1 //=- HexagonInstrInfoV5.td - Target Desc. for Hexagon Target -*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the Hexagon V5 instructions in TableGen format. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // XTYPE/MPY 16 //===----------------------------------------------------------------------===// 17 18 //Rdd[+]=vrmpybsu(Rss,Rtt) 19 let Predicates = [HasV5T] in { 20 def M5_vrmpybsu: T_XTYPE_Vect<"vrmpybsu", 0b110, 0b001, 0>; 21 def M5_vrmacbsu: T_XTYPE_Vect_acc<"vrmpybsu", 0b110, 0b001, 0>; 22 23 //Rdd[+]=vrmpybu(Rss,Rtt) 24 def M5_vrmpybuu: T_XTYPE_Vect<"vrmpybu", 0b100, 0b001, 0>; 25 def M5_vrmacbuu: T_XTYPE_Vect_acc<"vrmpybu", 0b100, 0b001, 0>; 26 27 def M5_vdmpybsu: T_M2_vmpy<"vdmpybsu", 0b101, 0b001, 0, 0, 1>; 28 def M5_vdmacbsu: T_M2_vmpy_acc_sat <"vdmpybsu", 0b001, 0b001, 0, 0>; 29 } 30 31 // Vector multiply bytes 32 // Rdd=vmpyb[s]u(Rs,Rt) 33 let Predicates = [HasV5T] in { 34 def M5_vmpybsu: T_XTYPE_mpy64 <"vmpybsu", 0b010, 0b001, 0, 0, 0>; 35 def M5_vmpybuu: T_XTYPE_mpy64 <"vmpybu", 0b100, 0b001, 0, 0, 0>; 36 37 // Rxx+=vmpyb[s]u(Rs,Rt) 38 def M5_vmacbsu: T_XTYPE_mpy64_acc <"vmpybsu", "+", 0b110, 0b001, 0, 0, 0>; 39 def M5_vmacbuu: T_XTYPE_mpy64_acc <"vmpybu", "+", 0b100, 0b001, 0, 0, 0>; 40 41 // Rd=vaddhub(Rss,Rtt):sat 42 let hasNewValue = 1, opNewValue = 0 in 43 def A5_vaddhubs: T_S3op_1 <"vaddhub", IntRegs, 0b01, 0b001, 0, 1>; 44 } 45 46 def S2_asr_i_p_rnd : S_2OpInstImm<"asr", 0b110, 0b111, u6Imm, 47 [(set I64:$dst, 48 (sra (i64 (add (i64 (sra I64:$src1, u6ImmPred:$src2)), 1)), 49 (i32 1)))], 1>, 50 Requires<[HasV5T]> { 51 bits<6> src2; 52 let Inst{13-8} = src2; 53 } 54 55 let isAsmParserOnly = 1 in 56 def S2_asr_i_p_rnd_goodsyntax 57 : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), 58 "$dst = asrrnd($src1, #$src2)">; 59 60 def C4_fastcorner9 : T_LOGICAL_2OP<"fastcorner9", 0b000, 0, 0>, 61 Requires<[HasV5T]> { 62 let Inst{13,7,4} = 0b111; 63 } 64 65 def C4_fastcorner9_not : T_LOGICAL_2OP<"!fastcorner9", 0b000, 0, 0>, 66 Requires<[HasV5T]> { 67 let Inst{20,13,7,4} = 0b1111; 68 } 69 70 def SDTHexagonFCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, 71 SDTCisPtrTy<1>]>; 72 def HexagonFCONST32 : SDNode<"HexagonISD::FCONST32", SDTHexagonFCONST32>; 73 74 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in 75 def FCONST32_nsdata : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), 76 "$dst = CONST32(#$global)", 77 [(set F32:$dst, 78 (HexagonFCONST32 tglobaladdr:$global))]>, 79 Requires<[HasV5T]>; 80 81 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in 82 def CONST64_Float_Real : LDInst<(outs DoubleRegs:$dst), (ins f64imm:$src1), 83 "$dst = CONST64(#$src1)", 84 [(set F64:$dst, fpimm:$src1)]>, 85 Requires<[HasV5T]>; 86 87 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in 88 def CONST32_Float_Real : LDInst<(outs IntRegs:$dst), (ins f32imm:$src1), 89 "$dst = CONST32(#$src1)", 90 [(set F32:$dst, fpimm:$src1)]>, 91 Requires<[HasV5T]>; 92 93 // Transfer immediate float. 94 // Only works with single precision fp value. 95 // For double precision, use CONST64_float_real, as 64bit transfer 96 // can only hold 40-bit values - 32 from const ext + 8 bit immediate. 97 // Make sure that complexity is more than the CONST32 pattern in 98 // HexagonInstrInfo.td patterns. 99 let isExtended = 1, opExtendable = 1, isMoveImm = 1, isReMaterializable = 1, 100 isPredicable = 1, AddedComplexity = 30, validSubTargets = HasV5SubT, 101 isCodeGenOnly = 1, isPseudo = 1 in 102 def TFRI_f : ALU32_ri<(outs IntRegs:$dst), (ins f32Ext:$src1), 103 "$dst = #$src1", 104 [(set F32:$dst, fpimm:$src1)]>, 105 Requires<[HasV5T]>; 106 107 let isExtended = 1, opExtendable = 2, isPredicated = 1, hasSideEffects = 0, 108 validSubTargets = HasV5SubT, isCodeGenOnly = 1, isPseudo = 1 in 109 def TFRI_cPt_f : ALU32_ri<(outs IntRegs:$dst), 110 (ins PredRegs:$src1, f32Ext:$src2), 111 "if ($src1) $dst = #$src2", []>, 112 Requires<[HasV5T]>; 113 114 let isExtended = 1, opExtendable = 2, isPredicated = 1, isPredicatedFalse = 1, 115 hasSideEffects = 0, validSubTargets = HasV5SubT, isPseudo = 1 in 116 def TFRI_cNotPt_f : ALU32_ri<(outs IntRegs:$dst), 117 (ins PredRegs:$src1, f32Ext:$src2), 118 "if (!