1 //===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the Thumb instruction set. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Thumb specific DAG Nodes. 16 // 17 18 def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall, 19 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 20 SDNPVariadic]>; 21 22 def imm_sr_XFORM: SDNodeXForm<imm, [{ 23 unsigned Imm = N->getZExtValue(); 24 return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32); 25 }]>; 26 def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; } 27 def imm_sr : Operand<i32>, PatLeaf<(imm), [{ 28 uint64_t Imm = N->getZExtValue(); 29 return Imm > 0 && Imm <= 32; 30 }], imm_sr_XFORM> { 31 let PrintMethod = "printThumbSRImm"; 32 let ParserMatchClass = ThumbSRImmAsmOperand; 33 } 34 35 def imm_comp_XFORM : SDNodeXForm<imm, [{ 36 return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), SDLoc(N), 37 MVT::i32); 38 }]>; 39 40 def imm0_7_neg : PatLeaf<(i32 imm), [{ 41 return (uint32_t)-N->getZExtValue() < 8; 42 }], imm_neg_XFORM>; 43 44 def imm0_255_comp : PatLeaf<(i32 imm), [{ 45 return ~((uint32_t)N->getZExtValue()) < 256; 46 }]>; 47 48 def imm8_255 : ImmLeaf<i32, [{ 49 return Imm >= 8 && Imm < 256; 50 }]>; 51 def imm8_255_neg : PatLeaf<(i32 imm), [{ 52 unsigned Val = -N->getZExtValue(); 53 return Val >= 8 && Val < 256; 54 }], imm_neg_XFORM>; 55 56 // Break imm's up into two pieces: an immediate + a left shift. This uses 57 // thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt 58 // to get the val/shift pieces. 59 def thumb_immshifted : PatLeaf<(imm), [{ 60 return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue()); 61 }]>; 62 63 def thumb_immshifted_val : SDNodeXForm<imm, [{ 64 unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue()); 65 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 66 }]>; 67 68 def thumb_immshifted_shamt : SDNodeXForm<imm, [{ 69 unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue()); 70 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 71 }]>; 72 73 // Scaled 4 immediate. 74 def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; } 75 def t_imm0_1020s4 : Operand<i32> { 76 let PrintMethod = "printThumbS4ImmOperand"; 77 let ParserMatchClass = t_imm0_1020s4_asmoperand; 78 let OperandType = "OPERAND_IMMEDIATE"; 79 } 80 81 def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; } 82 def t_imm0_508s4 : Operand<i32> { 83 let PrintMethod = "printThumbS4ImmOperand"; 84 let ParserMatchClass = t_imm0_508s4_asmoperand; 85 let OperandType = "OPERAND_IMMEDIATE"; 86 } 87 // Alias use only, so no printer is necessary. 88 def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; } 89 def t_imm0_508s4_neg : Operand<i32> { 90 let ParserMatchClass = t_imm0_508s4_neg_asmoperand; 91 let OperandType = "OPERAND_IMMEDIATE"; 92 } 93 94 // Define Thumb specific addressing modes. 95 96 // unsigned 8-bit, 2-scaled memory offset 97 class OperandUnsignedOffset_b8s2 : AsmOperandClass { 98 let Name = "UnsignedOffset_b8s2"; 99 let PredicateMethod = "isUnsignedOffset<8, 2>"; 100 } 101 102 def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2; 103 104 // thumb style PC relative operand. signed, 8 bits magnitude, 105 // two bits shift. can be represented as either [pc, #imm], #imm, 106 // or relocatable expression... 107 def ThumbMemPC : AsmOperandClass { 108 let Name = "ThumbMemPC"; 109 } 110 111 let OperandType = "OPERAND_PCREL" in { 112 def t_brtarget : Operand<OtherVT> { 113 let EncoderMethod = "getThumbBRTargetOpValue"; 114 let DecoderMethod = "DecodeThumbBROperand"; 115 } 116 117 // ADR instruction labels. 118 def t_adrlabel : Operand<i32> { 119 let EncoderMethod = "getThumbAdrLabelOpValue"; 120 let PrintMethod = "printAdrLabelOperand<2>"; 121 let ParserMatchClass = UnsignedOffset_b8s2; 122 } 123 124 def t_bcctarget : Operand<i32> { 125 let EncoderMethod = "getThumbBCCTargetOpValue"; 126 let DecoderMethod = "DecodeThumbBCCTargetOperand"; 127 } 128 129 def t_cbtarget : Operand<i32> { 130 let EncoderMethod = "getThumbCBTargetOpValue"; 131 let DecoderMethod = "DecodeThumbCmpBROperand"; 132 } 133 134 def t_bltarget : Operand<i32> { 135 let EncoderMethod = "getThumbBLTargetOpValue"; 136 let DecoderMethod = "DecodeThumbBLTargetOperand"; 137 } 138 139 def t_blxtarget : Operand<i32> { 140 let EncoderMethod = "getThumbBLXTargetOpValue"; 141 let DecoderMethod = "DecodeThumbBLXOffset"; 142 } 143 144 // t_addrmode_pc := <label> => pc + imm8 * 4 145 // 146 def t_addrmode_pc : MemOperand { 147 let EncoderMethod = "getAddrModePCOpValue"; 148 let DecoderMethod = "DecodeThumbAddrModePC"; 149 let PrintMethod = "printThumbLdrLabelOperand"; 150 let ParserMatchClass = ThumbMemPC; 151 } 152 } 153 154 // t_addrmode_rr := reg + reg 155 // 156 def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; } 157 def t_addrmode_rr : MemOperand, 158 ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> { 159 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 160 let PrintMethod = "printThumbAddrModeRROperand"; 161 let DecoderMethod = "DecodeThumbAddrModeRR"; 162 let ParserMatchClass = t_addrmode_rr_asm_operand; 163 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 164 } 165 166 // t_addrmode_rrs := reg + reg 167 // 168 // We use separate scaled versions because the Select* functions need 169 // to explicitly check for a matching constant and return false here so that 170 // the reg+imm forms will match instead. This is a horrible way to do that, 171 // as it forces tight coupling between the methods, but it's how selectiondag 172 // currently works. 173 def t_addrmode_rrs1 : MemOperand, 174 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> { 175 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 176 let PrintMethod = "printThumbAddrModeRROperand"; 177 let DecoderMethod = "DecodeThumbAddrModeRR"; 178 let ParserMatchClass = t_addrmode_rr_asm_operand; 179 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 180 } 181 def t_addrmode_rrs2 : MemOperand, 182 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> { 183 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 184 let DecoderMethod = "DecodeThumbAddrModeRR"; 185 let PrintMethod = "printThumbAddrModeRROperand"; 186 let ParserMatchClass = t_addrmode_rr_asm_operand; 187 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 188 } 189 def t_addrmode_rrs4 : MemOperand, 190 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> { 191 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 192 let DecoderMethod = "DecodeThumbAddrModeRR"; 193 let PrintMethod = "printThumbAddrModeRROperand"; 194 let ParserMatchClass = t_addrmode_rr_asm_operand; 195 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 196 } 197 198 // t_addrmode_is4 := reg + imm5 * 4 199 // 200 def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; } 201 def t_addrmode_is4 : MemOperand, 202 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> { 203 let EncoderMethod = "getAddrModeISOpValue"; 204 let DecoderMethod = "DecodeThumbAddrModeIS"; 205 let PrintMethod = "printThumbAddrModeImm5S4Operand"; 206 let ParserMatchClass = t_addrmode_is4_asm_operand; 207 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 208 } 209 210 // t_addrmode_is2 := reg + imm5 * 2 211 // 212 def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; } 213 def t_addrmode_is2 : MemOperand, 214 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> { 215 let EncoderMethod = "getAddrModeISOpValue"; 216 let DecoderMethod = "DecodeThumbAddrModeIS"; 217 let PrintMethod = "printThumbAddrModeImm5S2Operand"; 218 let ParserMatchClass = t_addrmode_is2_asm_operand; 219 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 220 } 221 222 // t_addrmode_is1 := reg + imm5 223 // 224 def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; } 225 def t_addrmode_is1 : MemOperand, 226 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> { 227 let EncoderMethod = "getAddrModeISOpValue"; 228 let DecoderMethod = "DecodeThumbAddrModeIS"; 229 let PrintMethod = "printThumbAddrModeImm5S1Operand"; 230 let ParserMatchClass = t_addrmode_is1_asm_operand; 231 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 232 } 233 234 // t_addrmode_sp := sp + imm8 * 4 235 // 236 // FIXME: This really shouldn't have an explicit SP operand at all. It should 237 // be implicit, just like in the instruction encoding itself. 238 def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; } 239 def t_addrmode_sp : MemOperand, 240 ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> { 241 let EncoderMethod = "getAddrModeThumbSPOpValue"; 242 let DecoderMethod = "DecodeThumbAddrModeSP"; 243 let PrintMethod = "printThumbAddrModeSPOperand"; 244 let ParserMatchClass = t_addrmode_sp_asm_operand; 245 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Miscellaneous Instructions. 250 // 251 252 // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 253 // from removing one half of the matched pairs. That breaks PEI, which assumes 254 // these will always be in pairs, and asserts if it finds otherwise. Better way? 255 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 256 def tADJCALLSTACKUP : 257 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary, 258 [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, 259 Requires<[IsThumb, IsThumb1Only]>; 260 261 def tADJCALLSTACKDOWN : 262 PseudoInst<(outs), (ins i32imm:$amt), NoItinerary, 263 [(ARMcallseq_start imm:$amt)]>, 264 Requires<[IsThumb, IsThumb1Only]>; 265 } 266 267 class T1SystemEncoding<bits<8> opc> 268 : T1Encoding<0b101111> { 269 let Inst{9-8} = 0b11; 270 let Inst{7-0} = opc; 271 } 272 273 def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm", 274 [(int_arm_hint imm0_15:$imm)]>, 275 T1SystemEncoding<0x00>, 276 Requires<[IsThumb, HasV6M]> { 277 bits<4> imm; 278 let Inst{7-4} = imm; 279 } 280 281 class tHintAlias<string Asm, dag Result> : tInstAlias<Asm, Result> { 282 let Predicates = [IsThumb, HasV6M]; 283 } 284 285 def : tHintAlias<"nop$p", (tHINT 0, pred:$p)>; // A8.6.110 286 def : tHintAlias<"yield$p", (tHINT 1, pred:$p)>; // A8.6.410 287 def : tHintAlias<"wfe$p", (tHINT 2, pred:$p)>; // A8.6.408 288 def : tHintAlias<"wfi$p", (tHINT 3, pred:$p)>; // A8.6.409 289 def : tHintAlias<"sev$p", (tHINT 4, pred:$p)>; // A8.6.157 290 def : tInstAlias<"sevl$p", (tHINT 5, pred:$p)> { 291 let Predicates = [IsThumb2, HasV8]; 292 } 293 294 // The imm operand $val can be used by a debugger to store more information 295 // about the breakpoint. 296 def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val", 297 []>, 298 T1Encoding<0b101111> { 299 let Inst{9-8} = 0b10; 300 // A8.6.22 301 bits<8> val; 302 let Inst{7-0} = val; 303 } 304 // default immediate for breakpoint mnemonic 305 def : InstAlias<"bkpt", (tBKPT 0)>, Requires<[IsThumb]>; 306 307 def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val", 308 []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> { 309 let Inst{9-6} = 0b1010; 310 bits<6> val; 311 let Inst{5-0} = val; 312 } 313 314 def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end", 315 []>, T1Encoding<0b101101>, Requires<[IsNotMClass]>, Deprecated<HasV8Ops> { 316 bits<1> end; 317 // A8.6.156 318 let Inst{9-5} = 0b10010; 319 let Inst{4} = 1; 320 let Inst{3} = end; 321 let Inst{2-0} = 0b000; 322 } 323 324 // Change Processor State is a system instruction -- for disassembly only. 325 def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags), 326 NoItinerary, "cps$imod $iflags", []>, 327 T1Misc<0b0110011> { 328 // A8.6.38 & B6.1.1 329 bit imod; 330 bits<3> iflags; 331 332 let Inst{4} = imod; 333 let Inst{3} = 0; 334 let Inst{2-0} = iflags; 335 let DecoderMethod = "DecodeThumbCPS"; 336 } 337 338 // For both thumb1 and thumb2. 339 let isNotDuplicable = 1, isCodeGenOnly = 1 in 340 def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "", 341 [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>, 342 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 343 // A8.6.6 344 bits<3> dst; 345 let Inst{6-3} = 0b1111; // Rm = pc 346 let Inst{2-0} = dst; 347 } 348 349 // ADD <Rd>, sp, #<imm8> 350 // FIXME: This should not be marked as having side effects, and it should be 351 // rematerializable. Clearing the side effect bit causes miscompilations, 352 // probably because the instruction can be moved around. 353 def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm), 354 IIC_iALUi, "add", "\t$dst, $sp, $imm", []>, 355 T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> { 356 // A6.2 & A8.6.8 357 bits<3> dst; 358 bits<8> imm; 359 let Inst{10-8} = dst; 360 let Inst{7-0} = imm; 361 let DecoderMethod = "DecodeThumbAddSpecialReg"; 362 } 363 364 // Thumb1 frame lowering is rather fragile, we hope to be able to use 365 // tADDrSPi, but we may need to insert a sequence that clobbers CPSR. 366 def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset), 367 NoItinerary, []>, 368 Requires<[IsThumb, IsThumb1Only]> { 369 let Defs = [CPSR]; 370 } 371 372 // ADD sp, sp, #<imm7> 373 def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 374 IIC_iALUi, "add", "\t$Rdn, $imm", []>, 375 T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> { 376 // A6.2.5 & A8.6.8 377 bits<7> imm; 378 let Inst{6-0} = imm; 379 let DecoderMethod = "DecodeThumbAddSPImm"; 380 } 381 382 // SUB sp, sp, #<imm7> 383 // FIXME: The encoding and the ASM string don't match up. 384 def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 385 IIC_iALUi, "sub", "\t$Rdn, $imm", []>, 386 T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> { 387 // A6.2.5 & A8.6.214 388 bits<7> imm; 389 let Inst{6-0} = imm; 390 let DecoderMethod = "DecodeThumbAddSPImm"; 391 } 392 393 def : tInstAlias<"add${p} sp, $imm", 394 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 395 def : tInstAlias<"add${p} sp, sp, $imm", 396 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 397 398 // Can optionally specify SP as a three operand instruction. 