pertains to specific globals. We only have this detailed
     60 /// information when we know *something* useful about the behavior. If we
     61 /// saturate to fully general mod/ref, we remove the info for the function.
     62 class GlobalsAAResult::FunctionInfo {
     63   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
     64 
     65   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
     66   /// should provide this much alignment at least, but this makes it clear we
     67   /// specifically rely on this amount of alignment.
     68   struct LLVM_ALIGNAS(8) AlignedMap {
     69     AlignedMap() {}
     70     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
     71     GlobalInfoMapType Map;
     72   };
     73 
     74   /// Pointer traits for our aligned map.
     75   struct AlignedMapPointerTraits {
     76     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
     77     static inline AlignedMap *getFromVoidPointer(void *P) {
     78       return (AlignedMap *)P;
     79     }
     80     enum { NumLowBitsAvailable = 3 };
     81     static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
     82                   "AlignedMap insufficiently aligned to have enough low bits.");
     83   };
     84 
     85   /// The bit that flags that this function may read any global. This is
     86   /// chosen to mix together with ModRefInfo bits.
     87   enum { MayReadAnyGlobal = 4 };
     88 
     89   /// Checks to document the invariants of the bit packing here.
     90   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
     91                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
     92   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
     93                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
     94                 "Insufficient low bits to store our flag and ModRef info.");
     95 
     96 public:
     97   FunctionInfo() : Info() {}
     98   ~FunctionInfo() {
     99     delete Info.getPointer();
    100   }
    101   // Spell out the copy ond move constructors and assignment operators to get
    102   // deep copy semantics and correct move semantics in the face of the
    103   // pointer-int pair.
    104   FunctionInfo(const FunctionInfo &Arg)
    105       : Info(nullptr, Arg.Info.getInt()) {
    106     if (const auto *ArgPtr = Arg.Info.getPointer())
    107       Info.setPointer(new AlignedMap(*ArgPtr));
    108   }
    109   FunctionInfo(FunctionInfo &&Arg)
    110       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
    111     Arg.Info.setPointerAndInt(nullptr, 0);
    112   }
    113   FunctionInfo &operator=(const FunctionInfo &RHS) {
    114     delete Info.getPointer();
    115     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
    116     if (const auto *RHSPtr = RHS.Info.getPointer())
    117       Info.setPointer(new AlignedMap(*RHSPtr));
    118     return *this;
    119   }
    120   FunctionInfo &operator=(FunctionInfo &&RHS) {
    121     delete Info.getPointer();
    122     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
    123     RHS.Info.setPointerAndInt(nullptr, 0);
    124     return *this;
    125   }
    126 
    127   /// Returns the \c ModRefInfo info for this function.
    128   ModRefInfo getModRefInfo() const {
    129     return ModRefInfo(Info.getInt() & MRI_ModRef);
    130   }
    131 
    132   /// Adds new \c ModRefInfo for this function to its state.
    133   void addModRefInfo(ModRefInfo NewMRI) {
    134     Info.setInt(Info.getInt() | NewMRI);
    135   }
    136 
    137   /// Returns whether this function may read any global variable, and we don't
    138   /// know which global.
    139   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
    140 
    141   /// Sets this function as potentially reading from any global.
    142   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
    143 
    144   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
    145   /// global, which may be more precise than the general information above.
    146   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
    147     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
    148     if (AlignedMap *P = Info.getPointer()) {
    149       auto I = P->Map.find(&GV);
    150       if (I != P->Map.end())
    151         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
    152     }
    153     return GlobalMRI;
    154   }
    155 
    156   /// Add mod/ref info from another function into ours, saturating towards
    157   /// MRI_ModRef.
    158   void addFunctionInfo(const FunctionInfo &FI) {
    159     addModRefInfo(FI.getModRefInfo());
    160 
    161     if (FI.mayReadAnyGlobal())
    162       setMayReadAnyGlobal();
    163 
    164     if (AlignedMap *P = FI.Info.getPointer())
    165       for (const auto &G : P->Map)
    166         addModRefInfoForGlobal(*G.first, G.second);
    167   }
    168 
    169   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
    170     AlignedMap *P = Info.getPointer();
    171     if (!P) {
    172       P = new AlignedMap();
    173       Info.setPointer(P);
    174     }
    175     auto &GlobalMRI = P->Map[&GV];
    176     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
    177   }
    178 
    179   /// Clear a global's ModRef info. Should be used when a global is being
    180   /// deleted.