$src1) $dst = #$src2", []>, 119 Requires<[HasV5T]>; 120 121 def SDTHexagonI32I64: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, 122 SDTCisVT<1, i64>]>; 123 124 def HexagonPOPCOUNT: SDNode<"HexagonISD::POPCOUNT", SDTHexagonI32I64>; 125 126 let hasNewValue = 1, validSubTargets = HasV5SubT in 127 def S5_popcountp : ALU64_rr<(outs IntRegs:$Rd), (ins DoubleRegs:$Rss), 128 "$Rd = popcount($Rss)", 129 [(set I32:$Rd, (HexagonPOPCOUNT I64:$Rss))], "", S_2op_tc_2_SLOT23>, 130 Requires<[HasV5T]> { 131 bits<5> Rd; 132 bits<5> Rss; 133 134 let IClass = 0b1000; 135 136 let Inst{27-21} = 0b1000011; 137 let Inst{7-5} = 0b011; 138 let Inst{4-0} = Rd; 139 let Inst{20-16} = Rss; 140 } 141 142 defm: Loadx_pat<load, f32, s30_2ImmPred, L2_loadri_io>; 143 defm: Loadx_pat<load, f64, s29_3ImmPred, L2_loadrd_io>; 144 145 defm: Storex_pat<store, F32, s30_2ImmPred, S2_storeri_io>; 146 defm: Storex_pat<store, F64, s29_3ImmPred, S2_storerd_io>; 147 def: Storex_simple_pat<store, F32, S2_storeri_io>; 148 def: Storex_simple_pat<store, F64, S2_storerd_io>; 149 150 let isFP = 1, hasNewValue = 1, opNewValue = 0 in 151 class T_MInstFloat <string mnemonic, bits<3> MajOp, bits<3> MinOp> 152 : MInst<(outs IntRegs:$Rd), 153 (ins IntRegs:$Rs, IntRegs:$Rt), 154 "$Rd = "#mnemonic#"($Rs, $Rt)", [], 155 "" , M_tc_3or4x_SLOT23 > , 156 Requires<[HasV5T]> { 157 bits<5> Rd; 158 bits<5> Rs; 159 bits<5> Rt; 160 161 let IClass = 0b1110; 162 163 let Inst{27-24} = 0b1011; 164 let Inst{23-21} = MajOp; 165 let Inst{20-16} = Rs; 166 let Inst{13} = 0b0; 167 let Inst{12-8} = Rt; 168 let Inst{7-5} = MinOp; 169 let Inst{4-0} = Rd; 170 } 171 172 let isCommutable = 1 in { 173 def F2_sfadd : T_MInstFloat < "sfadd", 0b000, 0b000>; 174 def F2_sfmpy : T_MInstFloat < "sfmpy", 0b010, 0b000>; 175 } 176 177 def F2_sfsub : T_MInstFloat < "sfsub", 0b000, 0b001>; 178 179 def: Pat<(f32 (fadd F32:$src1, F32:$src2)), 180 (F2_sfadd F32:$src1, F32:$src2)>; 181 182 def: Pat<(f32 (fsub F32:$src1, F32:$src2)), 183 (F2_sfsub F32:$src1, F32:$src2)>; 184 185 def: Pat<(f32 (fmul F32:$src1, F32:$src2)), 186 (F2_sfmpy F32:$src1, F32:$src2)>; 187 188 let Itinerary = M_tc_3x_SLOT23 in { 189 def F2_sfmax : T_MInstFloat < "sfmax", 0b100, 0b000>; 190 def F2_sfmin : T_MInstFloat < "sfmin", 0b100, 0b001>; 191 } 192 193 let AddedComplexity = 100, Predicates = [HasV5T] in { 194 def: Pat<(f32 (select (i1 (setolt F32:$src1, F32:$src2)), 195 F32:$src1, F32:$src2)), 196 (F2_sfmin F32:$src1, F32:$src2)>; 197 198 def: Pat<(f32 (select (i1 (setogt F32:$src1, F32:$src2)), 199 F32:$src2, F32:$src1)), 200 (F2_sfmin F32:$src1, F32:$src2)>; 201 202 def: Pat<(f32 (select (i1 (setogt F32:$src1, F32:$src2)), 203 F32:$src1, F32:$src2)), 204 (F2_sfmax F32:$src1, F32:$src2)>; 205 206 def: Pat<(f32 (select (i1 (setolt F32:$src1, F32:$src2)), 207 F32:$src2, F32:$src1)), 208 (F2_sfmax F32:$src1, F32:$src2)>; 209 } 210 211 def F2_sffixupn : T_MInstFloat < "sffixupn", 0b110, 0b000>; 212 def F2_sffixupd : T_MInstFloat < "sffixupd", 0b110, 0b001>; 213 214 // F2_sfrecipa: Reciprocal approximation for division. 215 let isPredicateLate = 1, isFP = 1, 216 hasSideEffects = 0, hasNewValue = 1 in 217 def F2_sfrecipa: MInst < 218 (outs IntRegs:$Rd, PredRegs:$Pe), 219 (ins IntRegs:$Rs, IntRegs:$Rt), 220 "$Rd, $Pe = sfrecipa($Rs, $Rt)">, 221 Requires<[HasV5T]> { 222 bits<5> Rd; 223 bits<2> Pe; 224 bits<5> Rs; 225 bits<5> Rt; 226 227 let IClass = 0b1110; 228 let Inst{27-21} = 0b1011111; 229 let Inst{20-16} = Rs; 230 let Inst{13} = 0b0; 231 let Inst{12-8} = Rt; 232 let Inst{7} = 0b1; 233 let Inst{6-5} = Pe; 234 let Inst{4-0} = Rd; 235 } 236 237 // F2_dfcmpeq: Floating point compare for equal. 