399 def : tInstAlias<"add${p} sp, sp, $imm", 400 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>; 401 def : tInstAlias<"sub${p} sp, sp, $imm", 402 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>; 403 404 // ADD <Rm>, sp 405 def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr, 406 "add", "\t$Rdn, $sp, $Rn", []>, 407 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 408 // A8.6.9 Encoding T1 409 bits<4> Rdn; 410 let Inst{7} = Rdn{3}; 411 let Inst{6-3} = 0b1101; 412 let Inst{2-0} = Rdn{2-0}; 413 let DecoderMethod = "DecodeThumbAddSPReg"; 414 } 415 416 // ADD sp, <Rm> 417 def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr, 418 "add", "\t$Rdn, $Rm", []>, 419 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 420 // A8.6.9 Encoding T2 421 bits<4> Rm; 422 let Inst{7} = 1; 423 let Inst{6-3} = Rm; 424 let Inst{2-0} = 0b101; 425 let DecoderMethod = "DecodeThumbAddSPReg"; 426 } 427 428 //===----------------------------------------------------------------------===// 429 // Control Flow Instructions. 430 // 431 432 // Indirect branches 433 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 434 def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>, 435 T1Special<{1,1,0,?}>, Sched<[WriteBr]> { 436 // A6.2.3 & A8.6.25 437 bits<4> Rm; 438 let Inst{6-3} = Rm; 439 let Inst{2-0} = 0b000; 440 let Unpredictable{2-0} = 0b111; 441 } 442 } 443 444 let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 445 def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br, 446 [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>; 447 448 // Alternative return instruction used by vararg functions. 449 def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p), 450 2, IIC_Br, [], 451 (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 452 } 453 454 // All calls clobber the non-callee saved registers. SP is marked as a use to 455 // prevent stack-pointer assignments that appear immediately before calls from 456 // potentially appearing dead. 457 let isCall = 1, 458 Defs = [LR], Uses = [SP] in { 459 // Also used for Thumb2 460 def tBL : TIx2<0b11110, 0b11, 1, 461 (outs), (ins pred:$p, t_bltarget:$func), IIC_Br, 462 "bl${p}\t$func", 463 [(ARMtcall tglobaladdr:$func)]>, 464 Requires<[IsThumb]>, Sched<[WriteBrL]> { 465 bits<24> func; 466 let Inst{26} = func{23}; 467 let Inst{25-16} = func{20-11}; 468 let Inst{13} = func{22}; 469 let Inst{11} = func{21}; 470 let Inst{10-0} = func{10-0}; 471 } 472 473 // ARMv5T and above, also used for Thumb2 474 def tBLXi : TIx2<0b11110, 0b11, 0, 475 (outs), (ins pred:$p, t_blxtarget:$func), IIC_Br, 476 "blx${p}\t$func", 477 [(ARMcall tglobaladdr:$func)]>, 478 Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> { 479 bits<24> func; 480 let Inst{26} = func{23}; 481 let Inst{25-16} = func{20-11}; 482 let Inst{13} = func{22}; 483 let Inst{11} = func{21}; 484 let Inst{10-1} = func{10-1}; 485 let Inst{0} = 0; // func{0} is assumed zero 486 } 487 488 // Also used for Thumb2 489 def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br, 490 "blx${p}\t$func", 491 [(ARMtcall GPR:$func)]>, 492 Requires<[IsThumb, HasV5T]>, 493 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24; 494 bits<4> func; 495 let Inst{6-3} = func; 496 let Inst{2-0} = 0b000; 497 } 498 499 // ARMv4T 500 def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func), 501 4, IIC_Br, 502 [(ARMcall_nolink tGPR:$func)]>, 503 Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>; 504 } 505 506 let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 507 let isPredicable = 1 in 508 def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br, 509 "b", "\t$target", [(br bb:$target)]>, 510 T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> { 511 bits<11> target; 512 let Inst{10-0} = target; 513 let AsmMatchConverter = "cvtThumbBranches"; 514 } 515 516 // Far jump 517 // Just a pseudo for a tBL instruction. Needed to let regalloc know about 518 // the clobber of LR. 519 let Defs = [LR] in 520 def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p), 521 4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>, 522 Sched<[WriteBrTbl]>; 523 524 def tBR_JTr : tPseudoInst<(outs), 525 (ins tGPR:$target, i32imm:$jt), 526 0, IIC_Br, 527 [(ARMbrjt tGPR:$target, tjumptable:$jt)]>, 528 Sched<[WriteBrTbl]> { 529 let Size = 2; 530 list<Predicate> Predicates = [IsThumb, IsThumb1Only]; 531 } 532 } 533 534 // FIXME: should be able to write a pattern for ARMBrcond, but can't use 535 // a two-value operand where a dag node expects two operands. :( 536 let isBranch = 1, isTerminator = 1 in 537 def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br, 538 "b${p}\t$target", 539 [/*(ARMbrcond bb:$target, imm:$cc)*/]>, 540 T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> { 541 bits<4> p; 542 bits<8> target; 543 let Inst{11-8} = p; 544 let Inst{7-0} = target; 545 let AsmMatchConverter = "cvtThumbBranches"; 546 } 547 548 549 // Tail calls 550 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 551 // IOS versions. 552 let Uses = [SP] in { 553 def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst), 554 4, IIC_Br, [], 555 (tBX GPR:$dst, (ops 14, zero_reg))>, 556 Requires<[IsThumb]>, Sched<[WriteBr]>; 557 } 558 // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls 559 // on MachO), so it's in ARMInstrThumb2.td. 560 // Non-MachO version: 561 let Uses = [SP] in { 562 def tTAILJMPdND : tPseudoExpand<(outs), 563 (ins t_brtarget:$dst, pred:$p), 564 4, IIC_Br, [], 565 (tB t_brtarget:$dst, pred:$p)>, 566 Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>; 567 } 568 } 569 570 571 // A8.6.218 Supervisor Call (Software Interrupt) 572 // A8.6.16 B: Encoding T1 573 // If Inst{11-8} == 0b1111 then SEE SVC 574 let isCall = 1, Uses = [SP] in 575 def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br, 576 "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> { 577 bits<8> imm; 578 let Inst{15-12} = 0b1101; 579 let Inst{11-8} = 0b1111; 580 let Inst{7-0} = imm; 581 } 582 583 // The assembler uses 0xDEFE for a trap instruction. 584 let isBarrier = 1, isTerminator = 1 in 585 def tTRAP : TI<(outs), (ins), IIC_Br, 586 "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> { 587 let Inst = 0xdefe; 588 } 589 590 //===----------------------------------------------------------------------===// 591 // Load Store Instructions. 