1 //===-- PPCInstrAltivec.td - The PowerPC Altivec Extension -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the Altivec extension to the PowerPC instruction set. 11 // 12 //===----------------------------------------------------------------------===// 13 14 // *********************************** NOTE *********************************** 15 // ** For POWER8 Little Endian, the VSX swap optimization relies on knowing ** 16 // ** which VMX and VSX instructions are lane-sensitive and which are not. ** 17 // ** A lane-sensitive instruction relies, implicitly or explicitly, on ** 18 // ** whether lanes are numbered from left to right. An instruction like ** 19 // ** VADDFP is not lane-sensitive, because each lane of the result vector ** 20 // ** relies only on the corresponding lane of the source vectors. However, ** 21 // ** an instruction like VMULESB is lane-sensitive, because "even" and ** 22 // ** "odd" lanes are different for big-endian and little-endian numbering. ** 23 // ** ** 24 // ** When adding new VMX and VSX instructions, please consider whether they ** 25 // ** are lane-sensitive. If so, they must be added to a switch statement ** 26 // ** in PPCVSXSwapRemoval::gatherVectorInstructions(). ** 27 // **************************************************************************** 28 29 //===----------------------------------------------------------------------===// 30 // Altivec transformation functions and pattern fragments. 31 // 32 33 // Since we canonicalize buildvectors to v16i8, all vnots "-1" operands will be 34 // of that type. 35 def vnot_ppc : PatFrag<(ops node:$in), 36 (xor node:$in, (bitconvert (v16i8 immAllOnesV)))>; 37 38 def vpkuhum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 39 (vector_shuffle node:$lhs, node:$rhs), [{ 40 return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); 41 }]>; 42 def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 43 (vector_shuffle node:$lhs, node:$rhs), [{ 44 return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); 45 }]>; 46 def vpkudum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 47 (vector_shuffle node:$lhs, node:$rhs), [{ 48 return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); 49 }]>; 50 def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 51 (vector_shuffle node:$lhs, node:$rhs), [{ 52 return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); 53 }]>; 54 def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 55 (vector_shuffle node:$lhs, node:$rhs), [{ 56 return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); 57 }]>; 58 def vpkudum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 59 (vector_shuffle node:$lhs, node:$rhs), [{ 60 return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); 61 }]>; 62 63 // These fragments are provided for little-endian, where the inputs must be 64 // swapped for correct semantics. 65 def vpkuhum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 66 (vector_shuffle node:$lhs, node:$rhs), [{ 67 return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); 68 }]>; 69 def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 70 (vector_shuffle node:$lhs, node:$rhs), [{ 71 return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); 72 }]>; 73 def vpkudum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 74 (vector_shuffle node:$lhs, node:$rhs), [{ 75 return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); 76 }]>; 77 78 def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 79 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 80 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG); 81 }]>; 82 def vmrglh_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 83 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 84 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG); 85 }]>; 86 def vmrglw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 87 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 88 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG); 89 }]>; 90 def vmrghb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 91 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 92 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG); 93 }]>; 94 def vmrghh_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 95 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 96 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG); 97 }]>; 98 def vmrghw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 99 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 100 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG); 101 }]>; 102 103 104 def vmrglb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 105 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 106 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG); 107 }]>; 108 def vmrglh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 109 (vector_shuffle node:$lhs, node:$rhs), [{ 110 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG); 111 }]>; 112 def vmrglw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 113 (vector_shuffle node:$lhs, node:$rhs), [{ 114 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG); 115 }]>; 116 def vmrghb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 117 (vector_shuffle node:$lhs, node:$rhs), [{ 118 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG); 119 }]>; 120 def vmrghh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 121 (vector_shuffle node:$lhs, node:$rhs), [{ 122 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG); 123 }]>; 124 def vmrghw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 125 (vector_shuffle node:$lhs, node:$rhs), [{ 126 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG); 127 }]>; 128 129 130 // These fragments are provided for little-endian, where the inputs must be 131 // swapped for correct semantics. 