238 let isCompare = 1, isFP = 1 in 239 class T_fcmp <string mnemonic, RegisterClass RC, bits<3> MinOp, 240 list<dag> pattern = [] > 241 : ALU64Inst <(outs PredRegs:$dst), (ins RC:$src1, RC:$src2), 242 "$dst = "#mnemonic#"($src1, $src2)", pattern, 243 "" , ALU64_tc_2early_SLOT23 > , 244 Requires<[HasV5T]> { 245 bits<2> dst; 246 bits<5> src1; 247 bits<5> src2; 248 249 let IClass = 0b1101; 250 251 let Inst{27-21} = 0b0010111; 252 let Inst{20-16} = src1; 253 let Inst{12-8} = src2; 254 let Inst{7-5} = MinOp; 255 let Inst{1-0} = dst; 256 } 257 258 class T_fcmp64 <string mnemonic, PatFrag OpNode, bits<3> MinOp> 259 : T_fcmp <mnemonic, DoubleRegs, MinOp, 260 [(set I1:$dst, (OpNode F64:$src1, F64:$src2))]> { 261 let IClass = 0b1101; 262 let Inst{27-21} = 0b0010111; 263 } 264 265 class T_fcmp32 <string mnemonic, PatFrag OpNode, bits<3> MinOp> 266 : T_fcmp <mnemonic, IntRegs, MinOp, 267 [(set I1:$dst, (OpNode F32:$src1, F32:$src2))]> { 268 let IClass = 0b1100; 269 let Inst{27-21} = 0b0111111; 270 } 271 272 def F2_dfcmpeq : T_fcmp64<"dfcmp.eq", setoeq, 0b000>; 273 def F2_dfcmpgt : T_fcmp64<"dfcmp.gt", setogt, 0b001>; 274 def F2_dfcmpge : T_fcmp64<"dfcmp.ge", setoge, 0b010>; 275 def F2_dfcmpuo : T_fcmp64<"dfcmp.uo", setuo, 0b011>; 276 277 def F2_sfcmpge : T_fcmp32<"sfcmp.ge", setoge, 0b000>; 278 def F2_sfcmpuo : T_fcmp32<"sfcmp.uo", setuo, 0b001>; 279 def F2_sfcmpeq : T_fcmp32<"sfcmp.eq", setoeq, 0b011>; 280 def F2_sfcmpgt : T_fcmp32<"sfcmp.gt", setogt, 0b100>; 281 282 //===----------------------------------------------------------------------===// 283 // Multiclass to define 'Def Pats' for ordered gt, ge, eq operations. 284 //===----------------------------------------------------------------------===// 285 286 let Predicates = [HasV5T] in 287 multiclass T_fcmp_pats<PatFrag cmpOp, InstHexagon IntMI, InstHexagon DoubleMI> { 288 // IntRegs 289 def: Pat<(i1 (cmpOp F32:$src1, F32:$src2)), 290 (IntMI F32:$src1, F32:$src2)>; 291 // DoubleRegs 292 def: Pat<(i1 (cmpOp F64:$src1, F64:$src2)), 293 (DoubleMI F64:$src1, F64:$src2)>; 294 } 295 296 defm : T_fcmp_pats <seteq, F2_sfcmpeq, F2_dfcmpeq>; 297 defm : T_fcmp_pats <setgt, F2_sfcmpgt, F2_dfcmpgt>; 298 defm : T_fcmp_pats <setge, F2_sfcmpge, F2_dfcmpge>; 299 300 //===----------------------------------------------------------------------===// 301 // Multiclass to define 'Def Pats' for unordered gt, ge, eq operations. 302 //===----------------------------------------------------------------------===// 303 let Predicates = [HasV5T] in 304 multiclass unord_Pats <PatFrag cmpOp, InstHexagon IntMI, InstHexagon DoubleMI> { 305 // IntRegs 306 def: Pat<(i1 (cmpOp F32:$src1, F32:$src2)), 307 (C2_or (F2_sfcmpuo F32:$src1, F32:$src2), 308 (IntMI F32:$src1, F32:$src2))>; 309 310 // DoubleRegs 311 def: Pat<(i1 (cmpOp F64:$src1, F64:$src2)), 312 (C2_or (F2_dfcmpuo F64:$src1, F64:$src2), 313 (DoubleMI F64:$src1, F64:$src2))>; 314 } 315 316 defm : unord_Pats <setuge, F2_sfcmpge, F2_dfcmpge>; 317 defm : unord_Pats <setugt, F2_sfcmpgt, F2_dfcmpgt>; 318 defm : unord_Pats <setueq, F2_sfcmpeq, F2_dfcmpeq>; 319 320 //===----------------------------------------------------------------------===// 321 // Multiclass to define 'Def Pats' for the following dags: 322 // seteq(setoeq(op1, op2), 0) -> not(setoeq(op1, op2)) 323 // seteq(setoeq(op1, op2), 1) -> setoeq(op1, op2) 324 // setne(setoeq(op1, op2), 0) -> setoeq(op1, op2) 325 // setne(setoeq(op1, op2), 1) -> not(setoeq(op1, op2)) 326 //===----------------------------------------------------------------------===// 327 let Predicates = [HasV5T] in 328 multiclass eq_ordgePats <PatFrag cmpOp, InstHexagon IntMI, 329 InstHexagon DoubleMI> { 330 // IntRegs 331 def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 0)), 332 (C2_not (IntMI F32:$src1, F32:$src2))>; 333 def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 1)), 334 (IntMI F32:$src1, F32:$src2)>; 335 def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 0)), 336 (IntMI F32:$src1, F32:$src2)>; 337 def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 1)), 338 (C2_not (IntMI F32:$src1, F32:$src2))>; 339 340 // DoubleRegs 341 def : Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 0)), 342 (C2_not (DoubleMI F64:$src1, F64:$src2))>; 343 def : Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 1)), 344 (DoubleMI F64:$src1, F64:$src2)>; 345 def : Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)), 346 (DoubleMI F64:$src1, F64:$src2)>; 347 def : Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 1)), 348 (C2_not (DoubleMI F64:$src1, F64:$src2))>; 349 } 350 351 defm : eq_ordgePats<setoeq, F2_sfcmpeq, F2_dfcmpeq>; 352 defm : eq_ordgePats<setoge, F2_sfcmpge, F2_dfcmpge>; 353 defm : eq_ordgePats<setogt, F2_sfcmpgt, F2_dfcmpgt>; 