    181   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
    182     if (AlignedMap *P = Info.getPointer())
    183       P->Map.erase(&GV);
    184   }
    185 
    186 private:
    187   /// All of the information is encoded into a single pointer, with a three bit
    188   /// integer in the low three bits. The high bit provides a flag for when this
    189   /// function may read any global. The low two bits are the ModRefInfo. And
    190   /// the pointer, when non-null, points to a map from GlobalValue to
    191   /// ModRefInfo specific to that GlobalValue.
    192   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
    193 };
    194 
    195 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
    196   Value *V = getValPtr();
    197   if (auto *F = dyn_cast<Function>(V))
    198     GAR->FunctionInfos.erase(F);
    199 
    200   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    201     if (GAR->NonAddressTakenGlobals.erase(GV)) {
    202       // This global might be an indirect global.  If so, remove it and
    203       // remove any AllocRelatedValues for it.
    204       if (GAR->IndirectGlobals.erase(GV)) {
    205         // Remove any entries in AllocsForIndirectGlobals for this global.
    206         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
    207                   E = GAR->AllocsForIndirectGlobals.end();
    208              I != E; ++I)
    209           if (I->second == GV)
    210             GAR->AllocsForIndirectGlobals.erase(I);
    211       }
    212 
    213       // Scan the function info we have collected and remove this global
    214       // from all of them.
    215       for (auto &FIPair : GAR->FunctionInfos)
    216         FIPair.second.eraseModRefInfoForGlobal(*GV);
    217     }
    218   }
    219 
    220   // If this is an allocation related to an indirect global, remove it.
    221   GAR->AllocsForIndirectGlobals.erase(V);
    222 
    223   // And clear out the handle.
    224   setValPtr(nullptr);
    225   GAR->Handles.erase(I);
    226   // This object is now destroyed!
    227 }
    228 
    229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
    230   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    231 
    232   if (FunctionInfo *FI = getFunctionInfo(F)) {
    233     if (FI->getModRefInfo() == MRI_NoModRef)
    234       Min = FMRB_DoesNotAccessMemory;
    235     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
    236       Min = FMRB_OnlyReadsMemory;
    237   }
    238 
    239   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
    240 }
    241 
    242 FunctionModRefBehavior
    243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
    244   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    245 
    246   if (const Function *F = CS.getCalledFunction())
    247     if (FunctionInfo *FI = getFunctionInfo(F)) {
    248       if (FI->getModRefInfo() == MRI_NoModRef)
    249         Min = FMRB_DoesNotAccessMemory;
    250       else if ((FI->getModRefInfo() & MRI_Mod) == 0)
    251         Min = FMRB_OnlyReadsMemory;
    252     }
    253 
    254   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    255 }
    256 
    257 /// Returns the function info for the function, or null if we don't have
    258 /// anything useful to say about it.
    259 GlobalsAAResult::FunctionInfo *
    260 GlobalsAAResult::getFunctionInfo(const Function *F) {
    261   auto I = FunctionInfos.find(F);
    262   if (I != FunctionInfos.end())
    263     return &I->second;
    264   return nullptr;
    265 }
    266 
    267 /// AnalyzeGlobals - Scan through the users of all of the internal
    268 /// GlobalValue's in the program.  If none of them have their "address taken"
    269 /// (really, their address passed to something nontrivial), record this fact,
    270 /// and record the functions that they are used directly in.
    271 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
    272   SmallPtrSet<Function *, 64> TrackedFunctions;
    273   for (Function &F : M)
    274     if (F.hasLocalLinkage())
    275       if (!AnalyzeUsesOfPointer(&F)) {
    276         // Remember that we are tracking this global.
    277         NonAddressTakenGlobals.insert(&F);
    278         TrackedFunctions.insert(&F);
    279         Handles.emplace_front(*this, &F);
    280         Handles.front().I = Handles.begin();
    281         ++NumNonAddrTakenFunctions;
    282       }
    283 
    284   SmallPtrSet<Function *, 64> Readers, Writers;
    285   for (GlobalVariable &GV : M.globals())
    286     if (GV.hasLocalLinkage()) {
    287       if (!AnalyzeUsesOfPointer(&GV, &Readers,
    288                                 GV.isConstant() ? nullptr : &Writers)) {
    289         // Remember that we are tracking this global, and the mod/ref fns
    290         NonAddressTakenGlobals.insert(&GV);
    291         Handles.emplace_front(*this, &GV);
    292         Handles.front().I = Handles.begin();
    293 
    294         for (Function *Reader : Readers) {
    295           if (TrackedFunctions.insert(Reader).second) {
    296             Handles.emplace_front(*this, Reader);
    297             Handles.front().I = Handles.begin();
    298           }
    299           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
    300         }
    301 
    302         if (!GV.isConstant()) // No need to keep track of writers to constants
    303           for (Function *Writer : Writers) {
    304             if (TrackedFunctions.insert(Writer).second) {
    305               Handles.emplace_front(*this, Writer);
    306               Handles.front().I = Handles.begin();
    307             }
    308             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
    309           }
    310         ++NumNonAddrTakenGlobalVars;
    311 
    312         // If this global holds a pointer type, see if it is an indirect global.