132 def vmrglb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 133 (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ 134 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG); 135 }]>; 136 def vmrglh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 137 (vector_shuffle node:$lhs, node:$rhs), [{ 138 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG); 139 }]>; 140 def vmrglw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 141 (vector_shuffle node:$lhs, node:$rhs), [{ 142 return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG); 143 }]>; 144 def vmrghb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 145 (vector_shuffle node:$lhs, node:$rhs), [{ 146 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG); 147 }]>; 148 def vmrghh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 149 (vector_shuffle node:$lhs, node:$rhs), [{ 150 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG); 151 }]>; 152 def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 153 (vector_shuffle node:$lhs, node:$rhs), [{ 154 return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG); 155 }]>; 156 157 158 def vmrgew_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 159 (vector_shuffle node:$lhs, node:$rhs), [{ 160 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 0, *CurDAG); 161 }]>; 162 def vmrgow_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 163 (vector_shuffle node:$lhs, node:$rhs), [{ 164 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 0, *CurDAG); 165 }]>; 166 def vmrgew_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 167 (vector_shuffle node:$lhs, node:$rhs), [{ 168 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 1, *CurDAG); 169 }]>; 170 def vmrgow_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 171 (vector_shuffle node:$lhs, node:$rhs), [{ 172 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 1, *CurDAG); 173 }]>; 174 def vmrgew_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 175 (vector_shuffle node:$lhs, node:$rhs), [{ 176 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 2, *CurDAG); 177 }]>; 178 def vmrgow_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 179 (vector_shuffle node:$lhs, node:$rhs), [{ 180 return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 2, *CurDAG); 181 }]>; 182 183 184 185 def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{ 186 return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N)); 187 }]>; 188 def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 189 (vector_shuffle node:$lhs, node:$rhs), [{ 190 return PPC::isVSLDOIShuffleMask(N, 0, *CurDAG) != -1; 191 }], VSLDOI_get_imm>; 192 193 194 /// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into 195 /// vector_shuffle(X,undef,mask) by the dag combiner. 196 def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{ 197 return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG), SDLoc(N)); 198 }]>; 199 def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 200 (vector_shuffle node:$lhs, node:$rhs), [{ 201 return PPC::isVSLDOIShuffleMask(N, 1, *CurDAG) != -1; 202 }], VSLDOI_unary_get_imm>; 203 204 205 /// VSLDOI_swapped* - These fragments are provided for little-endian, where 206 /// the inputs must be swapped for correct semantics. 207 def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{ 208 return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG), SDLoc(N)); 209 }]>; 210 def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 211 (vector_shuffle node:$lhs, node:$rhs), [{ 212 return PPC::isVSLDOIShuffleMask(N, 2, *CurDAG) != -1; 213 }], VSLDOI_get_imm>; 214 215 216 // VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm. 217 def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{ 218 return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG), SDLoc(N)); 219 }]>; 220 def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 221 (vector_shuffle node:$lhs, node:$rhs), [{ 222 return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1); 223 }], VSPLTB_get_imm>; 224 def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{ 225 return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG), SDLoc(N)); 226 }]>; 227 def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 228 (vector_shuffle node:$lhs, node:$rhs), [{ 229 return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2); 230 }], VSPLTH_get_imm>; 231 def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{ 232 return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG), SDLoc(N)); 233 }]>; 234 def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), 235 (vector_shuffle node:$lhs, node:$rhs), [{ 236 return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 4); 237 }], VSPLTW_get_imm>; 238 239 240 // VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm. 241 def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{ 242 return PPC::get_VSPLTI_elt(N, 1, *CurDAG); 243 }]>; 244 def vecspltisb : PatLeaf<(build_vector), [{ 245 return PPC::get_VSPLTI_elt(N, 1, *CurDAG).getNode() != 0; 246 }], VSPLTISB_get_imm>; 247 248 // VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm. 249 def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{ 250 return PPC::get_VSPLTI_elt(N, 2, *CurDAG); 251 }]>; 252 def vecspltish : PatLeaf<(build_vector), [{ 253 return PPC::get_VSPLTI_elt(N, 2, *CurDAG).getNode() != 0; 254 }], VSPLTISH_get_imm>; 255 256 // VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm. 257 def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{ 258 return PPC::get_VSPLTI_elt(N, 4, *CurDAG); 259 }]>; 260 def vecspltisw : PatLeaf<(build_vector), [{ 261 return PPC::get_VSPLTI_elt(N, 4, *CurDAG).getNode() != 0; 262 }], VSPLTISW_get_imm>; 263 264 //===----------------------------------------------------------------------===// 265 // Helpers for defining instructions that directly correspond to intrinsics. 266 267 // VA1a_Int_Ty - A VAForm_1a intrinsic definition of specific type. 268 class VA1a_Int_Ty<bits<6> xo, string opc, Intrinsic IntID, ValueType Ty> 269 : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), 270 !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, 271 [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB, Ty:$vC))]>; 272 273 // VA1a_Int_Ty2 - A VAForm_1a intrinsic definition where the type of the 274 // inputs doesn't match the type of the output. 275 class VA1a_Int_Ty2<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy, 276 ValueType InTy> 277 : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), 278 !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, 279 [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB, InTy:$vC))]>; 280 281 // VA1a_Int_Ty3 - A VAForm_1a intrinsic definition where there are two 282 // input types and an output type. 283 class VA1a_Int_Ty3<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy, 284 ValueType In1Ty, ValueType In2Ty> 285 : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), 286 !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, 287 [(set OutTy:$vD, 288 (IntID In1Ty:$vA, In1Ty:$vB, In2Ty:$vC))]>; 289 290 // VX1_Int_Ty - A VXForm_1 intrinsic definition of specific type. 291 class VX1_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> 292 : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 293 !