354 355 //===----------------------------------------------------------------------===// 356 // Multiclass to define 'Def Pats' for the following dags: 357 // seteq(setolt(op1, op2), 0) -> not(setogt(op2, op1)) 358 // seteq(setolt(op1, op2), 1) -> setogt(op2, op1) 359 // setne(setolt(op1, op2), 0) -> setogt(op2, op1) 360 // setne(setolt(op1, op2), 1) -> not(setogt(op2, op1)) 361 //===----------------------------------------------------------------------===// 362 let Predicates = [HasV5T] in 363 multiclass eq_ordltPats <PatFrag cmpOp, InstHexagon IntMI, 364 InstHexagon DoubleMI> { 365 // IntRegs 366 def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 0)), 367 (C2_not (IntMI F32:$src2, F32:$src1))>; 368 def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 1)), 369 (IntMI F32:$src2, F32:$src1)>; 370 def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 0)), 371 (IntMI F32:$src2, F32:$src1)>; 372 def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 1)), 373 (C2_not (IntMI F32:$src2, F32:$src1))>; 374 375 // DoubleRegs 376 def: Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 0)), 377 (C2_not (DoubleMI F64:$src2, F64:$src1))>; 378 def: Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 1)), 379 (DoubleMI F64:$src2, F64:$src1)>; 380 def: Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)), 381 (DoubleMI F64:$src2, F64:$src1)>; 382 def: Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)), 383 (C2_not (DoubleMI F64:$src2, F64:$src1))>; 384 } 385 386 defm : eq_ordltPats<setole, F2_sfcmpge, F2_dfcmpge>; 387 defm : eq_ordltPats<setolt, F2_sfcmpgt, F2_dfcmpgt>; 388 389 390 // o. seto inverse of setuo. http://llvm.org/docs/LangRef.html#i_fcmp 391 let Predicates = [HasV5T] in { 392 def: Pat<(i1 (seto F32:$src1, F32:$src2)), 393 (C2_not (F2_sfcmpuo F32:$src2, F32:$src1))>; 394 def: Pat<(i1 (seto F32:$src1, fpimm:$src2)), 395 (C2_not (F2_sfcmpuo (TFRI_f fpimm:$src2), F32:$src1))>; 396 def: Pat<(i1 (seto F64:$src1, F64:$src2)), 397 (C2_not (F2_dfcmpuo F64:$src2, F64:$src1))>; 398 def: Pat<(i1 (seto F64:$src1, fpimm:$src2)), 399 (C2_not (F2_dfcmpuo (CONST64_Float_Real fpimm:$src2), F64:$src1))>; 400 } 401 402 // Ordered lt. 403 let Predicates = [HasV5T] in { 404 def: Pat<(i1 (setolt F32:$src1, F32:$src2)), 405 (F2_sfcmpgt F32:$src2, F32:$src1)>; 406 def: Pat<(i1 (setolt F32:$src1, fpimm:$src2)), 407 (F2_sfcmpgt (f32 (TFRI_f fpimm:$src2)), F32:$src1)>; 408 def: Pat<(i1 (setolt F64:$src1, F64:$src2)), 409 (F2_dfcmpgt F64:$src2, F64:$src1)>; 410 def: Pat<(i1 (setolt F64:$src1, fpimm:$src2)), 411 (F2_dfcmpgt (CONST64_Float_Real fpimm:$src2), F64:$src1)>; 412 } 413 414 // Unordered lt. 415 let Predicates = [HasV5T] in { 416 def: Pat<(i1 (setult F32:$src1, F32:$src2)), 417 (C2_or (F2_sfcmpuo F32:$src1, F32:$src2), 418 (F2_sfcmpgt F32:$src2, F32:$src1))>; 419 def: Pat<(i1 (setult F32:$src1, fpimm:$src2)), 420 (C2_or (F2_sfcmpuo F32:$src1, (TFRI_f fpimm:$src2)), 421 (F2_sfcmpgt (TFRI_f fpimm:$src2), F32:$src1))>; 422 def: Pat<(i1 (setult F64:$src1, F64:$src2)), 423 (C2_or (F2_dfcmpuo F64:$src1, F64:$src2), 424 (F2_dfcmpgt F64:$src2, F64:$src1))>; 425 def: Pat<(i1 (setult F64:$src1, fpimm:$src2)), 426 (C2_or (F2_dfcmpuo F64:$src1, (CONST64_Float_Real fpimm:$src2)), 427 (F2_dfcmpgt (CONST64_Float_Real fpimm:$src2), F64:$src1))>; 428 } 429 430 // Ordered le. 431 let Predicates = [HasV5T] in { 432 // rs <= rt -> rt >= rs. 433 def: Pat<(i1 (setole F32:$src1, F32:$src2)), 434 (F2_sfcmpge F32:$src2, F32:$src1)>; 435 def: Pat<(i1 (setole F32:$src1, fpimm:$src2)), 436 (F2_sfcmpge (TFRI_f fpimm:$src2), F32:$src1)>; 437 438 // Rss <= Rtt -> Rtt >= Rss. 439 def: Pat<(i1 (setole F64:$src1, F64:$src2)), 440 (F2_dfcmpge F64:$src2, F64:$src1)>; 441 def: Pat<(i1 (setole F64:$src1, fpimm:$src2)), 442 (F2_dfcmpge (CONST64_Float_Real fpimm:$src2), F64:$src1)>; 443 } 444 445 // Unordered le. 446 let Predicates = [HasV5T] in { 447 // rs <= rt -> rt >= rs. 448 def: Pat<(i1 (setule F32:$src1, F32:$src2)), 449 (C2_or (F2_sfcmpuo F32:$src1, F32:$src2), 450 (F2_sfcmpge F32:$src2, F32:$src1))>; 451 def: Pat<(i1 (setule F32:$src1, fpimm:$src2)), 452 (C2_or (F2_sfcmpuo F32:$src1, (TFRI_f fpimm:$src2)), 453 (F2_sfcmpge (TFRI_f