    313         if (GV.getType()->getElementType()->isPointerTy() &&
    314             AnalyzeIndirectGlobalMemory(&GV))
    315           ++NumIndirectGlobalVars;
    316       }
    317       Readers.clear();
    318       Writers.clear();
    319     }
    320 }
    321 
    322 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
    323 /// If this is used by anything complex (i.e., the address escapes), return
    324 /// true.  Also, while we are at it, keep track of those functions that read and
    325 /// write to the value.
    326 ///
    327 /// If OkayStoreDest is non-null, stores into this global are allowed.
    328 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
    329                                            SmallPtrSetImpl<Function *> *Readers,
    330                                            SmallPtrSetImpl<Function *> *Writers,
    331                                            GlobalValue *OkayStoreDest) {
    332   if (!V->getType()->isPointerTy())
    333     return true;
    334 
    335   for (Use &U : V->uses()) {
    336     User *I = U.getUser();
    337     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    338       if (Readers)
    339         Readers->insert(LI->getParent()->getParent());
    340     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    341       if (V == SI->getOperand(1)) {
    342         if (Writers)
    343           Writers->insert(SI->getParent()->getParent());
    344       } else if (SI->getOperand(1) != OkayStoreDest) {
    345         return true; // Storing the pointer
    346       }
    347     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
    348       if (AnalyzeUsesOfPointer(I, Readers, Writers))
    349         return true;
    350     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
    351       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
    352         return true;
    353     } else if (auto CS = CallSite(I)) {
    354       // Make sure that this is just the function being called, not that it is
    355       // passing into the function.
    356       if (!CS.isCallee(&U)) {
    357         // Detect calls to free.
    358         if (isFreeCall(I, &TLI)) {
    359           if (Writers)
    360             Writers->insert(CS->getParent()->getParent());
    361         } else if (CS.doesNotCapture(CS.getArgumentNo(&U))) {
    362           Function *ParentF = CS->getParent()->getParent();
    363           // A nocapture argument may be read from or written to, but does not
    364           // escape unless the call can somehow recurse.
    365           //
    366           // nocapture "indicates that the callee does not make any copies of
    367           // the pointer that outlive itself". Therefore if we directly or
    368           // indirectly recurse, we must treat the pointer as escaping.
    369           if (FunctionToSCCMap[ParentF] ==
    370               FunctionToSCCMap[CS.getCalledFunction()])
    371             return true;
    372           if (Readers)
    373             Readers->insert(ParentF);
    374           if (Writers)
    375             Writers->insert(ParentF);
    376         } else {
    377           return true; // Argument of an unknown call.
    378         }
    379         // If the Callee is not ReadNone, it may read the global,
    380         // and if it is not ReadOnly, it may also write to it.
    381         Function *CalleeF = CS.getCalledFunction();
    382         if (!CalleeF->doesNotAccessMemory()) {
    383           if (Readers)
    384             Readers->insert(CalleeF);
    385           if (Writers && !CalleeF->onlyReadsMemory())
    386             Writers->insert(CalleeF);
    387         }
    388       }
    389     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    390       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
    391         return true; // Allow comparison against null.
    392     } else {
    393       return true;
    394     }
    395   }
    396 
    397   return false;
    398 }
    399 
    400 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
    401 /// which holds a pointer type.  See if the global always points to non-aliased
    402 /// heap memory: that is, all initializers of the globals are allocations, and
    403 /// those allocations have no use other than initialization of the global.
    404 /// Further, all loads out of GV must directly use the memory, not store the
    405 /// pointer somewhere.  If this is true, we consider the memory pointed to by
    406 /// GV to be owned by GV and can disambiguate other pointers from it.
    407 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
    408   // Keep track of values related to the allocation of the memory, f.e. the
    409   // value produced by the malloc call and any casts.
    410   std::vector<Value *> AllocRelatedValues;
    411 
    412   // If the initializer is a valid pointer, bail.