592 // 593 594 // PC-relative loads need to be matched first as constant pool accesses need to 595 // always be PC-relative. We do this using AddedComplexity, as the pattern is 596 // simpler than the patterns of the other load instructions. 597 let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in 598 def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i, 599 "ldr", "\t$Rt, $addr", 600 [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>, 601 T1Encoding<{0,1,0,0,1,?}> { 602 // A6.2 & A8.6.59 603 bits<3> Rt; 604 bits<8> addr; 605 let Inst{10-8} = Rt; 606 let Inst{7-0} = addr; 607 } 608 609 // SP-relative loads should be matched before standard immediate-offset loads as 610 // it means we avoid having to move SP to another register. 611 let canFoldAsLoad = 1 in 612 def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i, 613 "ldr", "\t$Rt, $addr", 614 [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>, 615 T1LdStSP<{1,?,?}> { 616 bits<3> Rt; 617 bits<8> addr; 618 let Inst{10-8} = Rt; 619 let Inst{7-0} = addr; 620 } 621 622 // Loads: reg/reg and reg/imm5 623 let canFoldAsLoad = 1, isReMaterializable = 1 in 624 multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 625 Operand AddrMode_r, Operand AddrMode_i, 626 AddrMode am, InstrItinClass itin_r, 627 InstrItinClass itin_i, string asm, 628 PatFrag opnode> { 629 // Immediate-offset loads should be matched before register-offset loads as 630 // when the offset is a constant it's simpler to first check if it fits in the 631 // immediate offset field then fall back to register-offset if it doesn't. 632 def i : // reg/imm5 633 T1pILdStEncodeImm<imm_opc, 1 /* Load */, 634 (outs tGPR:$Rt), (ins AddrMode_i:$addr), 635 am, itin_i, asm, "\t$Rt, $addr", 636 [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>; 637 // Register-offset loads are matched last. 638 def r : // reg/reg 639 T1pILdStEncode<reg_opc, 640 (outs tGPR:$Rt), (ins AddrMode_r:$addr), 641 am, itin_r, asm, "\t$Rt, $addr", 642 [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>; 643 } 644 // Stores: reg/reg and reg/imm5 645 multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 646 Operand AddrMode_r, Operand AddrMode_i, 647 AddrMode am, InstrItinClass itin_r, 648 InstrItinClass itin_i, string asm, 649 PatFrag opnode> { 650 def i : // reg/imm5 651 T1pILdStEncodeImm<imm_opc, 0 /* Store */, 652 (outs), (ins tGPR:$Rt, AddrMode_i:$addr), 653 am, itin_i, asm, "\t$Rt, $addr", 654 [(opnode tGPR:$Rt, AddrMode_i:$addr)]>; 655 def r : // reg/reg 656 T1pILdStEncode<reg_opc, 657 (outs), (ins tGPR:$Rt, AddrMode_r:$addr), 658 am, itin_r, asm, "\t$Rt, $addr", 659 [(opnode tGPR:$Rt, AddrMode_r:$addr)]>; 660 } 661 662 // A8.6.57 & A8.6.60 663 defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr, 664 t_addrmode_is4, AddrModeT1_4, 665 IIC_iLoad_r, IIC_iLoad_i, "ldr", 666 UnOpFrag<(load node:$Src)>>; 667 668 // A8.6.64 & A8.6.61 669 defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr, 670 t_addrmode_is1, AddrModeT1_1, 671 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb", 672 UnOpFrag<(zextloadi8 node:$Src)>>; 673 674 // A8.6.76 & A8.6.73 675 defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr, 676 t_addrmode_is2, AddrModeT1_2, 677 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh", 678 UnOpFrag<(zextloadi16 node:$Src)>>; 679 680 let AddedComplexity = 10 in 681 def tLDRSB : // A8.6.80 682 T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr), 683 AddrModeT1_1, IIC_iLoad_bh_r, 684 "ldrsb", "\t$Rt, $addr", 685 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>; 686 687 let AddedComplexity = 10 in 688 def tLDRSH : // A8.6.84 689 T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr), 690 AddrModeT1_2, IIC_iLoad_bh_r, 691 "ldrsh", "\t$Rt, $addr", 692 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>; 693 694 695 def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i, 696 "str", "\t$Rt, $addr", 697 [(store tGPR:$Rt, t_addrmode_sp:$addr)]>, 698 T1LdStSP<{0,?,?}> { 699 bits<3> Rt; 700 bits<8> addr; 701 let Inst{10-8} = Rt; 702 let Inst{7-0} = addr; 703 } 704 705 // A8.6.194 & A8.6.192 706 defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr, 707 t_addrmode_is4, AddrModeT1_4, 708 IIC_iStore_r, IIC_iStore_i, "str", 709 BinOpFrag<(store node:$LHS, node:$RHS)>>; 710 711 // A8.6.197 & A8.6.195 712 defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr, 713 t_addrmode_is1, AddrModeT1_1, 714 IIC_iStore_bh_r, IIC_iStore_bh_i, "strb", 715 BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; 716 717 // A8.6.207 & A8.6.205 718 defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr, 719 t_addrmode_is2, AddrModeT1_2, 720 IIC_iStore_bh_r, IIC_iStore_bh_i, "strh", 721 BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; 722 723 724 //===----------------------------------------------------------------------===// 725 // Load / store multiple Instructions. 726 // 727 728 // These require base address to be written back or one of the loaded regs. 729 let hasSideEffects = 0 in { 730 731 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 732 def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 733 IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> { 734 bits<3> Rn; 735 bits<8> regs; 736 let Inst{10-8} = Rn; 737 let Inst{7-0} = regs; 738 } 739 740 // Writeback version is just a pseudo, as there's no encoding difference. 741 // Writeback happens iff the base register is not in the destination register 742 // list. 743 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 744 def tLDMIA_UPD : 745 InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, 746 "$Rn = $wb", IIC_iLoad_mu>, 747 PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> { 748 let Size = 2; 749 let OutOperandList = (outs GPR:$wb); 750 let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops); 751 let Pattern = []; 752 let isCodeGenOnly = 1; 753 let isPseudo = 1; 754 list<Predicate> Predicates = [IsThumb]; 755 } 756 757 // There is no non-writeback version of STM for Thumb. 758 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 759 def tSTMIA_UPD : Thumb1I<(outs GPR:$wb), 760 (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 761 AddrModeNone, 2, IIC_iStore_mu, 762 "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>, 763 T1Encoding<{1,1,0,0,0,?}> { 764 bits<3> Rn; 765 bits<8> regs; 766 let Inst{10-8} = Rn; 767 let Inst{7-0} = regs; 768 } 769 770 } // hasSideEffects 771 772 def : InstAlias<"ldm${p} $Rn!, $regs", 773 (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>, 774 Requires<[IsThumb, IsThumb1Only]>; 775 776 let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in 777 def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 778 IIC_iPop, 779 "pop${p}\t$regs", []>, 780 T1Misc<{1,1,0,?,?,?,?