fpimm:$src2), F32:$src1))>; 454 def: Pat<(i1 (setule F64:$src1, F64:$src2)), 455 (C2_or (F2_dfcmpuo F64:$src1, F64:$src2), 456 (F2_dfcmpge F64:$src2, F64:$src1))>; 457 def: Pat<(i1 (setule F64:$src1, fpimm:$src2)), 458 (C2_or (F2_dfcmpuo F64:$src1, (CONST64_Float_Real fpimm:$src2)), 459 (F2_dfcmpge (CONST64_Float_Real fpimm:$src2), F64:$src1))>; 460 } 461 462 // Ordered ne. 463 let Predicates = [HasV5T] in { 464 def: Pat<(i1 (setone F32:$src1, F32:$src2)), 465 (C2_not (F2_sfcmpeq F32:$src1, F32:$src2))>; 466 def: Pat<(i1 (setone F64:$src1, F64:$src2)), 467 (C2_not (F2_dfcmpeq F64:$src1, F64:$src2))>; 468 def: Pat<(i1 (setone F32:$src1, fpimm:$src2)), 469 (C2_not (F2_sfcmpeq F32:$src1, (TFRI_f fpimm:$src2)))>; 470 def: Pat<(i1 (setone F64:$src1, fpimm:$src2)), 471 (C2_not (F2_dfcmpeq F64:$src1, (CONST64_Float_Real fpimm:$src2)))>; 472 } 473 474 // Unordered ne. 475 let Predicates = [HasV5T] in { 476 def: Pat<(i1 (setune F32:$src1, F32:$src2)), 477 (C2_or (F2_sfcmpuo F32:$src1, F32:$src2), 478 (C2_not (F2_sfcmpeq F32:$src1, F32:$src2)))>; 479 def: Pat<(i1 (setune F64:$src1, F64:$src2)), 480 (C2_or (F2_dfcmpuo F64:$src1, F64:$src2), 481 (C2_not (F2_dfcmpeq F64:$src1, F64:$src2)))>; 482 def: Pat<(i1 (setune F32:$src1, fpimm:$src2)), 483 (C2_or (F2_sfcmpuo F32:$src1, (TFRI_f fpimm:$src2)), 484 (C2_not (F2_sfcmpeq F32:$src1, (TFRI_f fpimm:$src2))))>; 485 def: Pat<(i1 (setune F64:$src1, fpimm:$src2)), 486 (C2_or (F2_dfcmpuo F64:$src1, (CONST64_Float_Real fpimm:$src2)), 487 (C2_not (F2_dfcmpeq F64:$src1, 488 (CONST64_Float_Real fpimm:$src2))))>; 489 } 490 491 // Besides set[o|u][comparions], we also need set[comparisons]. 492 let Predicates = [HasV5T] in { 493 // lt. 494 def: Pat<(i1 (setlt F32:$src1, F32:$src2)), 495 (F2_sfcmpgt F32:$src2, F32:$src1)>; 496 def: Pat<(i1 (setlt F32:$src1, fpimm:$src2)), 497 (F2_sfcmpgt (TFRI_f fpimm:$src2), F32:$src1)>; 498 def: Pat<(i1 (setlt F64:$src1, F64:$src2)), 499 (F2_dfcmpgt F64:$src2, F64:$src1)>; 500 def: Pat<(i1 (setlt F64:$src1, fpimm:$src2)), 501 (F2_dfcmpgt (CONST64_Float_Real fpimm:$src2), F64:$src1)>; 502 503 // le. 504 // rs <= rt -> rt >= rs. 505 def: Pat<(i1 (setle F32:$src1, F32:$src2)), 506 (F2_sfcmpge F32:$src2, F32:$src1)>; 507 def: Pat<(i1 (setle F32:$src1, fpimm:$src2)), 508 (F2_sfcmpge (TFRI_f fpimm:$src2), F32:$src1)>; 509 510 // Rss <= Rtt -> Rtt >= Rss. 511 def: Pat<(i1 (setle F64:$src1, F64:$src2)), 512 (F2_dfcmpge F64:$src2, F64:$src1)>; 513 def: Pat<(i1 (setle F64:$src1, fpimm:$src2)), 514 (F2_dfcmpge (CONST64_Float_Real fpimm:$src2), F64:$src1)>; 515 516 // ne. 517 def: Pat<(i1 (setne F32:$src1, F32:$src2)), 518 (C2_not (F2_sfcmpeq F32:$src1, F32:$src2))>; 519 def: Pat<(i1 (setne F64:$src1, F64:$src2)), 520 (C2_not (F2_dfcmpeq F64:$src1, F64:$src2))>; 521 def: Pat<(i1 (setne F32:$src1, fpimm:$src2)), 522 (C2_not (F2_sfcmpeq F32:$src1, (TFRI_f fpimm:$src2)))>; 523 def: Pat<(i1 (setne F64:$src1, fpimm:$src2)), 524 (C2_not (F2_dfcmpeq F64:$src1, (CONST64_Float_Real fpimm:$src2)))>; 525 } 526 527 // F2 convert template classes: 528 let isFP = 1 in 529 class F2_RDD_RSS_CONVERT<string mnemonic, bits<3> MinOp, 530 SDNode Op, PatLeaf RCOut, PatLeaf RCIn, 531 string chop =""> 532 : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss), 533 "$Rdd = "#mnemonic#"($Rss)"#chop, 534 [(set RCOut:$Rdd, (Op RCIn:$Rss))], "", 535 S_2op_tc_3or4x_SLOT23> { 536 bits<5> Rdd; 537 bits<5> Rss; 538 539 let IClass = 0b1000; 540 541 let Inst{27-21} = 0b0000111; 542 let Inst{20-16} = Rss; 543 let Inst{7-5} = MinOp; 544 let Inst{4-0} = Rdd; 545 } 546 547 let isFP = 1 in 548 class F2_RDD_RS_CONVERT<string mnemonic, bits<3> MinOp, 549 SDNode Op, PatLeaf RCOut, PatLeaf RCIn, 550 string chop =""> 551 : SInst <(outs DoubleRegs:$Rdd), (ins IntRegs:$Rs), 552 "$Rdd = "#mnemonic#"($Rs)"#chop, 553 [(set RCOut:$Rdd, (Op RCIn:$Rs))], "", 554 S_2op_tc_3or4x_SLOT23> { 555 bits<5> Rdd; 556 bits<5> Rs; 557 558 let IClass = 0b1000; 559 560 let Inst{27-21} = 0b0100100; 561 let Inst{20-16} = Rs; 562 let Inst{7-5} = MinOp; 563 let Inst{4-0} = Rdd; 564 } 565 566 let isFP = 1, hasNewValue = 1 in 567 class F2_RD_RSS_CONVERT<string mnemonic, bits<3> MinOp, 568 SDNode Op, PatLeaf RCOut, PatLeaf RCIn, 569 