    413   if (Constant *C = GV->getInitializer())
    414     if (!C->isNullValue())
    415       return false;
    416 
    417   // Walk the user list of the global.  If we find anything other than a direct
    418   // load or store, bail out.
    419   for (User *U : GV->users()) {
    420     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    421       // The pointer loaded from the global can only be used in simple ways:
    422       // we allow addressing of it and loading storing to it.  We do *not* allow
    423       // storing the loaded pointer somewhere else or passing to a function.
    424       if (AnalyzeUsesOfPointer(LI))
    425         return false; // Loaded pointer escapes.
    426       // TODO: Could try some IP mod/ref of the loaded pointer.
    427     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    428       // Storing the global itself.
    429       if (SI->getOperand(0) == GV)
    430         return false;
    431 
    432       // If storing the null pointer, ignore it.
    433       if (isa<ConstantPointerNull>(SI->getOperand(0)))
    434         continue;
    435 
    436       // Check the value being stored.
    437       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
    438                                        GV->getParent()->getDataLayout());
    439 
    440       if (!isAllocLikeFn(Ptr, &TLI))
    441         return false; // Too hard to analyze.
    442 
    443       // Analyze all uses of the allocation.  If any of them are used in a
    444       // non-simple way (e.g. stored to another global) bail out.
    445       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
    446                                GV))
    447         return false; // Loaded pointer escapes.
    448 
    449       // Remember that this allocation is related to the indirect global.
    450       AllocRelatedValues.push_back(Ptr);
    451     } else {
    452       // Something complex, bail out.
    453       return false;
    454     }
    455   }
    456 
    457   // Okay, this is an indirect global.  Remember all of the allocations for
    458   // this global in AllocsForIndirectGlobals.
    459   while (!AllocRelatedValues.empty()) {
    460     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
    461     Handles.emplace_front(*this, AllocRelatedValues.back());
    462     Handles.front().I = Handles.begin();
    463     AllocRelatedValues.pop_back();
    464   }
    465   IndirectGlobals.insert(GV);
    466   Handles.emplace_front(*this, GV);
    467   Handles.front().I = Handles.begin();
    468   return true;
    469 }
    470 
    471 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
    472   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    473   // visit all callees before callers (leaf-first).
    474   unsigned SCCID = 0;
    475   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    476     const std::vector<CallGraphNode *> &SCC = *I;
    477     assert(!SCC.empty() && "SCC with no functions?");
    478 
    479     for (auto *CGN : SCC)
    480       if (Function *F = CGN->getFunction())
    481         FunctionToSCCMap[F] = SCCID;
    482     ++SCCID;
    483   }
    484 }
    485 
    486 /// AnalyzeCallGraph - At this point, we know the functions where globals are
    487 /// immediately stored to and read from.  Propagate this information up the call
    488 /// graph to all callers and compute the mod/ref info for all memory for each
    489 /// function.
    490 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
    491   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    492   // visit all callees before callers (leaf-first).
    493   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    494     const std::vector<CallGraphNode *> &SCC = *I;
    495     assert(!SCC.empty() && "SCC with no functions?");
    496 
    497     if (!SCC[0]->getFunction() || SCC[0]->getFunction()->mayBeOverridden()) {
    498       // Calls externally or is weak - can't say anything useful. Remove any existing
    499       // function records (may have been created when scanning globals).
    500       for (auto *Node : SCC)
    501         FunctionInfos.erase(Node->getFunction());
    502       continue;
    503     }
    504 
    505     FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
    506     bool KnowNothing = false;
    507 
    508     // Collect the mod/ref properties due to called functions.  We only compute
    509     // one mod-ref set.
    510     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
    511       Function *F = SCC[i]->getFunction();
    512       if (!F) {
    513         KnowNothing = true;
    514         break;
    515       }
    516 
    517       if (F->isDeclaration()) {
    518         // Try to get mod/ref behaviour from function attributes.
    519         if (F->doesNotAccessMemory() || F->onlyAccessesInaccessibleMemory()) {
    520           // Can't do better than that!
    521         } else if (F->onlyReadsMemory()) {
    522           FI.addModRefInfo(MRI_Ref);
    523           if (!F->isIntrinsic())
    524             // This function might call back into the module and read a global -
    525             // consider every global as possibly being read by this function.