}> { 781 bits<16> regs; 782 let Inst{8} = regs{15}; 783 let Inst{7-0} = regs{7-0}; 784 } 785 786 let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in 787 def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 788 IIC_iStore_m, 789 "push${p}\t$regs", []>, 790 T1Misc<{0,1,0,?,?,?,?}> { 791 bits<16> regs; 792 let Inst{8} = regs{14}; 793 let Inst{7-0} = regs{7-0}; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Arithmetic Instructions. 798 // 799 800 // Helper classes for encoding T1pI patterns: 801 class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 802 string opc, string asm, list<dag> pattern> 803 : T1pI<oops, iops, itin, opc, asm, pattern>, 804 T1DataProcessing<opA> { 805 bits<3> Rm; 806 bits<3> Rn; 807 let Inst{5-3} = Rm; 808 let Inst{2-0} = Rn; 809 } 810 class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin, 811 string opc, string asm, list<dag> pattern> 812 : T1pI<oops, iops, itin, opc, asm, pattern>, 813 T1Misc<opA> { 814 bits<3> Rm; 815 bits<3> Rd; 816 let Inst{5-3} = Rm; 817 let Inst{2-0} = Rd; 818 } 819 820 // Helper classes for encoding T1sI patterns: 821 class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 822 string opc, string asm, list<dag> pattern> 823 : T1sI<oops, iops, itin, opc, asm, pattern>, 824 T1DataProcessing<opA> { 825 bits<3> Rd; 826 bits<3> Rn; 827 let Inst{5-3} = Rn; 828 let Inst{2-0} = Rd; 829 } 830 class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 831 string opc, string asm, list<dag> pattern> 832 : T1sI<oops, iops, itin, opc, asm, pattern>, 833 T1General<opA> { 834 bits<3> Rm; 835 bits<3> Rn; 836 bits<3> Rd; 837 let Inst{8-6} = Rm; 838 let Inst{5-3} = Rn; 839 let Inst{2-0} = Rd; 840 } 841 class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 842 string opc, string asm, list<dag> pattern> 843 : T1sI<oops, iops, itin, opc, asm, pattern>, 844 T1General<opA> { 845 bits<3> Rd; 846 bits<3> Rm; 847 let Inst{5-3} = Rm; 848 let Inst{2-0} = Rd; 849 } 850 851 // Helper classes for encoding T1sIt patterns: 852 class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 853 string opc, string asm, list<dag> pattern> 854 : T1sIt<oops, iops, itin, opc, asm, pattern>, 855 T1DataProcessing<opA> { 856 bits<3> Rdn; 857 bits<3> Rm; 858 let Inst{5-3} = Rm; 859 let Inst{2-0} = Rdn; 860 } 861 class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 862 string opc, string asm, list<dag> pattern> 863 : T1sIt<oops, iops, itin, opc, asm, pattern>, 864 T1General<opA> { 865 bits<3> Rdn; 866 bits<8> imm8; 867 let Inst{10-8} = Rdn; 868 let Inst{7-0} = imm8; 869 } 870 871 // Add with carry register 872 let isCommutable = 1, Uses = [CPSR] in 873 def tADC : // A8.6.2 874 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, 875 "adc", "\t$Rdn, $Rm", 876 [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 877 878 // Add immediate 879 def tADDi3 : // A8.6.4 T1 880 T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 881 IIC_iALUi, 882 "add", "\t$Rd, $Rm, $imm3", 883 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>, 884 Sched<[WriteALU]> { 885 bits<3> imm3; 886 let Inst{8-6} = imm3; 887 } 888 889 def tADDi8 : // A8.6.4 T2 890 T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn), 891 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, 892 "add", "\t$Rdn, $imm8", 893 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>, 894 Sched<[WriteALU]>; 895 896 // Add register 897 let isCommutable = 1 in 898 def tADDrr : // A8.6.6 T1 899 T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 900 IIC_iALUr, 901 "add", "\t$Rd, $Rn, $Rm", 902 [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 903 904 let hasSideEffects = 0 in 905 def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr, 906 "add", "\t$Rdn, $Rm", []>, 907 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 908 // A8.6.6 T2 909 bits<4> Rdn; 910 bits<4> Rm; 911 let Inst{7} = Rdn{3}; 912 let Inst{6-3} = Rm; 913 let Inst{2-0} = Rdn{2-0}; 914 } 915 916 // AND register 917 let isCommutable = 1 in 918 def tAND : // A8.6.12 919 T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 920 IIC_iBITr, 921 "and", "\t$Rdn, $Rm", 922 [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 923 924 // ASR immediate 925 def tASRri : // A8.6.14 926 T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 927 IIC_iMOVsi, 928 "asr", "\t$Rd, $Rm, $imm5", 929 [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 930 Sched<[WriteALU]> { 931 bits<5> imm5; 932 let Inst{10-6} = imm5; 933 } 934 935 // ASR register 936 def tASRrr : // A8.6.15 937 T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 938 IIC_iMOVsr, 939 "asr", "\t$Rdn, $Rm", 940 [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 941 942 // BIC register 943 def tBIC : // A8.6.20 944 T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 945 IIC_iBITr, 946 "bic", "\t$Rdn, $Rm", 947 [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>, 948 Sched<[WriteALU]>; 949 950 // CMN register 951 let isCompare = 1, Defs = [CPSR] in { 952 //FIXME: Disable CMN, as CCodes are backwards from compare expectations 953 // Compare-to-zero still works out, just not the relationals 954 //def tCMN : // A8.6.33 955 // T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs), 956 // IIC_iCMPr, 957 // "cmn", "\t$lhs, $rhs", 958 // [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>; 959 960 def tCMNz : // A8.6.33 961 T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm), 962 IIC_iCMPr, 963 "cmn", "\t$Rn, $Rm", 964 [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>; 965 966 } // isCompare = 1, Defs = [CPSR] 967 968 // CMP immediate 969 let isCompare = 1, Defs = [CPSR] in { 970 def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi, 971 "cmp", "\t$Rn, $imm8", 972 [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>, 973 T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> { 974 // A8.6.35 975 bits<3> Rn; 976 bits<8> imm8; 977 let Inst{10-8} = Rn; 978 let Inst{7-0} = imm8; 979 } 980 981 // CMP register 982 def tCMPr : // A8.6.36 T1 983 T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm), 984 IIC_iCMPr, 985 "cmp", "\t$Rn, $Rm", 986 [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>; 987 988 def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr, 989 "cmp", "\t$Rn, $Rm", []>, 990 T1Special<{0,1,?,?