string chop =""> 570 : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss), 571 "$Rd = "#mnemonic#"($Rss)"#chop, 572 [(set RCOut:$Rd, (Op RCIn:$Rss))], "", 573 S_2op_tc_3or4x_SLOT23> { 574 bits<5> Rd; 575 bits<5> Rss; 576 577 let IClass = 0b1000; 578 579 let Inst{27-24} = 0b1000; 580 let Inst{23-21} = MinOp; 581 let Inst{20-16} = Rss; 582 let Inst{7-5} = 0b001; 583 let Inst{4-0} = Rd; 584 } 585 586 let isFP = 1, hasNewValue = 1 in 587 class F2_RD_RS_CONVERT<string mnemonic, bits<3> MajOp, bits<3> MinOp, 588 SDNode Op, PatLeaf RCOut, PatLeaf RCIn, 589 string chop =""> 590 : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs), 591 "$Rd = "#mnemonic#"($Rs)"#chop, 592 [(set RCOut:$Rd, (Op RCIn:$Rs))], "", 593 S_2op_tc_3or4x_SLOT23> { 594 bits<5> Rd; 595 bits<5> Rs; 596 597 let IClass = 0b1000; 598 599 let Inst{27-24} = 0b1011; 600 let Inst{23-21} = MajOp; 601 let Inst{20-16} = Rs; 602 let Inst{7-5} = MinOp; 603 let Inst{4-0} = Rd; 604 } 605 606 // Convert single precision to double precision and vice-versa. 607 def F2_conv_sf2df : F2_RDD_RS_CONVERT <"convert_sf2df", 0b000, 608 fextend, F64, F32>; 609 610 def F2_conv_df2sf : F2_RD_RSS_CONVERT <"convert_df2sf", 0b000, 611 fround, F32, F64>; 612 613 // Convert Integer to Floating Point. 614 def F2_conv_d2sf : F2_RD_RSS_CONVERT <"convert_d2sf", 0b010, 615 sint_to_fp, F32, I64>; 616 def F2_conv_ud2sf : F2_RD_RSS_CONVERT <"convert_ud2sf", 0b001, 617 uint_to_fp, F32, I64>; 618 def F2_conv_uw2sf : F2_RD_RS_CONVERT <"convert_uw2sf", 0b001, 0b000, 619 uint_to_fp, F32, I32>; 620 def F2_conv_w2sf : F2_RD_RS_CONVERT <"convert_w2sf", 0b010, 0b000, 621 sint_to_fp, F32, I32>; 622 def F2_conv_d2df : F2_RDD_RSS_CONVERT <"convert_d2df", 0b011, 623 sint_to_fp, F64, I64>; 624 def F2_conv_ud2df : F2_RDD_RSS_CONVERT <"convert_ud2df", 0b010, 625 uint_to_fp, F64, I64>; 626 def F2_conv_uw2df : F2_RDD_RS_CONVERT <"convert_uw2df", 0b001, 627 uint_to_fp, F64, I32>; 628 def F2_conv_w2df : F2_RDD_RS_CONVERT <"convert_w2df", 0b010, 629 sint_to_fp, F64, I32>; 630 631 // Convert Floating Point to Integer - default. 632 def F2_conv_df2uw_chop : F2_RD_RSS_CONVERT <"convert_df2uw", 0b101, 633 fp_to_uint, I32, F64, ":chop">; 634 def F2_conv_df2w_chop : F2_RD_RSS_CONVERT <"convert_df2w", 0b111, 635 fp_to_sint, I32, F64, ":chop">; 636 def F2_conv_sf2uw_chop : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b001, 637 fp_to_uint, I32, F32, ":chop">; 638 def F2_conv_sf2w_chop : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b001, 639 fp_to_sint, I32, F32, ":chop">; 640 def F2_conv_df2d_chop : F2_RDD_RSS_CONVERT <"convert_df2d", 0b110, 641 fp_to_sint, I64, F64, ":chop">; 642 def F2_conv_df2ud_chop : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b111, 643 fp_to_uint, I64, F64, ":chop">; 644 def F2_conv_sf2d_chop : F2_RDD_RS_CONVERT <"convert_sf2d", 0b110, 645 fp_to_sint, I64, F32, ":chop">; 646 def F2_conv_sf2ud_chop : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b101, 647 fp_to_uint, I64, F32, ":chop">; 648 649 // Convert Floating Point to Integer: non-chopped. 650 let AddedComplexity = 20, Predicates = [HasV5T, IEEERndNearV5T] in { 651 def F2_conv_df2d : F2_RDD_RSS_CONVERT <"convert_df2d", 0b000, 652 fp_to_sint, I64, F64>; 653 def F2_conv_df2ud : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b001, 654 fp_to_uint, I64, F64>; 655 def F2_conv_sf2ud : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b011, 656 fp_to_uint, I64, F32>; 657 def F2_conv_sf2d : F2_RDD_RS_CONVERT <"convert_sf2d", 0b100, 658 fp_to_sint, I64, F32>; 659 def F2_conv_df2uw : F2_RD_RSS_CONVERT <"convert_df2uw", 0b011, 660 fp_to_uint, I32, F64>; 661 def F2_conv_df2w : F2_RD_RSS_CONVERT <"convert_df2w", 0b100, 662 fp_to_sint, I32, F64>; 663 def F2_conv_sf2uw : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b000, 664 fp_to_uint, I32, F32>; 665 def F2_conv_sf2w : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b000, 666 fp_to_sint, I32, F32>; 667 } 668 669 // Fix up radicand. 