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, 294 [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB))]>; 295 296 // VX1_Int_Ty2 - A VXForm_1 intrinsic definition where the type of the 297 // inputs doesn't match the type of the output. 298 class VX1_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, 299 ValueType InTy> 300 : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 301 !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, 302 [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB))]>; 303 304 // VX1_Int_Ty3 - A VXForm_1 intrinsic definition where there are two 305 // input types and an output type. 306 class VX1_Int_Ty3<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, 307 ValueType In1Ty, ValueType In2Ty> 308 : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 309 !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, 310 [(set OutTy:$vD, (IntID In1Ty:$vA, In2Ty:$vB))]>; 311 312 // VX2_Int_SP - A VXForm_2 intrinsic definition of vector single-precision type. 313 class VX2_Int_SP<bits<11> xo, string opc, Intrinsic IntID> 314 : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB), 315 !strconcat(opc, " $vD, $vB"), IIC_VecFP, 316 [(set v4f32:$vD, (IntID v4f32:$vB))]>; 317 318 // VX2_Int_Ty2 - A VXForm_2 intrinsic definition where the type of the 319 // inputs doesn't match the type of the output. 320 class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, 321 ValueType InTy> 322 : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB), 323 !strconcat(opc, " $vD, $vB"), IIC_VecFP, 324 [(set OutTy:$vD, (IntID InTy:$vB))]>; 325 326 class VXBX_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> 327 : VXForm_BX<xo, (outs vrrc:$vD), (ins vrrc:$vA), 328 !strconcat(opc, " $vD, $vA"), IIC_VecFP, 329 [(set Ty:$vD, (IntID Ty:$vA))]>; 330 331 class VXCR_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> 332 : VXForm_CR<xo, (outs vrrc:$vD), (ins vrrc:$vA, u1imm:$ST, u4imm:$SIX), 333 !strconcat(opc, " $vD, $vA, $ST, $SIX"), IIC_VecFP, 334 [(set Ty:$vD, (IntID Ty:$vA, imm:$ST, imm:$SIX))]>; 335 336 //===----------------------------------------------------------------------===// 337 // Instruction Definitions. 338 339 def HasAltivec : Predicate<"PPCSubTarget->hasAltivec()">; 340 let Predicates = [HasAltivec] in { 341 342 def DSS : DSS_Form<0, 822, (outs), (ins u5imm:$STRM), 343 "dss $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dss imm:$STRM)]>, 344 Deprecated<DeprecatedDST> { 345 let A = 0; 346 let B = 0; 347 } 348 349 def DSSALL : DSS_Form<1, 822, (outs), (ins), 350 "dssall", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dssall)]>, 351 Deprecated<DeprecatedDST> { 352 let STRM = 0; 353 let A = 0; 354 let B = 0; 355 } 356 357 def DST : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), 358 "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 359 [(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM)]>, 360 Deprecated<DeprecatedDST>; 361 362 def DSTT : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), 363 "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 364 [(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM)]>, 365 Deprecated<DeprecatedDST>; 366 367 def DSTST : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), 368 "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 369 [(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM)]>, 370 Deprecated<DeprecatedDST>; 371 372 def DSTSTT : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), 373 "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 374 [(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM)]>, 375 Deprecated<DeprecatedDST>; 376 377 let isCodeGenOnly = 1 in { 378 // The very same instructions as above, but formally matching 64bit registers. 379 def DST64 : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), 380 "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 381 [(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM)]>, 382 Deprecated<DeprecatedDST>; 383 384 def DSTT64 : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), 385 "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 386 [(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM)]>, 387 Deprecated<DeprecatedDST>; 388 389 def DSTST64 : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), 390 "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 391 [(int_ppc_altivec_dstst i64:$rA, i32:$rB, 392 imm:$STRM)]>, 393 Deprecated<DeprecatedDST>; 394 395 def DSTSTT64 : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), 396 "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, 397 [(int_ppc_altivec_dststt i64:$rA, i32:$rB, 398 imm:$STRM)]>, 399 Deprecated<DeprecatedDST>; 400 } 401 402 def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins), 403 "mfvscr $vD", IIC_LdStStore, 404 [(set v8i16:$vD, (int_ppc_altivec_mfvscr))]>; 405 def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB), 406 "mtvscr $vB", IIC_LdStLoad, 407 [(int_ppc_altivec_mtvscr v4i32:$vB)]>; 408 409 let PPC970_Unit = 2 in { // Loads. 410 def LVEBX: XForm_1<31, 7, (outs vrrc:$vD), (ins memrr:$src), 411 "lvebx $vD, $src", IIC_LdStLoad, 412 [(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>; 413 def LVEHX: XForm_1<31, 39, (outs vrrc:$vD), (ins memrr:$src), 414 "lvehx $vD, $src", IIC_LdStLoad, 415 [(set v8i16:$vD, (int_ppc_altivec_lvehx xoaddr:$src))]>; 416 def LVEWX: XForm_1<31, 71, (outs vrrc:$vD), (ins memrr:$src), 417 "lvewx $vD, $src", IIC_LdStLoad, 418 [(set v4i32:$vD, (int_ppc_altivec_lvewx xoaddr:$src))]>; 419 def LVX : XForm_1<31, 103, (outs vrrc:$vD), (ins memrr:$src), 420 "lvx $vD, $src", IIC_LdStLoad, 421 [(set v4i32:$vD, (int_ppc_altivec_lvx xoaddr:$src))]>; 422 def LVXL : XForm_1<31, 359, (outs vrrc:$vD), (ins memrr:$src), 423 "lvxl $vD, $src", IIC_LdStLoad, 424 [(set v4i32:$vD, (int_ppc_altivec_lvxl xoaddr:$src))]>; 425 } 426 427 def LVSL : XForm_1<31, 6, (outs vrrc:$vD), (ins memrr:$src), 428 "lvsl $vD, $src", IIC_LdStLoad, 429 [(set v16i8:$vD, (int_ppc_altivec_lvsl xoaddr:$src))]>, 430 PPC970_Unit_LSU; 431 def LVSR : XForm_1<31, 38, (outs vrrc:$vD), (ins memrr:$src), 432 "lvsr $vD, $src", IIC_LdStLoad, 433 [(set v16i8:$vD, (int_ppc_altivec_lvsr xoaddr:$src))]>, 434 PPC970_Unit_LSU; 435 436 let PPC970_Unit = 2 in { // Stores. 