    526             FI.setMayReadAnyGlobal();
    527         } else if (F->onlyAccessesArgMemory() ||
    528                    F->onlyAccessesInaccessibleMemOrArgMem()) {
    529           // This function may only access (read/write) memory pointed to by its
    530           // arguments. If this pointer is to a global, this escaping use of the
    531           // pointer is captured in AnalyzeUsesOfPointer().
    532           FI.addModRefInfo(MRI_ModRef);
    533         } else {
    534           FI.addModRefInfo(MRI_ModRef);
    535           // Can't say anything useful unless it's an intrinsic - they don't
    536           // read or write global variables of the kind considered here.
    537           KnowNothing = !F->isIntrinsic();
    538         }
    539         continue;
    540       }
    541 
    542       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
    543            CI != E && !KnowNothing; ++CI)
    544         if (Function *Callee = CI->second->getFunction()) {
    545           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
    546             // Propagate function effect up.
    547             FI.addFunctionInfo(*CalleeFI);
    548           } else {
    549             // Can't say anything about it.  However, if it is inside our SCC,
    550             // then nothing needs to be done.
    551             CallGraphNode *CalleeNode = CG[Callee];
    552             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
    553               KnowNothing = true;
    554           }
    555         } else {
    556           KnowNothing = true;
    557         }
    558     }
    559 
    560     // If we can't say anything useful about this SCC, remove all SCC functions
    561     // from the FunctionInfos map.
    562     if (KnowNothing) {
    563       for (auto *Node : SCC)
    564         FunctionInfos.erase(Node->getFunction());
    565       continue;
    566     }
    567 
    568     // Scan the function bodies for explicit loads or stores.
    569     for (auto *Node : SCC) {
    570       if (FI.getModRefInfo() == MRI_ModRef)
    571         break; // The mod/ref lattice saturates here.
    572       for (Instruction &I : instructions(Node->getFunction())) {
    573         if (FI.getModRefInfo() == MRI_ModRef)
    574           break; // The mod/ref lattice saturates here.
    575 
    576         // We handle calls specially because the graph-relevant aspects are
    577         // handled above.
    578         if (auto CS = CallSite(&I)) {
    579           if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
    580             // FIXME: It is completely unclear why this is necessary and not
    581             // handled by the above graph code.
    582             FI.addModRefInfo(MRI_ModRef);
    583           } else if (Function *Callee = CS.getCalledFunction()) {
    584             // The callgraph doesn't include intrinsic calls.
    585             if (Callee->isIntrinsic()) {
    586               FunctionModRefBehavior Behaviour =
    587                   AAResultBase::getModRefBehavior(Callee);
    588               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
    589             }
    590           }
    591           continue;
    592         }
    593 
    594         // All non-call instructions we use the primary predicates for whether
    595         // thay read or write memory.
    596         if (I.mayReadFromMemory())
    597           FI.addModRefInfo(MRI_Ref);
    598         if (I.mayWriteToMemory())
    599           FI.addModRefInfo(MRI_Mod);
    600       }
    601     }
    602 
    603     if ((FI.getModRefInfo() & MRI_Mod) == 0)
    604       ++NumReadMemFunctions;
    605     if (FI.getModRefInfo() == MRI_NoModRef)
    606       ++NumNoMemFunctions;
    607 
    608     // Finally, now that we know the full effect on this SCC, clone the
    609     // information to each function in the SCC.
    610     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
    611     // get invalidated if DenseMap decides to re-hash.
    612     FunctionInfo CachedFI = FI;
    613     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
    614       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
    615   }
    616 }
    617 
    618 // GV is a non-escaping global. V is a pointer address that has been loaded from.
    619 // If we can prove that V must escape, we can conclude that a load from V cannot
    620 // alias GV.
    621 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
    622                                                const Value *V,
    623                                                int &Depth,
    624                                                const DataLayout &DL) {
    625   SmallPtrSet<const Value *, 8> Visited;
    626   SmallVector<const Value *, 8> Inputs;
    627   Visited.insert(V);
    628   Inputs.push_back(V);
    629   do {
    630     const Value *Input = Inputs.pop_back_val();
    631 
    632     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
    633         isa<InvokeInst>(Input))
    634       // Arguments to functions or returns from functions are inherently
    635       // escaping, so we can immediately classify those as not aliasing any
    636       // non-addr-taken globals.
    637       //
    638       // (Transitive) loads from a global are also safe - if this aliased
    639       // another global, its address would escape, so no alias.
    640       continue;
    641 
    642     // Recurse through a limited number of selects, loads and PHIs. This is an
    643     // arbitrary depth of 4, lower numbers could be used to fix compile time
    644     // issues if needed, but this is generally expected to be only be important
    645     // for small depths.