670 let isFP = 1, hasNewValue = 1 in 671 def F2_sffixupr: SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs), 672 "$Rd = sffixupr($Rs)", 673 [], "" , S_2op_tc_3or4x_SLOT23>, Requires<[HasV5T]> { 674 bits<5> Rd; 675 bits<5> Rs; 676 677 let IClass = 0b1000; 678 679 let Inst{27-21} = 0b1011101; 680 let Inst{20-16} = Rs; 681 let Inst{7-5} = 0b000; 682 let Inst{4-0} = Rd; 683 } 684 685 // Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp]. 686 let Predicates = [HasV5T] in { 687 def: Pat <(i32 (bitconvert F32:$src)), (I32:$src)>; 688 def: Pat <(f32 (bitconvert I32:$src)), (F32:$src)>; 689 def: Pat <(i64 (bitconvert F64:$src)), (I64:$src)>; 690 def: Pat <(f64 (bitconvert I64:$src)), (F64:$src)>; 691 } 692 693 // F2_sffma: Floating-point fused multiply add. 694 let isFP = 1, hasNewValue = 1 in 695 class T_sfmpy_acc <bit isSub, bit isLib> 696 : MInst<(outs IntRegs:$Rx), 697 (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), 698 "$Rx "#!if(isSub, "-=","+=")#" sfmpy($Rs, $Rt)"#!if(isLib, ":lib",""), 699 [], "$dst2 = $Rx" , M_tc_3_SLOT23 > , 700 Requires<[HasV5T]> { 701 bits<5> Rx; 702 bits<5> Rs; 703 bits<5> Rt; 704 705 let IClass = 0b1110; 706 707 let Inst{27-21} = 0b1111000; 708 let Inst{20-16} = Rs; 709 let Inst{13} = 0b0; 710 let Inst{12-8} = Rt; 711 let Inst{7} = 0b1; 712 let Inst{6} = isLib; 713 let Inst{5} = isSub; 714 let Inst{4-0} = Rx; 715 } 716 717 def F2_sffma: T_sfmpy_acc <0, 0>; 718 def F2_sffms: T_sfmpy_acc <1, 0>; 719 def F2_sffma_lib: T_sfmpy_acc <0, 1>; 720 def F2_sffms_lib: T_sfmpy_acc <1, 1>; 721 722 def : Pat <(f32 (fma F32:$src2, F32:$src3, F32:$src1)), 723 (F2_sffma F32:$src1, F32:$src2, F32:$src3)>; 724 725 // Floating-point fused multiply add w/ additional scaling (2**pu). 726 let isFP = 1, hasNewValue = 1 in 727 def F2_sffma_sc: MInst < 728 (outs IntRegs:$Rx), 729 (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt, PredRegs:$Pu), 730 "$Rx += sfmpy($Rs, $Rt, $Pu):scale" , 731 [], "$dst2 = $Rx" , M_tc_3_SLOT23 > , 732 Requires<[HasV5T]> { 733 bits<5> Rx; 734 bits<5> Rs; 735 bits<5> Rt; 736 bits<2> Pu; 737 738 let IClass = 0b1110; 739 740 let Inst{27-21} = 0b1111011; 741 let Inst{20-16} = Rs; 742 let Inst{13} = 0b0; 743 let Inst{12-8} = Rt; 744 let Inst{7} = 0b1; 745 let Inst{6-5} = Pu; 746 let Inst{4-0} = Rx; 747 } 748 749 let isExtended = 1, isExtentSigned = 1, opExtentBits = 8, opExtendable = 3, 750 isPseudo = 1, InputType = "imm" in 751 def MUX_ir_f : ALU32_rr<(outs IntRegs:$dst), 752 (ins PredRegs:$src1, IntRegs:$src2, f32Ext:$src3), 753 "$dst = mux($src1, $src2, #$src3)", 754 [(set F32:$dst, (f32 (select I1:$src1, F32:$src2, fpimm:$src3)))]>, 755 Requires<[HasV5T]>; 756 757 let isExtended = 1, isExtentSigned = 1, opExtentBits = 8, opExtendable = 2, 758 isPseudo = 1, InputType = "imm" in 759 def MUX_ri_f : ALU32_rr<(outs IntRegs:$dst), 760 (ins PredRegs:$src1, f32Ext:$src2, IntRegs:$src3), 761 "$dst = mux($src1, #$src2, $src3)", 762 [(set F32:$dst, (f32 (select I1:$src1, fpimm:$src2, F32:$src3)))]>, 763 Requires<[HasV5T]>; 764 765 def: Pat<(select I1:$src1, F32:$src2, F32:$src3), 766 (C2_mux I1:$src1, F32:$src2, F32:$src3)>, 767 Requires<[HasV5T]>; 768 769 def: Pat<(select (i1 (setult F32:$src1, F32:$src2)), F32:$src3, F32:$src4), 770 (C2_mux (F2_sfcmpgt F32:$src2, F32:$src1), F32:$src4, F32:$src3)>, 771 Requires<[HasV5T]>; 772 773 def: Pat<(select I1:$src1, F64:$src2, F64:$src3), 774 (C2_vmux I1:$src1, F64:$src2, F64:$src3)>, 775 Requires<[HasV5T]>; 776 777 def: Pat<(select (i1 (setult F64:$src1, F64:$src2)), F64:$src3, F64:$src4), 778 (C2_vmux (F2_dfcmpgt F64:$src2, F64:$src1), F64:$src3, F64:$src4)>, 779 Requires<[HasV5T]>; 780 781 // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) 782 // => r0 = MUX_ir_f(p0, #i, r1) 783 def: Pat<(select (not I1:$src1), fpimm:$src2, F32:$src3), 784 (MUX_ir_f I1:$src1, F32:$src3, fpimm:$src2)>, 785 Requires<[HasV5T]>; 786 787 // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) 788 // => r0 = MUX_ri_f(p0, r1, #i) 789 def: Pat<(select (not I1:$src1), F32:$src2, fpimm:$src3), 790 (MUX_ri_f I1:$src1, fpimm:$src3, F32:$src2)>, 791 Requires<[HasV5T]>; 792 793 def: Pat<(i32 (fp_to_sint F64:$src1)), 794 (LoReg (F2_conv_df2d_chop F64:$src1))>, 795 Requires<[HasV5T]>; 796 797 //===----------------------------------------------------------------------===// 798 // :natural forms of vasrh and vasrhub insns 799 //===----------------------------------------------------------------------===// 800 // S5_asrhub_rnd_sat: Vector arithmetic shift right by immediate with round, 801 // saturate, and pack. 802 let Defs = [USR_OVF], hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in 803 class T_ASRHUB<bit isSat> 804 : SInst <(outs IntRegs:$Rd), 805 (ins DoubleRegs:$Rss, u4Imm:$u4), 806 "$Rd = vasrhub($Rss, #$u4):"#!if(isSat, "sat", "raw"), 807 [], "", S_2op_tc_2_SLOT23>, 808 Requires<[HasV5T]> { 809 bits<5> Rd; 810 bits<5> Rss; 811 bits<4> u4; 812 813 let IClass = 0b1000; 814 815 let Inst{27-21} = 0b1000011; 816 let Inst{20-16} = Rss; 817 let Inst{13-12} = 0b00; 818 let Inst{11-8} = u4; 819 let Inst{7-6} = 0b10; 820 let Inst{5} = isSat; 821 let Inst{4-0} = Rd; 822 } 823 824 def S5_asrhub_rnd_sat : T_ASRHUB <0>; 825 def S5_asrhub_sat : T_ASRHUB <1>; 826 827 let isAsmParserOnly = 1 in 828 def S5_asrhub_rnd_sat_goodsyntax 829 : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss, u4Imm:$u4), 830 "$Rd = vasrhub($Rss, #$u4):rnd:sat">, Requires<[HasV5T]>; 831 832 // S5_vasrhrnd: Vector arithmetic shift right by immediate with round. 833 let hasSideEffects = 0 in 834 def S5_vasrhrnd : SInst <(outs DoubleRegs:$Rdd), 835 (ins DoubleRegs:$Rss, u4Imm:$u4), 836 "$Rdd = vasrh($Rss, #$u4):raw">, 837 Requires<[HasV5T]> { 838 bits<5> Rdd; 839 bits<5> Rss; 840 bits<4> u4; 841 842 let IClass = 0b1000; 843 844 let Inst{27-21} = 0b0000001; 845 let Inst{20-16} = Rss; 846 let Inst{13-12} = 0b00; 847 let Inst{11-8} = u4; 848 let Inst{7-5} = 0b000; 849 let Inst{4-0} = Rdd; 850 } 851 852 let isAsmParserOnly = 1 in 853 def S5_vasrhrnd_goodsyntax 854 : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, u4Imm:$u4), 855 "$Rdd = vasrh($Rss,#$u4):rnd">, Requires<[HasV5T]>; 856 857 // Floating point reciprocal square root approximation 858 let Uses = [USR], isPredicateLate = 1, isFP = 1, 859 hasSideEffects = 0, hasNewValue = 1, opNewValue = 0, 860 validSubTargets = HasV5SubT in 861 def F2_sfinvsqrta: SInst < 862 (outs IntRegs:$Rd, PredRegs:$Pe), 863 (ins IntRegs:$Rs), 864 "$Rd, $Pe = sfinvsqrta($Rs)" > , 865 Requires<[HasV5T]> { 866 bits<5> Rd; 867 bits<2> Pe; 868 bits<5> Rs; 869 870 let IClass = 0b1000; 871 872 let Inst{27-21} = 0b1011111; 873 let Inst{20-16} = Rs; 874 let Inst{7} = 0b0; 875 let Inst{6-5} = Pe; 876 let Inst{4-0} = Rd; 877 } 878 879 // Complex multiply 32x16 880 let Defs = [USR_OVF], Itinerary = S_3op_tc_3x_SLOT23 in { 881 def M4_cmpyi_whc : T_S3op_8<"cmpyiwh", 0b101, 1, 1, 1, 1>; 882 def M4_cmpyr_whc : T_S3op_8<"cmpyrwh", 0b111, 1, 1, 1, 1>; 883 } 884 885 // Classify floating-point value 886 let isFP = 1 in 887 def F2_sfclass : T_TEST_BIT_IMM<"sfclass", 0b111>; 888 889 let isFP = 1 in 890 def F2_dfclass: ALU64Inst<(outs PredRegs:$Pd), (ins DoubleRegs:$Rss, u5Imm:$u5), 891 "$Pd = dfclass($Rss, #$u5)", 892 [], "" , ALU64_tc_2early_SLOT23 > , Requires<[HasV5T]> { 893 bits<2> Pd; 894 bits<5> Rss; 895 bits<5> u5; 896 897 let IClass = 0b1101; 898 let Inst{27-21} = 0b1100100; 899 let Inst{20-16} = Rss; 900 let Inst{12-10} = 0b000; 901 let Inst{9-5} = u5; 902 let Inst{4-3} = 0b10; 903 let Inst{1-0} = Pd; 904 } 905 906 // Instructions to create floating point constant 907 class T_fimm <string mnemonic, RegisterClass RC, bits<4> RegType, bit isNeg> 908 : ALU64Inst<(outs RC:$dst), (ins u10Imm:$src), 909 "$dst = "#mnemonic#"(#$src)"#!if(isNeg, ":neg", ":pos"), 910 [], "", ALU64_tc_3x_SLOT23>, Requires<[HasV5T]> { 911 bits<5> dst; 912 bits<10> src; 913 914 let IClass = 0b1101; 915 let Inst{27-24} = RegType; 916 let Inst{23} = 0b0; 917 let Inst{22} = isNeg; 918 let Inst{21} = src{9}; 919 let Inst{13-5} = src{8-0}; 920 let Inst{4-0} = dst; 921 } 922 923 let hasNewValue = 1, opNewValue = 0 in { 924 def F2_sfimm_p : T_fimm <"sfmake", IntRegs, 0b0110, 0>; 925 def F2_sfimm_n : T_fimm <"sfmake", IntRegs, 0b0110, 1>; 926 } 927 928 def F2_dfimm_p : T_fimm <"dfmake", DoubleRegs, 0b1001, 0>; 929 def F2_dfimm_n : T_fimm <"dfmake", DoubleRegs, 0b1001, 1>; 930 931 def : Pat <(fabs (f32 IntRegs:$src1)), 932 (S2_clrbit_i (f32 IntRegs:$src1), 31)>, 933 Requires<[HasV5T]>; 934 935 def : Pat <(fneg (f32 IntRegs:$src1)), 936 (S2_togglebit_i (f32 IntRegs:$src1), 31)>, 937 Requires<[HasV5T]>; 938