437 def STVEBX: XForm_8<31, 135, (outs), (ins vrrc:$rS, memrr:$dst), 438 "stvebx $rS, $dst", IIC_LdStStore, 439 [(int_ppc_altivec_stvebx v16i8:$rS, xoaddr:$dst)]>; 440 def STVEHX: XForm_8<31, 167, (outs), (ins vrrc:$rS, memrr:$dst), 441 "stvehx $rS, $dst", IIC_LdStStore, 442 [(int_ppc_altivec_stvehx v8i16:$rS, xoaddr:$dst)]>; 443 def STVEWX: XForm_8<31, 199, (outs), (ins vrrc:$rS, memrr:$dst), 444 "stvewx $rS, $dst", IIC_LdStStore, 445 [(int_ppc_altivec_stvewx v4i32:$rS, xoaddr:$dst)]>; 446 def STVX : XForm_8<31, 231, (outs), (ins vrrc:$rS, memrr:$dst), 447 "stvx $rS, $dst", IIC_LdStStore, 448 [(int_ppc_altivec_stvx v4i32:$rS, xoaddr:$dst)]>; 449 def STVXL : XForm_8<31, 487, (outs), (ins vrrc:$rS, memrr:$dst), 450 "stvxl $rS, $dst", IIC_LdStStore, 451 [(int_ppc_altivec_stvxl v4i32:$rS, xoaddr:$dst)]>; 452 } 453 454 let PPC970_Unit = 5 in { // VALU Operations. 455 // VA-Form instructions. 3-input AltiVec ops. 456 let isCommutable = 1 in { 457 def VMADDFP : VAForm_1<46, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB), 458 "vmaddfp $vD, $vA, $vC, $vB", IIC_VecFP, 459 [(set v4f32:$vD, 460 (fma v4f32:$vA, v4f32:$vC, v4f32:$vB))]>; 461 462 // FIXME: The fma+fneg pattern won't match because fneg is not legal. 463 def VNMSUBFP: VAForm_1<47, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB), 464 "vnmsubfp $vD, $vA, $vC, $vB", IIC_VecFP, 465 [(set v4f32:$vD, (fneg (fma v4f32:$vA, v4f32:$vC, 466 (fneg v4f32:$vB))))]>; 467 468 def VMHADDSHS : VA1a_Int_Ty<32, "vmhaddshs", int_ppc_altivec_vmhaddshs, v8i16>; 469 def VMHRADDSHS : VA1a_Int_Ty<33, "vmhraddshs", int_ppc_altivec_vmhraddshs, 470 v8i16>; 471 def VMLADDUHM : VA1a_Int_Ty<34, "vmladduhm", int_ppc_altivec_vmladduhm, v8i16>; 472 } // isCommutable 473 474 def VPERM : VA1a_Int_Ty3<43, "vperm", int_ppc_altivec_vperm, 475 v4i32, v4i32, v16i8>; 476 def VSEL : VA1a_Int_Ty<42, "vsel", int_ppc_altivec_vsel, v4i32>; 477 478 // Shuffles. 479 def VSLDOI : VAForm_2<44, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u5imm:$SH), 480 "vsldoi $vD, $vA, $vB, $SH", IIC_VecFP, 481 [(set v16i8:$vD, 482 (vsldoi_shuffle:$SH v16i8:$vA, v16i8:$vB))]>; 483 484 // VX-Form instructions. AltiVec arithmetic ops. 485 let isCommutable = 1 in { 486 def VADDFP : VXForm_1<10, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 487 "vaddfp $vD, $vA, $vB", IIC_VecFP, 488 [(set v4f32:$vD, (fadd v4f32:$vA, v4f32:$vB))]>; 489 490 def VADDUBM : VXForm_1<0, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 491 "vaddubm $vD, $vA, $vB", IIC_VecGeneral, 492 [(set v16i8:$vD, (add v16i8:$vA, v16i8:$vB))]>; 493 def VADDUHM : VXForm_1<64, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 494 "vadduhm $vD, $vA, $vB", IIC_VecGeneral, 495 [(set v8i16:$vD, (add v8i16:$vA, v8i16:$vB))]>; 496 def VADDUWM : VXForm_1<128, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 497 "vadduwm $vD, $vA, $vB", IIC_VecGeneral, 498 [(set v4i32:$vD, (add v4i32:$vA, v4i32:$vB))]>; 499 500 def VADDCUW : VX1_Int_Ty<384, "vaddcuw", int_ppc_altivec_vaddcuw, v4i32>; 501 def VADDSBS : VX1_Int_Ty<768, "vaddsbs", int_ppc_altivec_vaddsbs, v16i8>; 502 def VADDSHS : VX1_Int_Ty<832, "vaddshs", int_ppc_altivec_vaddshs, v8i16>; 503 def VADDSWS : VX1_Int_Ty<896, "vaddsws", int_ppc_altivec_vaddsws, v4i32>; 504 def VADDUBS : VX1_Int_Ty<512, "vaddubs", int_ppc_altivec_vaddubs, v16i8>; 505 def VADDUHS : VX1_Int_Ty<576, "vadduhs", int_ppc_altivec_vadduhs, v8i16>; 506 def VADDUWS : VX1_Int_Ty<640, "vadduws", int_ppc_altivec_vadduws, v4i32>; 507 } // isCommutable 508 509 let isCommutable = 1 in 510 def VAND : VXForm_1<1028, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 511 "vand $vD, $vA, $vB", IIC_VecFP, 512 [(set v4i32:$vD, (and v4i32:$vA, v4i32:$vB))]>; 513 def VANDC : VXForm_1<1092, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 514 "vandc $vD, $vA, $vB", IIC_VecFP, 515 [(set v4i32:$vD, (and v4i32:$vA, 516 (vnot_ppc v4i32:$vB)))]>; 517 518 def VCFSX : VXForm_1<842, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 519 "vcfsx $vD, $vB, $UIMM", IIC_VecFP, 520 [(set v4f32:$vD, 521 (int_ppc_altivec_vcfsx v4i32:$vB, imm:$UIMM))]>; 522 def VCFUX : VXForm_1<778, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 523 "vcfux $vD, $vB, $UIMM", IIC_VecFP, 524 [(set v4f32:$vD, 525 (int_ppc_altivec_vcfux v4i32:$vB, imm:$UIMM))]>; 526 def VCTSXS : VXForm_1<970, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 527 "vctsxs $vD, $vB, $UIMM", IIC_VecFP, 528 [(set v4i32:$vD, 529 (int_ppc_altivec_vctsxs v4f32:$vB, imm:$UIMM))]>; 530 def VCTUXS : VXForm_1<906, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 531 "vctuxs $vD, $vB, $UIMM", IIC_VecFP, 532 [(set v4i32:$vD, 533 (int_ppc_altivec_vctuxs v4f32:$vB, imm:$UIMM))]>; 534 535 // Defines with the UIM field set to 0 for floating-point 536 // to integer (fp_to_sint/fp_to_uint) conversions and integer 537 // to floating-point (sint_to_fp/uint_to_fp) conversions. 538 let isCodeGenOnly = 1, VA = 0 in { 539 def VCFSX_0 : VXForm_1<842, (outs vrrc:$vD), (ins vrrc:$vB), 540 "vcfsx $vD, $vB, 0", IIC_VecFP, 541 [(set v4f32:$vD, 542 (int_ppc_altivec_vcfsx v4i32:$vB, 0))]>; 543 def VCTUXS_0 : VXForm_1<906, (outs vrrc:$vD), (ins vrrc:$vB), 544 "vctuxs $vD, $vB, 0", IIC_VecFP, 545 [(set v4i32:$vD, 546 (int_ppc_altivec_vctuxs v4f32:$vB, 0))]>; 547 def VCFUX_0 : VXForm_1<778, (outs vrrc:$vD), (ins vrrc:$vB), 548 "vcfux $vD, $vB, 0", IIC_VecFP, 549 [(set v4f32:$vD, 550 (int_ppc_altivec_vcfux v4i32:$vB, 0))]>; 551 def VCTSXS_0 : VXForm_1<970, (outs vrrc:$vD), (ins vrrc:$vB), 552 "vctsxs $vD, $vB, 0", IIC_VecFP, 553 [(set v4i32:$vD, 554 (int_ppc_altivec_vctsxs v4f32:$vB, 0))]>; 555 } 556 def VEXPTEFP : VX2_Int_SP<394, "vexptefp", int_ppc_altivec_vexptefp>; 557 def VLOGEFP : VX2_Int_SP<458, "vlogefp", int_ppc_altivec_vlogefp>; 558 559 let isCommutable = 1 in { 560 def VAVGSB : VX1_Int_Ty<1282, "vavgsb", int_ppc_altivec_vavgsb, v16i8>; 561 def VAVGSH : VX1_Int_Ty<1346, "vavgsh", int_ppc_altivec_vavgsh, v8i16>; 562 def VAVGSW : VX1_Int_Ty<1410, "vavgsw", int_ppc_altivec_vavgsw, v4i32>; 563 def VAVGUB : VX1_Int_Ty<1026, "vavgub", int_ppc_altivec_vavgub, v16i8>; 564 def VAVGUH : VX1_Int_Ty<1090, "vavguh", int_ppc_altivec_vavguh, v8i16>; 565 def VAVGUW : VX1_Int_Ty<1154, "vavguw", int_ppc_altivec_vavguw, v4i32>; 566 567 def VMAXFP : VX1_Int_Ty<1034, "vmaxfp", int_ppc_altivec_vmaxfp, v4f32>; 568 def VMAXSB : VX1_Int_Ty< 258, "vmaxsb", int_ppc_altivec_vmaxsb, v16i8>; 569 def VMAXSH : VX1_Int_Ty< 322, "vmaxsh", int_ppc_altivec_vmaxsh, v8i16>; 570 def VMAXSW : VX1_Int_Ty< 386, "vmaxsw", int_ppc_altivec_vmaxsw, v4i32>; 571 def VMAXUB : VX1_Int_Ty< 2, "vmaxub", int_ppc_altivec_vmaxub, v16i8>; 572 def VMAXUH : VX1_Int_Ty< 66, "vmaxuh", int_ppc_altivec_vmaxuh, v8i16>; 573 def VMAXUW : VX1_Int_Ty< 130, "vmaxuw", int_ppc_altivec_vmaxuw, v4i32>; 574 def VMINFP : VX1_Int_Ty<1098, "vminfp", int_ppc_altivec_vminfp, v4f32>; 575 def VMINSB : VX1_Int_Ty< 770, "vminsb", int_ppc_altivec_vminsb, v16i8>; 576 def VMINSH : VX1_Int_Ty< 834, "vminsh", int_ppc_altivec_vminsh, v8i16>; 577 def VMINSW : VX1_Int_Ty< 