}>, Sched<[WriteCMP]> { 991 // A8.6.36 T2 992 bits<4> Rm; 993 bits<4> Rn; 994 let Inst{7} = Rn{3}; 995 let Inst{6-3} = Rm; 996 let Inst{2-0} = Rn{2-0}; 997 } 998 } // isCompare = 1, Defs = [CPSR] 999 1000 1001 // XOR register 1002 let isCommutable = 1 in 1003 def tEOR : // A8.6.45 1004 T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1005 IIC_iBITr, 1006 "eor", "\t$Rdn, $Rm", 1007 [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1008 1009 // LSL immediate 1010 def tLSLri : // A8.6.88 1011 T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5), 1012 IIC_iMOVsi, 1013 "lsl", "\t$Rd, $Rm, $imm5", 1014 [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>, 1015 Sched<[WriteALU]> { 1016 bits<5> imm5; 1017 let Inst{10-6} = imm5; 1018 } 1019 1020 // LSL register 1021 def tLSLrr : // A8.6.89 1022 T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1023 IIC_iMOVsr, 1024 "lsl", "\t$Rdn, $Rm", 1025 [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1026 1027 // LSR immediate 1028 def tLSRri : // A8.6.90 1029 T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 1030 IIC_iMOVsi, 1031 "lsr", "\t$Rd, $Rm, $imm5", 1032 [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 1033 Sched<[WriteALU]> { 1034 bits<5> imm5; 1035 let Inst{10-6} = imm5; 1036 } 1037 1038 // LSR register 1039 def tLSRrr : // A8.6.91 1040 T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1041 IIC_iMOVsr, 1042 "lsr", "\t$Rdn, $Rm", 1043 [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1044 1045 // Move register 1046 let isMoveImm = 1 in 1047 def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi, 1048 "mov", "\t$Rd, $imm8", 1049 [(set tGPR:$Rd, imm0_255:$imm8)]>, 1050 T1General<{1,0,0,?,?}>, Sched<[WriteALU]> { 1051 // A8.6.96 1052 bits<3> Rd; 1053 bits<8> imm8; 1054 let Inst{10-8} = Rd; 1055 let Inst{7-0} = imm8; 1056 } 1057 // Because we have an explicit tMOVSr below, we need an alias to handle 1058 // the immediate "movs" form here. Blech. 1059 def : tInstAlias <"movs $Rdn, $imm", 1060 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>; 1061 1062 // A7-73: MOV(2) - mov setting flag. 1063 1064 let hasSideEffects = 0 in { 1065 def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone, 1066 2, IIC_iMOVr, 1067 "mov", "\t$Rd, $Rm", "", []>, 1068 T1Special<{1,0,?,?}>, Sched<[WriteALU]> { 1069 // A8.6.97 1070 bits<4> Rd; 1071 bits<4> Rm; 1072 let Inst{7} = Rd{3}; 1073 let Inst{6-3} = Rm; 1074 let Inst{2-0} = Rd{2-0}; 1075 } 1076 let Defs = [CPSR] in 1077 def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr, 1078 "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> { 1079 // A8.6.97 1080 bits<3> Rd; 1081 bits<3> Rm; 1082 let Inst{15-6} = 0b0000000000; 1083 let Inst{5-3} = Rm; 1084 let Inst{2-0} = Rd; 1085 } 1086 } // hasSideEffects 1087 1088 // Multiply register 1089 let isCommutable = 1 in 1090 def tMUL : // A8.6.105 T1 1091 Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2, 1092 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd", 1093 [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>, 1094 T1DataProcessing<0b1101> { 1095 bits<3> Rd; 1096 bits<3> Rn; 1097 let Inst{5-3} = Rn; 1098 let Inst{2-0} = Rd; 1099 let AsmMatchConverter = "cvtThumbMultiply"; 1100 } 1101 1102 def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn, 1103 pred:$p)>; 1104 1105 // Move inverse register 1106 def tMVN : // A8.6.107 1107 T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr, 1108 "mvn", "\t$Rd, $Rn", 1109 [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>; 1110 1111 // Bitwise or register 1112 let isCommutable = 1 in 1113 def tORR : // A8.6.114 1114 T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1115 IIC_iBITr, 1116 "orr", "\t$Rdn, $Rm", 1117 [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1118 1119 // Swaps 1120 def tREV : // A8.6.134 1121 T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1122 IIC_iUNAr, 1123 "rev", "\t$Rd, $Rm", 1124 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>, 1125 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1126 1127 def tREV16 : // A8.6.135 1128 T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1129 IIC_iUNAr, 1130 "rev16", "\t$Rd, $Rm", 1131 [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>, 1132 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1133 1134 def tREVSH : // A8.6.136 1135 T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1136 IIC_iUNAr, 1137 "revsh", "\t$Rd, $Rm", 1138 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>, 1139 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1140 1141 // Rotate right register 1142 def tROR : // A8.6.139 1143 T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1144 IIC_iMOVsr, 1145 "ror", "\t$Rdn, $Rm", 1146 [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>, 1147 Sched<[WriteALU]>; 1148 1149 // Negate register 1150 def tRSB : // A8.6.141 1151 T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn), 1152 IIC_iALUi, 1153 "rsb", "\t$Rd, $Rn, #0", 1154 [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>; 1155 1156 // Subtract with carry register 1157 let Uses = [CPSR] in 1158 def tSBC : // A8.6.151 1159 T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1160 IIC_iALUr, 1161 "sbc", "\t$Rdn, $Rm", 1162 [(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>, 1163 Sched<[WriteALU]>; 1164 1165 // Subtract immediate 1166 def tSUBi3 : // A8.6.210 T1 1167 T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1168 IIC_iALUi, 1169 "sub", "\t$Rd, $Rm, $imm3", 1170 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>, 1171 Sched<[WriteALU]> { 1172 bits<3> imm3; 1173 let Inst{8-6} = imm3; 1174 } 1175 1176 def tSUBi8 : // A8.6.210 T2 1177 T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn), 1178 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, 1179 "sub", "\t$Rdn, $imm8", 1180 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>, 1181 Sched<[WriteALU]>; 1182 1183 // Subtract register 1184 def tSUBrr : // A8.6.212 1185 T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1186 IIC_iALUr, 1187 "sub", "\t$Rd, $Rn, $Rm", 1188 [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>, 1189 Sched<[WriteALU]>; 1190 1191 // Sign-extend byte 1192 def tSXTB : // A8.6.222 1193 T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1194 IIC_iUNAr, 1195 "sxtb", "\t$Rd, $Rm", 1196 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>, 1197 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1198 Sched<[WriteALU]>; 1199 1200 // Sign-extend short 1201 def tSXTH : // A8.6.224 1202 T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1203 IIC_iUNAr, 1204 "sxth", "\t$Rd, $Rm", 1205 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>, 1206 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1207 Sched<[WriteALU]>; 1208 1209 // Test 1210 let isCompare = 1, isCommutable = 1, Defs = [CPSR] in 1211 def tTST : // A8.6.230 1212 T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr, 1213 "tst", "\t$Rn, $Rm", 1214 [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>, 1215 Sched<[WriteALU]>; 1216 1217 // A8.8.247 UDF - Undefined (Encoding T1) 1218 def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8", 1219 [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 { 1220 bits<8> imm8; 1221 let Inst{15-12} = 0b1101; 1222 let Inst{11-8} = 0b1110; 1223 let Inst{7-0} = imm8; 1224 } 1225 1226 // Zero-extend byte 1227 def tUXTB : // A8.6.262 1228 T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1229 IIC_iUNAr, 1230 "uxtb", "\t$Rd, $Rm", 1231 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>, 1232 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1233 Sched<[WriteALU]>; 1234 1235 // Zero-extend short 1236 def tUXTH : // A8.6.264 1237 T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1238 IIC_iUNAr, 1239 "uxth", "\t$Rd, $Rm", 1240 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>, 1241 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1242 1243 // Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation. 