    646     if (++Depth > 4)
    647       return false;
    648 
    649     if (auto *LI = dyn_cast<LoadInst>(Input)) {
    650       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
    651       continue;
    652     }
    653     if (auto *SI = dyn_cast<SelectInst>(Input)) {
    654       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
    655       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
    656       if (Visited.insert(LHS).second)
    657         Inputs.push_back(LHS);
    658       if (Visited.insert(RHS).second)
    659         Inputs.push_back(RHS);
    660       continue;
    661     }
    662     if (auto *PN = dyn_cast<PHINode>(Input)) {
    663       for (const Value *Op : PN->incoming_values()) {
    664         Op = GetUnderlyingObject(Op, DL);
    665         if (Visited.insert(Op).second)
    666           Inputs.push_back(Op);
    667       }
    668       continue;
    669     }
    670 
    671     return false;
    672   } while (!Inputs.empty());
    673 
    674   // All inputs were known to be no-alias.
    675   return true;
    676 }
    677 
    678 // There are particular cases where we can conclude no-alias between
    679 // a non-addr-taken global and some other underlying object. Specifically,
    680 // a non-addr-taken global is known to not be escaped from any function. It is
    681 // also incorrect for a transformation to introduce an escape of a global in
    682 // a way that is observable when it was not there previously. One function
    683 // being transformed to introduce an escape which could possibly be observed
    684 // (via loading from a global or the return value for example) within another
    685 // function is never safe. If the observation is made through non-atomic
    686 // operations on different threads, it is a data-race and UB. If the
    687 // observation is well defined, by being observed the transformation would have
    688 // changed program behavior by introducing the observed escape, making it an
    689 // invalid transform.
    690 //
    691 // This property does require that transformations which *temporarily* escape
    692 // a global that was not previously escaped, prior to restoring it, cannot rely
    693 // on the results of GMR::alias. This seems a reasonable restriction, although
    694 // currently there is no way to enforce it. There is also no realistic
    695 // optimization pass that would make this mistake. The closest example is
    696 // a transformation pass which does reg2mem of SSA values but stores them into
    697 // global variables temporarily before restoring the global variable's value.
    698 // This could be useful to expose "benign" races for example. However, it seems
    699 // reasonable to require that a pass which introduces escapes of global
    700 // variables in this way to either not trust AA results while the escape is
    701 // active, or to be forced to operate as a module pass that cannot co-exist
    702 // with an alias analysis such as GMR.
    703 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
    704                                                  const Value *V) {
    705   // In order to know that the underlying object cannot alias the
    706   // non-addr-taken global, we must know that it would have to be an escape.
    707   // Thus if the underlying object is a function argument, a load from
    708   // a global, or the return of a function, it cannot alias. We can also
    709   // recurse through PHI nodes and select nodes provided all of their inputs
    710   // resolve to one of these known-escaping roots.
    711   SmallPtrSet<const Value *, 8> Visited;
    712   SmallVector<const Value *, 8> Inputs;
    713   Visited.insert(V);
    714   Inputs.push_back(V);
    715   int Depth = 0;
    716   do {
    717     const Value *Input = Inputs.pop_back_val();
    718 
    719     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
    720       // If one input is the very global we're querying against, then we can't
    721       // conclude no-alias.
    722       if (InputGV == GV)
    723         return false;
    724 
    725       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
    726       // FIXME: The condition can be refined, but be conservative for now.
    727       auto *GVar = dyn_cast<GlobalVariable>(GV);
    728       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
    729       if (GVar && InputGVar &&
    730           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
    731           !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) {
    732         Type *GVType = GVar->getInitializer()->getType();
    733         Type *InputGVType = InputGVar->getInitializer()->getType();
    734         if (GVType->isSized() && InputGVType->isSized() &&
    735             (DL.getTypeAllocSize(GVType) > 0) &&
    736             (DL.getTypeAllocSize(InputGVType) > 0))
    737           continue;
    738       }
    739 
    740       // Conservatively return false, even though we could be smarter
    741       // (e.g. look through GlobalAliases).
    742       return false;
    743     }
    744 
    745     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
    746         isa<InvokeInst>(Input)) {
    747       // Arguments to functions or returns from functions are inherently
    748       // escaping, so we can immediately classify those as not aliasing any
    749       // non-addr-taken globals.