898, "vminsw", int_ppc_altivec_vminsw, v4i32>; 578 def VMINUB : VX1_Int_Ty< 514, "vminub", int_ppc_altivec_vminub, v16i8>; 579 def VMINUH : VX1_Int_Ty< 578, "vminuh", int_ppc_altivec_vminuh, v8i16>; 580 def VMINUW : VX1_Int_Ty< 642, "vminuw", int_ppc_altivec_vminuw, v4i32>; 581 } // isCommutable 582 583 def VMRGHB : VXForm_1< 12, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 584 "vmrghb $vD, $vA, $vB", IIC_VecFP, 585 [(set v16i8:$vD, (vmrghb_shuffle v16i8:$vA, v16i8:$vB))]>; 586 def VMRGHH : VXForm_1< 76, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 587 "vmrghh $vD, $vA, $vB", IIC_VecFP, 588 [(set v16i8:$vD, (vmrghh_shuffle v16i8:$vA, v16i8:$vB))]>; 589 def VMRGHW : VXForm_1<140, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 590 "vmrghw $vD, $vA, $vB", IIC_VecFP, 591 [(set v16i8:$vD, (vmrghw_shuffle v16i8:$vA, v16i8:$vB))]>; 592 def VMRGLB : VXForm_1<268, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 593 "vmrglb $vD, $vA, $vB", IIC_VecFP, 594 [(set v16i8:$vD, (vmrglb_shuffle v16i8:$vA, v16i8:$vB))]>; 595 def VMRGLH : VXForm_1<332, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 596 "vmrglh $vD, $vA, $vB", IIC_VecFP, 597 [(set v16i8:$vD, (vmrglh_shuffle v16i8:$vA, v16i8:$vB))]>; 598 def VMRGLW : VXForm_1<396, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 599 "vmrglw $vD, $vA, $vB", IIC_VecFP, 600 [(set v16i8:$vD, (vmrglw_shuffle v16i8:$vA, v16i8:$vB))]>; 601 602 def VMSUMMBM : VA1a_Int_Ty3<37, "vmsummbm", int_ppc_altivec_vmsummbm, 603 v4i32, v16i8, v4i32>; 604 def VMSUMSHM : VA1a_Int_Ty3<40, "vmsumshm", int_ppc_altivec_vmsumshm, 605 v4i32, v8i16, v4i32>; 606 def VMSUMSHS : VA1a_Int_Ty3<41, "vmsumshs", int_ppc_altivec_vmsumshs, 607 v4i32, v8i16, v4i32>; 608 def VMSUMUBM : VA1a_Int_Ty3<36, "vmsumubm", int_ppc_altivec_vmsumubm, 609 v4i32, v16i8, v4i32>; 610 def VMSUMUHM : VA1a_Int_Ty3<38, "vmsumuhm", int_ppc_altivec_vmsumuhm, 611 v4i32, v8i16, v4i32>; 612 def VMSUMUHS : VA1a_Int_Ty3<39, "vmsumuhs", int_ppc_altivec_vmsumuhs, 613 v4i32, v8i16, v4i32>; 614 615 let isCommutable = 1 in { 616 def VMULESB : VX1_Int_Ty2<776, "vmulesb", int_ppc_altivec_vmulesb, 617 v8i16, v16i8>; 618 def VMULESH : VX1_Int_Ty2<840, "vmulesh", int_ppc_altivec_vmulesh, 619 v4i32, v8i16>; 620 def VMULEUB : VX1_Int_Ty2<520, "vmuleub", int_ppc_altivec_vmuleub, 621 v8i16, v16i8>; 622 def VMULEUH : VX1_Int_Ty2<584, "vmuleuh", int_ppc_altivec_vmuleuh, 623 v4i32, v8i16>; 624 def VMULOSB : VX1_Int_Ty2<264, "vmulosb", int_ppc_altivec_vmulosb, 625 v8i16, v16i8>; 626 def VMULOSH : VX1_Int_Ty2<328, "vmulosh", int_ppc_altivec_vmulosh, 627 v4i32, v8i16>; 628 def VMULOUB : VX1_Int_Ty2< 8, "vmuloub", int_ppc_altivec_vmuloub, 629 v8i16, v16i8>; 630 def VMULOUH : VX1_Int_Ty2< 72, "vmulouh", int_ppc_altivec_vmulouh, 631 v4i32, v8i16>; 632 } // isCommutable 633 634 def VREFP : VX2_Int_SP<266, "vrefp", int_ppc_altivec_vrefp>; 635 def VRFIM : VX2_Int_SP<714, "vrfim", int_ppc_altivec_vrfim>; 636 def VRFIN : VX2_Int_SP<522, "vrfin", int_ppc_altivec_vrfin>; 637 def VRFIP : VX2_Int_SP<650, "vrfip", int_ppc_altivec_vrfip>; 638 def VRFIZ : VX2_Int_SP<586, "vrfiz", int_ppc_altivec_vrfiz>; 639 def VRSQRTEFP : VX2_Int_SP<330, "vrsqrtefp", int_ppc_altivec_vrsqrtefp>; 640 641 def VSUBCUW : VX1_Int_Ty<1408, "vsubcuw", int_ppc_altivec_vsubcuw, v4i32>; 642 643 def VSUBFP : VXForm_1<74, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 644 "vsubfp $vD, $vA, $vB", IIC_VecGeneral, 645 [(set v4f32:$vD, (fsub v4f32:$vA, v4f32:$vB))]>; 646 def VSUBUBM : VXForm_1<1024, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 647 "vsububm $vD, $vA, $vB", IIC_VecGeneral, 648 [(set v16i8:$vD, (sub v16i8:$vA, v16i8:$vB))]>; 649 def VSUBUHM : VXForm_1<1088, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 650 "vsubuhm $vD, $vA, $vB", IIC_VecGeneral, 651 [(set v8i16:$vD, (sub v8i16:$vA, v8i16:$vB))]>; 652 def VSUBUWM : VXForm_1<1152, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 653 "vsubuwm $vD, $vA, $vB", IIC_VecGeneral, 654 [(set v4i32:$vD, (sub v4i32:$vA, v4i32:$vB))]>; 655 656 def VSUBSBS : VX1_Int_Ty<1792, "vsubsbs" , int_ppc_altivec_vsubsbs, v16i8>; 657 def VSUBSHS : VX1_Int_Ty<1856, "vsubshs" , int_ppc_altivec_vsubshs, v8i16>; 658 def VSUBSWS : VX1_Int_Ty<1920, "vsubsws" , int_ppc_altivec_vsubsws, v4i32>; 659 def VSUBUBS : VX1_Int_Ty<1536, "vsububs" , int_ppc_altivec_vsububs, v16i8>; 660 def VSUBUHS : VX1_Int_Ty<1600, "vsubuhs" , int_ppc_altivec_vsubuhs, v8i16>; 661 def VSUBUWS : VX1_Int_Ty<1664, "vsubuws" , int_ppc_altivec_vsubuws, v4i32>; 662 663 def VSUMSWS : VX1_Int_Ty<1928, "vsumsws" , int_ppc_altivec_vsumsws, v4i32>; 664 def VSUM2SWS: VX1_Int_Ty<1672, "vsum2sws", int_ppc_altivec_vsum2sws, v4i32>; 665 666 def VSUM4SBS: VX1_Int_Ty3<1800, "vsum4sbs", int_ppc_altivec_vsum4sbs, 667 v4i32, v16i8, v4i32>; 668 def VSUM4SHS: VX1_Int_Ty3<1608, "vsum4shs", int_ppc_altivec_vsum4shs, 669 v4i32, v8i16, v4i32>; 670 def VSUM4UBS: VX1_Int_Ty3<1544, "vsum4ubs", int_ppc_altivec_vsum4ubs, 671 v4i32, v16i8, v4i32>; 672 673 def VNOR : VXForm_1<1284, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 674 "vnor $vD, $vA, $vB", IIC_VecFP, 675 [(set v4i32:$vD, (vnot_ppc (or v4i32:$vA, 676 v4i32:$vB)))]>; 677 let isCommutable = 1 in { 678 def VOR : VXForm_1<1156, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 679 "vor $vD, $vA, $vB", IIC_VecFP, 680 [(set v4i32:$vD, (or v4i32:$vA, v4i32:$vB))]>; 681 def VXOR : VXForm_1<1220, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 682 "vxor $vD, $vA, $vB", IIC_VecFP, 683 [(set v4i32:$vD, (xor v4i32:$vA, v4i32:$vB))]>; 684 } // isCommutable 685 686 def VRLB : VX1_Int_Ty< 4, "vrlb", int_ppc_altivec_vrlb, v16i8>; 687 def VRLH : VX1_Int_Ty< 68, "vrlh", int_ppc_altivec_vrlh, v8i16>; 688 def VRLW : VX1_Int_Ty< 132, "vrlw", int_ppc_altivec_vrlw, v4i32>; 689 690 def VSL : VX1_Int_Ty< 452, "vsl" , int_ppc_altivec_vsl, v4i32 >; 691 def VSLO : VX1_Int_Ty<1036, "vslo", int_ppc_altivec_vslo, v4i32>; 692 693 def VSLB : VX1_Int_Ty< 260, "vslb", int_ppc_altivec_vslb, v16i8>; 694 def VSLH : VX1_Int_Ty< 324, "vslh", int_ppc_altivec_vslh, v8i16>; 695 def VSLW : VX1_Int_Ty< 388, "vslw", int_ppc_altivec_vslw, v4i32>; 696 697 def VSPLTB : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 698 "vspltb $vD, $vB, $UIMM", IIC_VecPerm, 699 [(set v16i8:$vD, 700 (vspltb_shuffle:$UIMM v16i8:$vB, (undef)))]>; 701 def VSPLTH : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 702 "vsplth $vD, $vB, $UIMM", IIC_VecPerm, 703 [(set v16i8:$vD, 704 (vsplth_shuffle:$UIMM v16i8:$vB, (undef)))]>; 705 def VSPLTW : VXForm_1<652, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), 706 "vspltw $vD, $vB, $UIMM", IIC_VecPerm, 707 [(set v16i8:$vD, 708 (vspltw_shuffle:$UIMM v16i8:$vB, (undef)))]>; 709 710 def VSR : VX1_Int_Ty< 708, "vsr" , int_ppc_altivec_vsr, v4i32>; 711 def VSRO : VX1_Int_Ty<1100, "vsro" , int_ppc_altivec_vsro, v4i32>; 712 713 def VSRAB : VX1_Int_Ty< 772, "vsrab", int_ppc_altivec_vsrab, v16i8>; 714 def VSRAH : VX1_Int_Ty< 836, "vsrah", int_ppc_altivec_vsrah, v8i16>; 715 def VSRAW : VX1_Int_Ty< 900, "vsraw", int_ppc_altivec_vsraw, v4i32>; 716 def VSRB : VX1_Int_Ty< 516, "vsrb" , int_ppc_altivec_vsrb , v16i8>; 717 def VSRH : VX1_Int_Ty< 580, "vsrh" , int_ppc_altivec_vsrh , v8i16>; 718 def VSRW : VX1_Int_Ty< 644, "vsrw" , int_ppc_altivec_vsrw , v4i32>; 719 720 721 def VSPLTISB : VXForm_3<780, (outs vrrc:$vD), (ins s5imm:$SIMM), 722 "vspltisb $vD, $SIMM", IIC_VecPerm, 723 [(set v16i8:$vD, (v16i8 vecspltisb:$SIMM))]>; 724 def VSPLTISH : VXForm_3<844, (outs vrrc:$vD), (ins s5imm:$SIMM), 725 "vspltish $vD, $SIMM", IIC_VecPerm, 726 [(set v8i16:$vD, (v8i16 vecspltish:$SIMM))]>; 727 def VSPLTISW : VXForm_3<908, (outs vrrc:$vD), (ins s5imm:$SIMM), 728 "vspltisw $vD, $SIMM", IIC_VecPerm, 729 [(set v4i32:$vD, (v4i32 vecspltisw:$SIMM))]>; 730 731 // Vector Pack. 732 def VPKPX : VX1_Int_Ty2<782, "vpkpx", int_ppc_altivec_vpkpx, 733 v8i16, v4i32>; 734 def VPKSHSS : VX1_Int_Ty2<398, "vpkshss", int_ppc_altivec_vpkshss, 735 v16i8, v8i16>; 736 def VPKSHUS : VX1_Int_Ty2<270, "vpkshus", int_ppc_altivec_vpkshus, 737 v16i8, v8i16>; 738 def VPKSWSS : VX1_Int_Ty2<462, "vpkswss", int_ppc_altivec_vpkswss, 739 v16i8, v4i32>; 740 def VPKSWUS : VX1_Int_Ty2<334, "vpkswus", int_ppc_altivec_vpkswus, 741 v8i16, v4i32>; 742 def VPKUHUM : VXForm_1<14, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 743 "vpkuhum $vD, $vA, $vB", IIC_VecFP, 744 [(set v16i8:$vD, 745 (vpkuhum_shuffle v16i8:$vA, v16i8:$vB))]>; 746 def VPKUHUS : VX1_Int_Ty2<142, "vpkuhus", int_ppc_altivec_vpkuhus, 747 v16i8, v8i16>; 748 def VPKUWUM : VXForm_1<78, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 749 "vpkuwum $vD, $vA, $vB", IIC_VecFP, 750 [(set v16i8:$vD, 751 (vpkuwum_shuffle v16i8:$vA, v16i8:$vB))]>; 752 def VPKUWUS : VX1_Int_Ty2<206, "vpkuwus", int_ppc_altivec_vpkuwus, 753 v8i16, v4i32>; 754 755 // Vector Unpack. 756 def VUPKHPX : VX2_Int_Ty2<846, "vupkhpx", int_ppc_altivec_vupkhpx, 757 v4i32, v8i16>; 758 def VUPKHSB : VX2_Int_Ty2<526, "vupkhsb", int_ppc_altivec_vupkhsb, 759 v8i16, v16i8>; 760 def VUPKHSH : VX2_Int_Ty2<590, "vupkhsh", int_ppc_altivec_vupkhsh, 761 v4i32, v8i16>; 762 def VUPKLPX : VX2_Int_Ty2<974, "vupklpx", int_ppc_altivec_vupklpx, 763 v4i32, v8i16>; 764 def VUPKLSB : VX2_Int_Ty2<654, "vupklsb", int_ppc_altivec_vupklsb, 765 v8i16, v16i8>; 766 def VUPKLSH : VX2_Int_Ty2<718, "vupklsh", int_ppc_altivec_vupklsh, 767 v4i32, v8i16>; 768 769 770 // Altivec Comparisons. 771 772 class VCMP<bits<10> xo, string asmstr, ValueType Ty> 773 : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr, 774 IIC_VecFPCompare, 775 [(set Ty:$vD, (Ty (PPCvcmp Ty:$vA, Ty:$vB, xo)))]>; 776 class VCMPo<bits<10> xo, string asmstr, ValueType Ty> 777 : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr, 778 IIC_VecFPCompare, 779 [(set Ty:$vD, (Ty (PPCvcmp_o Ty:$vA, Ty:$vB, xo)))]> { 780 let Defs = [CR6]; 781 let RC = 1; 782 } 783 784 // f32 element comparisons.0 785 def VCMPBFP : VCMP <966, "vcmpbfp $vD, $vA, $vB" , v4f32>; 786 def VCMPBFPo : VCMPo<966, "vcmpbfp. $vD, $vA, $vB" , v4f32>; 787 def VCMPEQFP : VCMP <198, "vcmpeqfp $vD, $vA, $vB" , v4f32>; 788 def VCMPEQFPo : VCMPo<198, "vcmpeqfp. $vD, $vA, $vB", v4f32>; 789 def VCMPGEFP : VCMP <454, "vcmpgefp $vD, $vA, $vB" , v4f32>; 790 def VCMPGEFPo : VCMPo<454, "vcmpgefp. $vD, $vA, $vB", v4f32>; 791 def VCMPGTFP : VCMP <710, "vcmpgtfp $vD, $vA, $vB" , v4f32>; 792 def VCMPGTFPo : VCMPo<710, "vcmpgtfp. $vD, $vA, $vB", v4f32>; 793 794 // i8 element comparisons. 795 def VCMPEQUB : VCMP < 6, "vcmpequb $vD, $vA, $vB" , v16i8>; 796 def VCMPEQUBo : VCMPo< 6, "vcmpequb. $vD, $vA, $vB", v16i8>; 797 def VCMPGTSB : VCMP <774, "vcmpgtsb $vD, $vA, $vB" , v16i8>; 798 def VCMPGTSBo : VCMPo<774, "vcmpgtsb. $vD, $vA, $vB", v16i8>; 799 def VCMPGTUB : VCMP <518, "vcmpgtub $vD, $vA, $vB" , v16i8>; 800 def VCMPGTUBo : VCMPo<518, "vcmpgtub. $vD, $vA, $vB", v16i8>; 801 802 // i16 element comparisons. 803 def VCMPEQUH : VCMP < 70, "vcmpequh $vD, $vA, $vB" , v8i16>; 804 def VCMPEQUHo : VCMPo< 70, "vcmpequh. $vD, $vA, $vB", v8i16>; 805 def VCMPGTSH : VCMP <838, "vcmpgtsh $vD, $vA, $vB" , v8i16>; 806 def VCMPGTSHo : VCMPo<838, "vcmpgtsh. $vD, $vA, $vB", v8i16>; 807 def VCMPGTUH : VCMP <582, "vcmpgtuh $vD, $vA, $vB" , v8i16>; 808 def VCMPGTUHo : VCMPo<582, "vcmpgtuh. $vD, $vA, $vB", v8i16>; 809 810 // i32 element comparisons. 811 def VCMPEQUW : VCMP <134, "vcmpequw $vD, $vA, $vB" , v4i32>; 812 def VCMPEQUWo : VCMPo<134, "vcmpequw. $vD, $vA, $vB", v4i32>; 813 def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>; 814 def VCMPGTSWo : VCMPo<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>; 815 def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>; 816 def VCMPGTUWo : VCMPo<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>; 817 818 let isCodeGenOnly = 1 in { 819 def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins), 820 "vxor $vD, $vD, $vD", IIC_VecFP, 821 [(set v16i8:$vD, (v16i8 immAllZerosV))]>; 822 def V_SET0H : VXForm_setzero<1220, (outs vrrc:$vD), (ins), 823 "vxor $vD, $vD, $vD", IIC_VecFP, 824 [(set v8i16:$vD, (v8i16 immAllZerosV))]>; 825 def V_SET0 : VXForm_setzero<1220, (outs vrrc:$vD), (ins), 826 "vxor $vD, $vD, $vD", IIC_VecFP, 827 [(set v4i32:$vD, (v4i32 immAllZerosV))]>; 828 829 let IMM=-1 in { 830 def V_SETALLONESB : VXForm_3<908, (outs vrrc:$vD), (ins), 831 "vspltisw $vD, -1", IIC_VecFP, 832 [(set v16i8:$vD, (v16i8 immAllOnesV))]>; 833 def V_SETALLONESH : VXForm_3<908, (outs vrrc:$vD), (ins), 834 "vspltisw $vD, -1", IIC_VecFP, 835 [(set v8i16:$vD, (v8i16 immAllOnesV))]>; 836 def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins), 837 "vspltisw $vD, -1", IIC_VecFP, 838 [(set v4i32:$vD, (v4i32 immAllOnesV))]>; 839 } 840 } 841 } // VALU Operations. 842 843 //===----------------------------------------------------------------------===// 844 // Additional Altivec Patterns 845 // 846 847 // Loads. 848 def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>; 849 850 // Stores. 851 def : Pat<(store v4i32:$rS, xoaddr:$dst), 852 (STVX $rS, xoaddr:$dst)>; 853 854 // Bit conversions. 