1244 // Expanded after instruction selection into a branch sequence. 1245 let usesCustomInserter = 1 in // Expanded after instruction selection. 1246 def tMOVCCr_pseudo : 1247 PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p), 1248 NoItinerary, 1249 [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>; 1250 1251 // tLEApcrel - Load a pc-relative address into a register without offending the 1252 // assembler. 1253 1254 def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p), 1255 IIC_iALUi, "adr{$p}\t$Rd, $addr", []>, 1256 T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> { 1257 bits<3> Rd; 1258 bits<8> addr; 1259 let Inst{10-8} = Rd; 1260 let Inst{7-0} = addr; 1261 let DecoderMethod = "DecodeThumbAddSpecialReg"; 1262 } 1263 1264 let hasSideEffects = 0, isReMaterializable = 1 in 1265 def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), 1266 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1267 1268 let hasSideEffects = 1 in 1269 def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd), 1270 (ins i32imm:$label, pred:$p), 1271 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1272 1273 //===----------------------------------------------------------------------===// 1274 // TLS Instructions 1275 // 1276 1277 // __aeabi_read_tp preserves the registers r1-r3. 1278 // This is a pseudo inst so that we can get the encoding right, 1279 // complete with fixup for the aeabi_read_tp function. 1280 let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in 1281 def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br, 1282 [(set R0, ARMthread_pointer)]>, 1283 Sched<[WriteBr]>; 1284 1285 //===----------------------------------------------------------------------===// 1286 // SJLJ Exception handling intrinsics 1287 // 1288 1289 // eh_sjlj_setjmp() is an instruction sequence to store the return address and 1290 // save #0 in R0 for the non-longjmp case. Since by its nature we may be coming 1291 // from some other function to get here, and we're using the stack frame for the 1292 // containing function to save/restore registers, we can't keep anything live in 1293 // regs across the eh_sjlj_setjmp(), else it will almost certainly have been 1294 // tromped upon when we get here from a longjmp(). We force everything out of 1295 // registers except for our own input by listing the relevant registers in 1296 // Defs. By doing so, we also cause the prologue/epilogue code to actively 1297 // preserve all of the callee-saved resgisters, which is exactly what we want. 1298 // $val is a scratch register for our use. 1299 let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ], 1300 hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, 1301 usesCustomInserter = 1 in 1302 def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val), 1303 AddrModeNone, 0, NoItinerary, "","", 1304 [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>; 1305 1306 // FIXME: Non-IOS version(s) 1307 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, 1308 Defs = [ R7, LR, SP ] in 1309 def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch), 1310 AddrModeNone, 0, IndexModeNone, 1311 Pseudo, NoItinerary, "", "", 1312 [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 1313 Requires<[IsThumb]>; 1314 1315 //===----------------------------------------------------------------------===// 1316 // Non-Instruction Patterns 1317 // 1318 1319 // Comparisons 1320 def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8), 1321 (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>; 1322 def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm), 1323 (tCMPr tGPR:$Rn, tGPR:$Rm)>; 1324 1325 // Add with carry 1326 def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs), 1327 (tADDi3 tGPR:$lhs, imm0_7:$rhs)>; 1328 def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs), 1329 (tADDi8 tGPR:$lhs, imm8_255:$rhs)>; 1330 def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs), 1331 (tADDrr tGPR:$lhs, tGPR:$rhs)>; 1332 1333 // Subtract with carry 1334 def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs), 1335 (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>; 1336 def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs), 1337 (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>; 1338 def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs), 1339 (tSUBrr tGPR:$lhs, tGPR:$rhs)>; 1340 1341 // Bswap 16 with load/store 1342 def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)), 1343 (tREV16 (tLDRHi t_addrmode_is2:$addr))>; 1344 def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)), 1345 (tREV16 (tLDRHr t_addrmode_rr:$addr))>; 1346 def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1347 t_addrmode_is2:$addr), 1348 (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>; 1349 def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1350 t_addrmode_rr:$addr), 1351 (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>; 1352 1353 // ConstantPool 1354 def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>; 1355 1356 // GlobalAddress 1357 def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr), 1358 IIC_iLoadiALU, 1359 [(set tGPR:$dst, 1360 (ARMWrapperPIC tglobaladdr:$addr))]>, 1361 Requires<[IsThumb, DontUseMovt]>; 1362 1363 def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src), 1364 IIC_iLoad_i, 1365 [(set tGPR:$dst, 1366 (ARMWrapper tglobaladdr:$src))]>, 1367 Requires<[IsThumb, DontUseMovt]>; 1368 1369 1370 // JumpTable 1371 def : T1Pat<(ARMWrapperJT tjumptable:$dst), 1372 (tLEApcrelJT tjumptable:$dst)>; 1373 1374 // Direct calls 1375 def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>, 1376 Requires<[IsThumb]>; 1377 1378 def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>, 1379 Requires<[IsThumb, HasV5T, IsNotMClass]>; 1380 1381 // Indirect calls to ARM routines 1382 def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>, 1383 Requires<[IsThumb, HasV5T]>; 1384 1385 // zextload i1 -> zextload i8 1386 def : T1Pat<(zextloadi1 t_addrmode_is1:$addr), 1387 (tLDRBi t_addrmode_is1:$addr)>; 1388 def : T1Pat<(zextloadi1 t_addrmode_rr:$addr), 1389 (tLDRBr t_addrmode_rr:$addr)>; 1390 1391 // extload from the stack -> word load from the stack, as it avoids having to 1392 // materialize the base in a separate register. This only works when a word 1393 // load puts the byte/halfword value in the same place in the register that the 1394 // byte/halfword load would, i.e. when little-endian. 