1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an abstract sparse conditional propagation algorithm, 11 // modeled after SCCP, but with a customizable lattice function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/SparsePropagation.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 using namespace llvm; 22 23 #define DEBUG_TYPE "sparseprop" 24 25 //===----------------------------------------------------------------------===// 26 // AbstractLatticeFunction Implementation 27 //===----------------------------------------------------------------------===// 28 29 AbstractLatticeFunction::~AbstractLatticeFunction() {} 30 31 /// PrintValue - Render the specified lattice value to the specified stream. 32 void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) { 33 if (V == UndefVal) 34 OS << "undefined"; 35 else if (V == OverdefinedVal) 36 OS << "overdefined"; 37 else if (V == UntrackedVal) 38 OS << "untracked"; 39 else 40 OS << "unknown lattice value"; 41 } 42 43 //===----------------------------------------------------------------------===// 44 // SparseSolver Implementation 45 //===----------------------------------------------------------------------===// 46 47 /// getOrInitValueState - Return the LatticeVal object that corresponds to the 48 /// value, initializing the value's state if it hasn't been entered into the 49 /// map yet. This function is necessary because not all values should start 50 /// out in the underdefined state... Arguments should be overdefined, and 51 /// constants should be marked as constants. 52 /// 53 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { 54 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); 55 if (I != ValueState.end()) return I->second; // Common case, in the map 56 57 LatticeVal LV; 58 if (LatticeFunc->IsUntrackedValue(V)) 59 return LatticeFunc->getUntrackedVal(); 60 else if (Constant *C = dyn_cast<Constant>(V)) 61 LV = LatticeFunc->ComputeConstant(C); 62 else if (Argument *A = dyn_cast<Argument>(V)) 63 LV = LatticeFunc->ComputeArgument(A); 64 else if (!isa<Instruction>(V)) 65 // All other non-instructions are overdefined. 66 LV = LatticeFunc->getOverdefinedVal(); 67 else 68 // All instructions are underdefined by default. 69 LV = LatticeFunc->getUndefVal(); 70 71 // If this value is untracked, don't add it to the map. 72 if (LV == LatticeFunc->getUntrackedVal()) 73 return LV; 74 return ValueState[V] = LV; 75 } 76 77 /// UpdateState - When the state for some instruction is potentially updated, 78 /// this function notices and adds I to the worklist if needed. 79 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { 80 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); 81 if (I != ValueState.end() && I->second == V) 82 return; // No change. 83 84 // An update. Visit uses of I. 85 ValueState[&Inst] = V; 86 InstWorkList.push_back(&Inst); 87 } 88 89 /// MarkBlockExecutable - This method can be used by clients to mark all of 90 /// the blocks that are known to be intrinsically live in the processed unit. 91 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { 92 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 93 BBExecutable.insert(BB); // Basic block is executable! 94 BBWorkList.push_back(BB); // Add the block to the work list! 95 } 96 97 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 98 /// work list if it is not already executable... 99 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 100 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 101 return; // This edge is already known to be executable! 102 103 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 104 << " -> " << Dest->getName() << "\n"); 105 106 if (BBExecutable.count(Dest)) { 107 // The destination is already executable, but we just made an edge 108 // feasible that wasn't before. Revisit the PHI nodes in the block 109 // because they have potentially new operands. 110 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 111 visitPHINode(*cast<PHINode>(I)); 112 113 } else { 114 MarkBlockExecutable(Dest); 115 } 116 } 117 118 119 /// getFeasibleSuccessors - Return a vector of booleans to indicate which 120 /// successors are reachable from a given terminator instruction. 121 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, 122 SmallVectorImpl<bool> &Succs, 123 bool AggressiveUndef) { 124 Succs.resize(TI.getNumSuccessors()); 125 if (TI.getNumSuccessors() == 0) return; 126 127 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 128 if (BI->isUnconditional()) { 129 Succs[0] = true; 130 return; 131 } 132 133 LatticeVal BCValue; 134 if (AggressiveUndef) 135 BCValue = getOrInitValueState(BI->getCondition()); 136 else 137 BCValue = getLatticeState(BI->getCondition()); 138 139 if (BCValue == LatticeFunc->getOverdefinedVal() || 140 BCValue == LatticeFunc->getUntrackedVal()) { 141 // Overdefined condition variables can branch either way. 142 Succs[0] = Succs[1] = true; 143 return; 144 } 145 146 // If undefined, neither is feasible yet. 147 if (BCValue == LatticeFunc->getUndefVal()) 148 return; 149 150 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); 151 if (!C || !isa<ConstantInt>(C)) { 152 // Non-constant values can go either way. 153 Succs[0] = Succs[1] = true; 154 return; 155 } 156 157 // Constant condition variables mean the branch can only go a single way 158 Succs[C->isNullValue()] = true; 159 return; 160 } 161 162 if (isa<InvokeInst>(TI)) { 163 // Invoke instructions successors are always executable. 164 // TODO: Could ask the lattice function if the value can throw. 