    750       continue;
    751     }
    752 
    753     // Recurse through a limited number of selects, loads and PHIs. This is an
    754     // arbitrary depth of 4, lower numbers could be used to fix compile time
    755     // issues if needed, but this is generally expected to be only be important
    756     // for small depths.
    757     if (++Depth > 4)
    758       return false;
    759 
    760     if (auto *LI = dyn_cast<LoadInst>(Input)) {
    761       // A pointer loaded from a global would have been captured, and we know
    762       // that the global is non-escaping, so no alias.
    763       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
    764       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
    765         // The load does not alias with GV.
    766         continue;
    767       // Otherwise, a load could come from anywhere, so bail.
    768       return false;
    769     }
    770     if (auto *SI = dyn_cast<SelectInst>(Input)) {
    771       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
    772       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
    773       if (Visited.insert(LHS).second)
    774         Inputs.push_back(LHS);
    775       if (Visited.insert(RHS).second)
    776         Inputs.push_back(RHS);
    777       continue;
    778     }
    779     if (auto *PN = dyn_cast<PHINode>(Input)) {
    780       for (const Value *Op : PN->incoming_values()) {
    781         Op = GetUnderlyingObject(Op, DL);
    782         if (Visited.insert(Op).second)
    783           Inputs.push_back(Op);
    784       }
    785       continue;
    786     }
    787 
    788     // FIXME: It would be good to handle other obvious no-alias cases here, but
    789     // it isn't clear how to do so reasonbly without building a small version
    790     // of BasicAA into this code. We could recurse into AAResultBase::alias
    791     // here but that seems likely to go poorly as we're inside the
    792     // implementation of such a query. Until then, just conservatievly retun
    793     // false.
    794     return false;
    795   } while (!Inputs.empty());
    796 
    797   // If all the inputs to V were definitively no-alias, then V is no-alias.
    798   return true;
    799 }
    800 
    801 /// alias - If one of the pointers is to a global that we are tracking, and the
    802 /// other is some random pointer, we know there cannot be an alias, because the
    803 /// address of the global isn't taken.
    804 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
    805                                    const MemoryLocation &LocB) {
    806   // Get the base object these pointers point to.
    807   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
    808   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
    809 
    810   // If either of the underlying values is a global, they may be non-addr-taken
    811   // globals, which we can answer queries about.
    812   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
    813   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
    814   if (GV1 || GV2) {
    815     // If the global's address is taken, pretend we don't know it's a pointer to
    816     // the global.
    817     if (GV1 && !NonAddressTakenGlobals.count(GV1))
    818       GV1 = nullptr;
    819     if (GV2 && !NonAddressTakenGlobals.count(GV2))
    820       GV2 = nullptr;
    821 
    822     // If the two pointers are derived from two different non-addr-taken
    823     // globals we know these can't alias.
    824     if (GV1 && GV2 && GV1 != GV2)
    825       return NoAlias;
    826 
    827     // If one is and the other isn't, it isn't strictly safe but we can fake
    828     // this result if necessary for performance. This does not appear to be
    829     // a common problem in practice.
    830     if (EnableUnsafeGlobalsModRefAliasResults)
    831       if ((GV1 || GV2) && GV1 != GV2)
    832         return NoAlias;
    833 
    834     // Check for a special case where a non-escaping global can be used to
    835     // conclude no-alias.
    836     if ((GV1 || GV2) && GV1 != GV2) {
    837       const GlobalValue *GV = GV1 ? GV1 : GV2;
    838       const Value *UV = GV1 ? UV2 : UV1;
    839       if (isNonEscapingGlobalNoAlias(GV, UV))
    840         return NoAlias;
    841     }
    842 
    843     // Otherwise if they are both derived from the same addr-taken global, we
    844     // can't know the two accesses don't overlap.
    845   }
    846 
    847   // These pointers may be based on the memory owned by an indirect global.  If
    848   // so, we may be able to handle this.  First check to see if the base pointer
    849   // is a direct load from an indirect global.
    850   GV1 = GV2 = nullptr;
    851   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
    852     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    853       if (IndirectGlobals.count(GV))
    854         GV1 = GV;
    855   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
    856     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    857       if (IndirectGlobals.count(GV))
    858         GV2 = GV;
    859 
    860   // These pointers may also be from an allocation for the indirect global.  If
    861   // so, also handle them.
    862   if (!GV1)
    863     GV1 = AllocsForIndirectGlobals.lookup(UV1);
    864   if (!GV2)
    865     GV2 = AllocsForIndirectGlobals.lookup(UV2);
    866 
    867   // Now that we know whether the two pointers are related to indirect globals,
    868   // use this to disambiguate the pointers. If the pointers are based on
    869   // different indirect globals they cannot alias.
