1 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Local-dynamic access to thread-local variables proceeds in three stages. 11 // 12 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated 13 // in much the same way as a general-dynamic TLS-descriptor access against 14 // the special symbol _TLS_MODULE_BASE. 15 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using 16 // instructions with "dtprel" modifiers. 17 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's 18 // true address. 19 // 20 // This is only better than general-dynamic access to the variable if two or 21 // more of the first stage TLS-descriptor calculations can be combined. This 22 // pass looks through a function and performs such combinations. 23 // 24 //===----------------------------------------------------------------------===// 25 #include "AArch64.h" 26 #include "AArch64InstrInfo.h" 27 #include "AArch64MachineFunctionInfo.h" 28 #include "AArch64TargetMachine.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 using namespace llvm; 35 36 namespace { 37 struct LDTLSCleanup : public MachineFunctionPass { 38 static char ID; 39 LDTLSCleanup() : MachineFunctionPass(ID) {} 40 41 bool runOnMachineFunction(MachineFunction &MF) override { 42 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 43 if (AFI->getNumLocalDynamicTLSAccesses() < 2) { 44 // No point folding accesses if there isn't at least two. 45 return false; 46 } 47 48 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 49 return VisitNode(DT->getRootNode(), 0); 50 } 51 52 // Visit the dominator subtree rooted at Node in pre-order. 53 // If TLSBaseAddrReg is non-null, then use that to replace any 54 // TLS_base_addr instructions. Otherwise, create the register 55 // when the first such instruction is seen, and then use it 56 // as we encounter more instructions. 57 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 58 MachineBasicBlock *BB = Node->getBlock(); 59 bool Changed = false; 60 61 // Traverse the current block. 62 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 63 ++I) { 64 switch (I->getOpcode()) { 65 case AArch64::TLSDESC_CALLSEQ: 66 // Make sure it's a local dynamic access. 67 if (!I->getOperand(0).isSymbol() || 68 strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_")) 69 break; 70 71 if (TLSBaseAddrReg) 72 I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg); 73 else 74 I = setRegister(I, &TLSBaseAddrReg); 75 Changed = true; 76 break; 77 default: 78 break; 79 } 80 } 81 82 // Visit the children of this block in the dominator tree. 83 for (MachineDomTreeNode *N : *Node) { 84 Changed |= VisitNode(N, TLSBaseAddrReg); 85 } 86 87 return Changed; 88 } 89 90 // Replace the TLS_base_addr instruction I with a copy from 91 // TLSBaseAddrReg, returning the new instruction. 92 MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I, 93 unsigned TLSBaseAddrReg) { 94 MachineFunction *MF = I->getParent()->getParent(); 95 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 96 97 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the 98 // code sequence assumes the address will be. 99 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), 100 TII->get(TargetOpcode::COPY), 101 AArch64::X0).addReg(TLSBaseAddrReg); 102 103 // Erase the TLS_base_addr instruction. 104 I->eraseFromParent(); 105 106 return Copy; 107 } 108 109 // Create a virtal register in *TLSBaseAddrReg, and populate it by 110 // inserting a copy instruction after I. Returns the new instruction. 111 MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { 112 MachineFunction *MF = I->getParent()->getParent(); 113 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 114 115 // Create a virtual register for the TLS base address. 116 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 117 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); 118 119 // Insert a copy from X0 to TLSBaseAddrReg for later. 120 MachineInstr *Copy = 121 BuildMI(*I->getParent(), ++I->getIterator(), I->getDebugLoc(), 122 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 123 .addReg(AArch64::X0); 124 125 return Copy; 126 } 127 128 const char *getPassName() const override { 129 return "Local Dynamic TLS Access Clean-up"; 130 } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 AU.addRequired<MachineDominatorTree>(); 135 MachineFunctionPass::getAnalysisUsage(AU); 136 } 137 }; 138 } 139 140 char LDTLSCleanup::ID = 0; 141 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { 142 return new LDTLSCleanup(); 143 } 144