165 Succs[0] = Succs[1] = true; 166 return; 167 } 168 169 if (isa<IndirectBrInst>(TI)) { 170 Succs.assign(Succs.size(), true); 171 return; 172 } 173 174 SwitchInst &SI = cast<SwitchInst>(TI); 175 LatticeVal SCValue; 176 if (AggressiveUndef) 177 SCValue = getOrInitValueState(SI.getCondition()); 178 else 179 SCValue = getLatticeState(SI.getCondition()); 180 181 if (SCValue == LatticeFunc->getOverdefinedVal() || 182 SCValue == LatticeFunc->getUntrackedVal()) { 183 // All destinations are executable! 184 Succs.assign(TI.getNumSuccessors(), true); 185 return; 186 } 187 188 // If undefined, neither is feasible yet. 189 if (SCValue == LatticeFunc->getUndefVal()) 190 return; 191 192 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); 193 if (!C || !isa<ConstantInt>(C)) { 194 // All destinations are executable! 195 Succs.assign(TI.getNumSuccessors(), true); 196 return; 197 } 198 SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C)); 199 Succs[Case.getSuccessorIndex()] = true; 200 } 201 202 203 /// isEdgeFeasible - Return true if the control flow edge from the 'From' 204 /// basic block to the 'To' basic block is currently feasible... 205 bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, 206 bool AggressiveUndef) { 207 SmallVector<bool, 16> SuccFeasible; 208 TerminatorInst *TI = From->getTerminator(); 209 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); 210 211 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 212 if (TI->getSuccessor(i) == To && SuccFeasible[i]) 213 return true; 214 215 return false; 216 } 217 218 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { 219 SmallVector<bool, 16> SuccFeasible; 220 getFeasibleSuccessors(TI, SuccFeasible, true); 221 222 BasicBlock *BB = TI.getParent(); 223 224 // Mark all feasible successors executable... 225 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 226 if (SuccFeasible[i]) 227 markEdgeExecutable(BB, TI.getSuccessor(i)); 228 } 229 230 void SparseSolver::visitPHINode(PHINode &PN) { 231 // The lattice function may store more information on a PHINode than could be 232 // computed from its incoming values. For example, SSI form stores its sigma 233 // functions as PHINodes with a single incoming value. 234 if (LatticeFunc->IsSpecialCasedPHI(&PN)) { 235 LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this); 236 if (IV != LatticeFunc->getUntrackedVal()) 237 UpdateState(PN, IV); 238 return; 239 } 240 241 LatticeVal PNIV = getOrInitValueState(&PN); 242 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); 243 244 // If this value is already overdefined (common) just return. 245 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) 246 return; // Quick exit 247 248 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, 249 // and slow us down a lot. Just mark them overdefined. 250 if (PN.getNumIncomingValues() > 64) { 251 UpdateState(PN, Overdefined); 252 return; 253 } 254 255 // Look at all of the executable operands of the PHI node. If any of them 256 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the 257 // transfer function to give us the merge of the incoming values. 258 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 259 // If the edge is not yet known to be feasible, it doesn't impact the PHI. 260 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) 261 continue; 262 263 // Merge in this value. 264 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); 265 if (OpVal != PNIV) 266 PNIV = LatticeFunc->MergeValues(PNIV, OpVal); 267 268 if (PNIV == Overdefined) 269 break; // Rest of input values don't matter. 270 } 271 272 // Update the PHI with the compute value, which is the merge of the inputs. 273 UpdateState(PN, PNIV); 274 } 275 276 277 void SparseSolver::visitInst(Instruction &I) { 278 // PHIs are handled by the propagation logic, they are never passed into the 279 // transfer functions. 280 if (PHINode *PN = dyn_cast<PHINode>(&I)) 281 return visitPHINode(*PN); 282 283 // Otherwise, ask the transfer function what the result is. If this is 284 // something that we care about, remember it. 285 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); 286 if (IV != LatticeFunc->getUntrackedVal()) 287 UpdateState(I, IV); 288 289 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) 290 visitTerminatorInst(*TI); 291 } 292 293 void SparseSolver::Solve(Function &F) { 294 MarkBlockExecutable(&F.getEntryBlock()); 295 296 // Process the work lists until they are empty! 297 while (!BBWorkList.empty() || !InstWorkList.empty()) { 298 // Process the instruction work list. 299 while (!InstWorkList.empty()) { 300 Instruction *I = InstWorkList.back(); 301 InstWorkList.pop_back(); 302 303 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n"); 304 305 // "I" got into the work list because it made a transition. See if any 306 // users are both live and in need of updating. 307 for (User *U : I->users()) { 308 Instruction *UI = cast<Instruction>(U); 309 if (BBExecutable.count(UI->getParent())) // Inst is executable? 310 visitInst(*UI); 311 } 312 } 313 314 // Process the basic block work list. 315 while (!BBWorkList.empty()) { 316 BasicBlock *BB = BBWorkList.back(); 317 BBWorkList.pop_back(); 318 319 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); 320 321 // Notify all instructions in this basic block that they are newly 322 // executable. 323 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 324 visitInst(*I); 325 } 326 } 327 } 328 329 void SparseSolver::Print(Function &F, raw_ostream &OS) const { 330 OS << "\nFUNCTION: " << F.getName() << "\n"; 331 for (auto &BB : F) { 332 if (!BBExecutable.count(&BB)) 333 OS << "INFEASIBLE: "; 334 OS << "\t"; 335 if (BB.hasName()) 336 OS << BB.getName() << ":\n"; 337 else 338 OS << "; anon bb\n"; 339 for (auto &I : BB) { 340 LatticeFunc->PrintValue(getLatticeState(&I), OS); 341 OS << I << "\n"; 342 } 343 344 OS << "\n"; 345 } 346 } 347 348