1395 def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1396 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1397 def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1398 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1399 def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1400 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1401 1402 // extload -> zextload 1403 def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1404 def : T1Pat<(extloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1405 def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1406 def : T1Pat<(extloadi8 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1407 def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>; 1408 def : T1Pat<(extloadi16 t_addrmode_rr:$addr), (tLDRHr t_addrmode_rr:$addr)>; 1409 1410 // If it's impossible to use [r,r] address mode for sextload, select to 1411 // ldr{b|h} + sxt{b|h} instead. 1412 def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), 1413 (tSXTB (tLDRBi t_addrmode_is1:$addr))>, 1414 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1415 def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), 1416 (tSXTB (tLDRBr t_addrmode_rr:$addr))>, 1417 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1418 def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), 1419 (tSXTH (tLDRHi t_addrmode_is2:$addr))>, 1420 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1421 def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), 1422 (tSXTH (tLDRHr t_addrmode_rr:$addr))>, 1423 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1424 1425 def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), 1426 (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>; 1427 def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), 1428 (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>; 1429 def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), 1430 (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>; 1431 def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), 1432 (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>; 1433 1434 def : T1Pat<(atomic_load_8 t_addrmode_is1:$src), 1435 (tLDRBi t_addrmode_is1:$src)>; 1436 def : T1Pat<(atomic_load_8 t_addrmode_rr:$src), 1437 (tLDRBr t_addrmode_rr:$src)>; 1438 def : T1Pat<(atomic_load_16 t_addrmode_is2:$src), 1439 (tLDRHi t_addrmode_is2:$src)>; 1440 def : T1Pat<(atomic_load_16 t_addrmode_rr:$src), 1441 (tLDRHr t_addrmode_rr:$src)>; 1442 def : T1Pat<(atomic_load_32 t_addrmode_is4:$src), 1443 (tLDRi t_addrmode_is4:$src)>; 1444 def : T1Pat<(atomic_load_32 t_addrmode_rr:$src), 1445 (tLDRr t_addrmode_rr:$src)>; 1446 def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val), 1447 (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>; 1448 def : T1Pat<(atomic_store_8 t_addrmode_rr:$ptr, tGPR:$val), 1449 (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>; 1450 def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val), 1451 (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>; 1452 def : T1Pat<(atomic_store_16 t_addrmode_rr:$ptr, tGPR:$val), 1453 (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>; 1454 def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val), 1455 (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>; 1456 def : T1Pat<(atomic_store_32 t_addrmode_rr:$ptr, tGPR:$val), 1457 (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>; 1458 1459 // Large immediate handling. 1460 1461 // Two piece imms. 1462 def : T1Pat<(i32 thumb_immshifted:$src), 1463 (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)), 1464 (thumb_immshifted_shamt imm:$src))>; 1465 1466 def : T1Pat<(i32 imm0_255_comp:$src), 1467 (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>; 1468 1469 // Pseudo instruction that combines ldr from constpool and add pc. This should 1470 // be expanded into two instructions late to allow if-conversion and 1471 // scheduling. 1472 let isReMaterializable = 1 in 1473 def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp), 1474 NoItinerary, 1475 [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), 1476 imm:$cp))]>, 1477 Requires<[IsThumb, IsThumb1Only]>; 1478 1479 // Pseudo-instruction for merged POP and return. 1480 // FIXME: remove when we have a way to marking a MI with these properties. 1481 let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 1482 hasExtraDefRegAllocReq = 1 in 1483 def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops), 1484 2, IIC_iPop_Br, [], 1485 (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>; 1486 1487 // Indirect branch using "mov pc, $Rm" 1488 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1489 def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p), 1490 2, IIC_Br, [(brind GPR:$Rm)], 1491 (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 1492 } 1493 1494 1495 // In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00 1496 // encoding is available on ARMv6K, but we don't differentiate that finely. 1497 def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>; 1498 1499 1500 // For round-trip assembly/disassembly, we have to handle a CPS instruction 1501 // without any iflags. That's not, strictly speaking, valid syntax, but it's 1502 // a useful extension and assembles to defined behaviour (the insn does 1503 // nothing). 1504 def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>; 1505 def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>; 1506 1507 // "neg" is and alias for "rsb rd, rn, #0" 1508 def : tInstAlias<"neg${s}${p} $Rd, $Rm", 1509 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>; 1510 1511 1512 // Implied destination operand forms for shifts. 1513 def : tInstAlias<"lsl${s}${p} $Rdm, $imm", 1514 (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>; 1515 def : tInstAlias<"lsr${s}${p} $Rdm, $imm", 1516 (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1517 def : tInstAlias<"asr${s}${p} $Rdm, $imm", 1518 (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1519