    870   if (GV1 && GV2 && GV1 != GV2)
    871     return NoAlias;
    872 
    873   // If one is based on an indirect global and the other isn't, it isn't
    874   // strictly safe but we can fake this result if necessary for performance.
    875   // This does not appear to be a common problem in practice.
    876   if (EnableUnsafeGlobalsModRefAliasResults)
    877     if ((GV1 || GV2) && GV1 != GV2)
    878       return NoAlias;
    879 
    880   return AAResultBase::alias(LocA, LocB);
    881 }
    882 
    883 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
    884                                                      const GlobalValue *GV) {
    885   if (CS.doesNotAccessMemory())
    886     return MRI_NoModRef;
    887   ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
    888 
    889   // Iterate through all the arguments to the called function. If any argument
    890   // is based on GV, return the conservative result.
    891   for (auto &A : CS.args()) {
    892     SmallVector<Value*, 4> Objects;
    893     GetUnderlyingObjects(A, Objects, DL);
    894 
    895     // All objects must be identified.
    896     if (!std::all_of(Objects.begin(), Objects.end(), isIdentifiedObject))
    897       return ConservativeResult;
    898 
    899     if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end())
    900       return ConservativeResult;
    901   }
    902 
    903   // We identified all objects in the argument list, and none of them were GV.
    904   return MRI_NoModRef;
    905 }
    906 
    907 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
    908                                           const MemoryLocation &Loc) {
    909   unsigned Known = MRI_ModRef;
    910 
    911   // If we are asking for mod/ref info of a direct call with a pointer to a
    912   // global we are tracking, return information if we have it.
    913   if (const GlobalValue *GV =
    914           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
    915     if (GV->hasLocalLinkage())
    916       if (const Function *F = CS.getCalledFunction())
    917         if (NonAddressTakenGlobals.count(GV))
    918           if (const FunctionInfo *FI = getFunctionInfo(F))
    919             Known = FI->getModRefInfoForGlobal(*GV) |
    920               getModRefInfoForArgument(CS, GV);
    921 
    922   if (Known == MRI_NoModRef)
    923     return MRI_NoModRef; // No need to query other mod/ref analyses
    924   return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
    925 }
    926 
    927 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
    928                                  const TargetLibraryInfo &TLI)
    929     : AAResultBase(TLI), DL(DL) {}
    930 
    931 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
    932     : AAResultBase(std::move(Arg)), DL(Arg.DL),
    933       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
    934       IndirectGlobals(std::move(Arg.IndirectGlobals)),
    935       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
    936       FunctionInfos(std::move(Arg.FunctionInfos)),
    937       Handles(std::move(Arg.Handles)) {
    938   // Update the parent for each DeletionCallbackHandle.
    939   for (auto &H : Handles) {
    940     assert(H.GAR == &Arg);
    941     H.GAR = this;
    942   }
    943 }
    944 
    945 /*static*/ GlobalsAAResult
    946 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
    947                                CallGraph &CG) {
    948   GlobalsAAResult Result(M.getDataLayout(), TLI);
    949 
    950   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
    951   Result.CollectSCCMembership(CG);
    952 
    953   // Find non-addr taken globals.
    954   Result.AnalyzeGlobals(M);
    955 
    956   // Propagate on CG.
    957   Result.AnalyzeCallGraph(CG, M);
    958 
    959   return Result;
    960 }
    961 
    962 GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) {
    963   return GlobalsAAResult::analyzeModule(M,
    964                                         AM->getResult<TargetLibraryAnalysis>(M),
    965                                         AM->getResult<CallGraphAnalysis>(M));
    966 }
    967 
    968 char GlobalsAA::PassID;
    969 
    970 char GlobalsAAWrapperPass::ID = 0;
    971 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
    972                       "Globals Alias Analysis", false, true)
    973 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
    974 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    975 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
    976                     "Globals Alias Analysis", false, true)
    977 
    978 ModulePass *llvm::createGlobalsAAWrapperPass() {
    979   return new GlobalsAAWrapperPass();
    980 }
    981 
    982 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
    983   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
    984 }
    985 
    986 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
    987   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
    988       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
    989       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
    990   return false;
    991 }
    992 
    993 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
    994   Result.reset();
    995   return false;
    996 }
    997 
    998 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    999   AU.setPreservesAll();
   1000   AU.addRequired<CallGraphWrapperPass>();
   1001   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1002 }
   1003