855 def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>; 856 def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>; 857 def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>; 858 def : Pat<(v16i8 (bitconvert (v2i64 VRRC:$src))), (v16i8 VRRC:$src)>; 859 def : Pat<(v16i8 (bitconvert (v1i128 VRRC:$src))), (v16i8 VRRC:$src)>; 860 861 def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>; 862 def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>; 863 def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>; 864 def : Pat<(v8i16 (bitconvert (v2i64 VRRC:$src))), (v8i16 VRRC:$src)>; 865 def : Pat<(v8i16 (bitconvert (v1i128 VRRC:$src))), (v8i16 VRRC:$src)>; 866 867 def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>; 868 def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>; 869 def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>; 870 def : Pat<(v4i32 (bitconvert (v2i64 VRRC:$src))), (v4i32 VRRC:$src)>; 871 def : Pat<(v4i32 (bitconvert (v1i128 VRRC:$src))), (v4i32 VRRC:$src)>; 872 873 def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>; 874 def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>; 875 def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>; 876 def : Pat<(v4f32 (bitconvert (v2i64 VRRC:$src))), (v4f32 VRRC:$src)>; 877 def : Pat<(v4f32 (bitconvert (v1i128 VRRC:$src))), (v4f32 VRRC:$src)>; 878 879 def : Pat<(v2i64 (bitconvert (v16i8 VRRC:$src))), (v2i64 VRRC:$src)>; 880 def : Pat<(v2i64 (bitconvert (v8i16 VRRC:$src))), (v2i64 VRRC:$src)>; 881 def : Pat<(v2i64 (bitconvert (v4i32 VRRC:$src))), (v2i64 VRRC:$src)>; 882 def : Pat<(v2i64 (bitconvert (v4f32 VRRC:$src))), (v2i64 VRRC:$src)>; 883 def : Pat<(v2i64 (bitconvert (v1i128 VRRC:$src))), (v2i64 VRRC:$src)>; 884 885 def : Pat<(v1i128 (bitconvert (v16i8 VRRC:$src))), (v1i128 VRRC:$src)>; 886 def : Pat<(v1i128 (bitconvert (v8i16 VRRC:$src))), (v1i128 VRRC:$src)>; 887 def : Pat<(v1i128 (bitconvert (v4i32 VRRC:$src))), (v1i128 VRRC:$src)>; 888 def : Pat<(v1i128 (bitconvert (v4f32 VRRC:$src))), (v1i128 VRRC:$src)>; 889 def : Pat<(v1i128 (bitconvert (v2i64 VRRC:$src))), (v1i128 VRRC:$src)>; 890 891 // Shuffles. 892 893 // Match vsldoi(x,x), vpkuwum(x,x), vpkuhum(x,x) 894 def:Pat<(vsldoi_unary_shuffle:$in v16i8:$vA, undef), 895 (VSLDOI $vA, $vA, (VSLDOI_unary_get_imm $in))>; 896 def:Pat<(vpkuwum_unary_shuffle v16i8:$vA, undef), 897 (VPKUWUM $vA, $vA)>; 898 def:Pat<(vpkuhum_unary_shuffle v16i8:$vA, undef), 899 (VPKUHUM $vA, $vA)>; 900 901 // Match vsldoi(y,x), vpkuwum(y,x), vpkuhum(y,x), i.e., swapped operands. 902 // These fragments are matched for little-endian, where the inputs must 903 // be swapped for correct semantics. 904 def:Pat<(vsldoi_swapped_shuffle:$in v16i8:$vA, v16i8:$vB), 905 (VSLDOI $vB, $vA, (VSLDOI_swapped_get_imm $in))>; 906 def:Pat<(vpkuwum_swapped_shuffle v16i8:$vA, v16i8:$vB), 907 (VPKUWUM $vB, $vA)>; 908 def:Pat<(vpkuhum_swapped_shuffle v16i8:$vA, v16i8:$vB), 909 (VPKUHUM $vB, $vA)>; 910 911 // Match vmrg*(x,x) 912 def:Pat<(vmrglb_unary_shuffle v16i8:$vA, undef), 913 (VMRGLB $vA, $vA)>; 914 def:Pat<(vmrglh_unary_shuffle v16i8:$vA, undef), 915 (VMRGLH $vA, $vA)>; 916 def:Pat<(vmrglw_unary_shuffle v16i8:$vA, undef), 917 (VMRGLW $vA, $vA)>; 918 def:Pat<(vmrghb_unary_shuffle v16i8:$vA, undef), 919 (VMRGHB $vA, $vA)>; 920 def:Pat<(vmrghh_unary_shuffle v16i8:$vA, undef), 921 (VMRGHH $vA, $vA)>; 922 def:Pat<(vmrghw_unary_shuffle v16i8:$vA, undef), 923 (VMRGHW $vA, $vA)>; 924 925 // Match vmrg*(y,x), i.e., swapped operands. These fragments 926 // are matched for little-endian, where the inputs must be 927 // swapped for correct semantics. 928 def:Pat<(vmrglb_swapped_shuffle v16i8:$vA, v16i8:$vB), 929 (VMRGLB $vB, $vA)>; 930 def:Pat<(vmrglh_swapped_shuffle v16i8:$vA, v16i8:$vB), 931 (VMRGLH $vB, $vA)>; 932 def:Pat<(vmrglw_swapped_shuffle v16i8:$vA, v16i8:$vB), 933 (VMRGLW $vB, $vA)>; 934 def:Pat<(vmrghb_swapped_shuffle v16i8:$vA, v16i8:$vB), 935 (VMRGHB $vB, $vA)>; 936 def:Pat<(vmrghh_swapped_shuffle v16i8:$vA, v16i8:$vB), 937 (VMRGHH $vB, $vA)>; 938 def:Pat<(vmrghw_swapped_shuffle v16i8:$vA, v16i8:$vB), 939 (VMRGHW $vB, $vA)>; 940 941 // Logical Operations 942 def : Pat<(vnot_ppc v4i32:$vA), (VNOR $vA, $vA)>; 943 944 def : Pat<(vnot_ppc (or v4i32:$A, v4i32:$B)), 945 (VNOR $A, $B)>; 946 def : Pat<(and v4i32:$A, (vnot_ppc v4i32:$B)), 947 (VANDC $A, $B)>; 948 949 def : Pat<(fmul v4f32:$vA, v4f32:$vB), 950 (VMADDFP $vA, $vB, 951 (v4i32 (VSLW (V_SETALLONES), (V_SETALLONES))))>; 952 953 // Fused multiply add and multiply sub for packed float. These are represented 954 // separately from the real instructions above, for operations that must have 955 // the additional precision, such as Newton-Rhapson (used by divide, sqrt) 956 def : Pat<(PPCvmaddfp v4f32:$A, v4f32:$B, v4f32:$C), 957 (VMADDFP $A, $B, $C)>; 958 def : Pat<(PPCvnmsubfp v4f32:$A, v4f32:$B, v4f32:$C), 959 (VNMSUBFP $A, $B, $C)>; 960 961 def : Pat<(int_ppc_altivec_vmaddfp v4f32:$A, v4f32:$B, v4f32:$C), 962 (VMADDFP $A, $B, $C)>; 963 def : Pat<(int_ppc_altivec_vnmsubfp v4f32:$A, v4f32:$B, v4f32:$C), 964 (VNMSUBFP $A, $B, $C)>; 965 966 def : Pat<(PPCvperm v16i8:$vA, v16i8:$vB, v16i8:$vC), 967 (VPERM $vA, $vB, $vC)>; 968 969 def : Pat<(PPCfre v4f32:$A), (VREFP $A)>; 970 def : Pat<(PPCfrsqrte v4f32:$A), (VRSQRTEFP $A)>; 971 972 // Vector shifts 973 def : Pat<(v16i8 (shl v16i8:$vA, v16i8:$vB)), 974 (v16i8 (VSLB $vA, $vB))>; 975 def : Pat<(v8i16 (shl v8i16:$vA, v8i16:$vB)), 976 (v8i16 (VSLH $vA, $vB))>; 977 def : Pat<(v4i32 (shl v4i32:$vA, v4i32:$vB)), 978 (v4i32 (VSLW $vA, $vB))>; 979 980 def : Pat<(v16i8 (srl v16i8:$vA, v16i8:$vB)), 981 (v16i8 (VSRB $vA, $vB))>; 982 def : Pat<(v8i16 (srl v8i16:$vA, v8i16:$vB)), 983 (v8i16 (VSRH $vA, $vB))>; 984 def : Pat<(v4i32 (srl v4i32:$vA, v4i32:$vB)), 985 (v4i32 (VSRW $vA, $vB))>; 986 987 def : Pat<(v16i8 (sra v16i8:$vA, v16i8:$vB)), 988 (v16i8 (VSRAB $vA, $vB))>; 989 def : Pat<(v8i16 (sra v8i16:$vA, v8i16:$vB)), 990 (v8i16 (VSRAH $vA, $vB))>; 991 def : Pat<(v4i32 (sra v4i32:$vA, v4i32:$vB)), 992 (v4i32 (VSRAW $vA, $vB))>; 993 994 // Float to integer and integer to float conversions 995 def : Pat<(v4i32 (fp_to_sint v4f32:$vA)), 996 (VCTSXS_0 $vA)>; 997 def : Pat<(v4i32 (fp_to_uint v4f32:$vA)), 998 (VCTUXS_0 $vA)>; 999 def : Pat<(v4f32 (sint_to_fp v4i32:$vA)), 1000 (VCFSX_0 $vA)>; 1001 def : Pat<(v4f32 (uint_to_fp v4i32:$vA)), 1002 (VCFUX_0 $vA)>; 1003 1004 // Floating-point rounding 1005 def : Pat<(v4f32 (ffloor v4f32:$vA)), 1006 (VRFIM $vA)>; 1007 def : Pat<(v4f32 (fceil v4f32:$vA)), 1008 (VRFIP $vA)>; 1009 def : Pat<(v4f32 (ftrunc v4f32:$vA)), 1010 (VRFIZ $vA)>; 1011 def : Pat<(v4f32 (fnearbyint v4f32:$vA)), 1012 (VRFIN $vA)>; 1013 1014 } // end HasAltivec 1015 1016 def HasP8Altivec : Predicate<"PPCSubTarget->hasP8Altivec()">; 1017 def HasP8Crypto : Predicate<"PPCSubTarget->hasP8Crypto()">; 1018 let Predicates = [HasP8Altivec] in { 1019 1020 let isCommutable = 1 in { 1021 def VMULESW : VX1_Int_Ty2<904, "vmulesw", int_ppc_altivec_vmulesw, 1022 v2i64, v4i32>; 1023 def VMULEUW : VX1_Int_Ty2<648, "vmuleuw", int_ppc_altivec_vmuleuw, 1024 v2i64, v4i32>; 1025 def VMULOSW : VX1_Int_Ty2<392, "vmulosw", int_ppc_altivec_vmulosw, 1026 v2i64, v4i32>; 1027 def VMULOUW : VX1_Int_Ty2<136, "vmulouw", int_ppc_altivec_vmulouw, 1028 v2i64, v4i32>; 1029 def VMULUWM : VXForm_1<137, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1030 "vmuluwm $vD, $vA, $vB", IIC_VecGeneral, 1031 [(set v4i32:$vD, (mul v4i32:$vA, v4i32:$vB))]>; 1032 def VMAXSD : VX1_Int_Ty<450, "vmaxsd", int_ppc_altivec_vmaxsd, v2i64>; 1033 def VMAXUD : VX1_Int_Ty<194, "vmaxud", int_ppc_altivec_vmaxud, v2i64>; 1034 def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>; 1035 def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>; 1036 } // isCommutable 1037 1038 // Vector merge 1039 def VMRGEW : VXForm_1<1932, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1040 "vmrgew $vD, $vA, $vB", IIC_VecFP, 1041 [(set v16i8:$vD, (vmrgew_shuffle v16i8:$vA, v16i8:$vB))]>; 1042 def VMRGOW : VXForm_1<1676, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1043 "vmrgow $vD, $vA, $vB", IIC_VecFP, 1044 [(set v16i8:$vD, (vmrgow_shuffle v16i8:$vA, v16i8:$vB))]>; 1045 1046 // Match vmrgew(x,x) and vmrgow(x,x) 1047 def:Pat<(vmrgew_unary_shuffle v16i8:$vA, undef), 1048 (VMRGEW $vA, $vA)>; 1049 def:Pat<(vmrgow_unary_shuffle v16i8:$vA, undef), 1050 (VMRGOW $vA, $vA)>; 1051 1052 // Match vmrgew(y,x) and vmrgow(y,x), i.e., swapped operands. These fragments 1053 // are matched for little-endian, where the inputs must be swapped for correct 1054 // semantics.w 1055 def:Pat<(vmrgew_swapped_shuffle v16i8:$vA, v16i8:$vB), 1056 (VMRGEW $vB, $vA)>; 1057 def:Pat<(vmrgow_swapped_shuffle v16i8:$vA, v16i8:$vB), 1058 (VMRGOW $vB, $vA)>; 1059 1060 1061 // Vector shifts 1062 def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>; 1063 def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1064 "vsld $vD, $vA, $vB", IIC_VecGeneral, 1065 [(set v2i64:$vD, (shl v2i64:$vA, v2i64:$vB))]>; 1066 def VSRD : VXForm_1<1732, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1067 "vsrd $vD, $vA, $vB", IIC_VecGeneral, 1068 [(set v2i64:$vD, (srl v2i64:$vA, v2i64:$vB))]>; 1069 def VSRAD : VXForm_1<964, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1070 "vsrad $vD, $vA, $vB", IIC_VecGeneral, 1071 [(set v2i64:$vD, (sra v2i64:$vA, v2i64:$vB))]>; 1072 1073 // Vector Integer Arithmetic Instructions 1074 let isCommutable = 1 in { 1075 def VADDUDM : VXForm_1<192, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1076 "vaddudm $vD, $vA, $vB", IIC_VecGeneral, 1077 [(set v2i64:$vD, (add v2i64:$vA, v2i64:$vB))]>; 1078 def VADDUQM : VXForm_1<256, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1079 "vadduqm $vD, $vA, $vB", IIC_VecGeneral, 1080 [(set v1i128:$vD, (add v1i128:$vA, v1i128:$vB))]>; 1081 } // isCommutable 1082 1083 // Vector Quadword Add 1084 def VADDEUQM : VA1a_Int_Ty<60, "vaddeuqm", int_ppc_altivec_vaddeuqm, v1i128>; 1085 def VADDCUQ : VX1_Int_Ty<320, "vaddcuq", int_ppc_altivec_vaddcuq, v1i128>; 1086 def VADDECUQ : VA1a_Int_Ty<61, "vaddecuq", int_ppc_altivec_vaddecuq, v1i128>; 1087 1088 // Vector Doubleword Subtract 1089 def VSUBUDM : VXForm_1<1216, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1090 "vsubudm $vD, $vA, $vB", IIC_VecGeneral, 1091 [(set v2i64:$vD, (sub v2i64:$vA, v2i64:$vB))]>; 1092 1093 // Vector Quadword Subtract 1094 def VSUBUQM : VXForm_1<1280, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1095 "vsubuqm $vD, $vA, $vB", IIC_VecGeneral, 1096 [(set v1i128:$vD, (sub v1i128:$vA, v1i128:$vB))]>; 1097 def VSUBEUQM : VA1a_Int_Ty<62, "vsubeuqm", int_ppc_altivec_vsubeuqm, v1i128>; 1098 def VSUBCUQ : VX1_Int_Ty<1344, "vsubcuq", int_ppc_altivec_vsubcuq, v1i128>; 1099 def VSUBECUQ : VA1a_Int_Ty<63, "vsubecuq", int_ppc_altivec_vsubecuq, v1i128>; 1100 1101 // Count Leading Zeros 1102 def VCLZB : VXForm_2<1794, (outs vrrc:$vD), (ins vrrc:$vB), 1103 "vclzb $vD, $vB", IIC_VecGeneral, 1104 [(set v16i8:$vD, (ctlz v16i8:$vB))]>; 1105 def VCLZH : VXForm_2<1858, (outs vrrc:$vD), (ins vrrc:$vB), 1106 "vclzh $vD, $vB", IIC_VecGeneral, 1107 [(set v8i16:$vD, (ctlz v8i16:$vB))]>; 1108 def VCLZW : VXForm_2<1922, (outs vrrc:$vD), (ins vrrc:$vB), 1109 "vclzw $vD, $vB", IIC_VecGeneral, 1110 [(set v4i32:$vD, (ctlz v4i32:$vB))]>; 1111 def VCLZD : VXForm_2<1986, (outs vrrc:$vD), (ins vrrc:$vB), 1112 "vclzd $vD, $vB", IIC_VecGeneral, 1113 [(set v2i64:$vD, (ctlz v2i64:$vB))]>; 1114 1115 // Population Count 1116 def VPOPCNTB : VXForm_2<1795, (outs vrrc:$vD), (ins vrrc:$vB), 1117 "vpopcntb $vD, $vB", IIC_VecGeneral, 1118 [(set v16i8:$vD, (ctpop v16i8:$vB))]>; 1119 def VPOPCNTH : VXForm_2<1859, (outs vrrc:$vD), (ins vrrc:$vB), 1120 "vpopcnth $vD, $vB", IIC_VecGeneral, 1121 [(set v8i16:$vD, (ctpop v8i16:$vB))]>; 1122 def VPOPCNTW : VXForm_2<1923, (outs vrrc:$vD), (ins vrrc:$vB), 1123 "vpopcntw $vD, $vB", IIC_VecGeneral, 1124 [(set v4i32:$vD, (ctpop v4i32:$vB))]>; 1125 def VPOPCNTD : VXForm_2<1987, (outs vrrc:$vD), (ins vrrc:$vB), 1126 "vpopcntd $vD, $vB", IIC_VecGeneral, 1127 [(set v2i64:$vD, (ctpop v2i64:$vB))]>; 1128 1129 let isCommutable = 1 in { 1130 // FIXME: Use AddedComplexity > 400 to ensure these patterns match before the 1131 // VSX equivalents. We need to fix this up at some point. Two possible 1132 // solutions for this problem: 1133 // 1. Disable Altivec patterns that compete with VSX patterns using the 1134 // !HasVSX predicate. This essentially favours VSX over Altivec, in 1135 // hopes of reducing register pressure (larger register set using VSX 1136 // instructions than VMX instructions) 1137 // 2. Employ a more disciplined use of AddedComplexity, which would provide 1138 // more fine-grained control than option 1. This would be beneficial 1139 // if we find situations where Altivec is really preferred over VSX. 1140 def VEQV : VXForm_1<1668, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1141 "veqv $vD, $vA, $vB", IIC_VecGeneral, 1142 [(set v4i32:$vD, (vnot_ppc (xor v4i32:$vA, v4i32:$vB)))]>; 1143 def VNAND : VXForm_1<1412, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1144 "vnand $vD, $vA, $vB", IIC_VecGeneral, 1145 [(set v4i32:$vD, (vnot_ppc (and v4i32:$vA, v4i32:$vB)))]>; 1146 } // isCommutable 1147 1148 def VORC : VXForm_1<1348, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1149 "vorc $vD, $vA, $vB", IIC_VecGeneral, 1150 [(set v4i32:$vD, (or v4i32:$vA, 1151 (vnot_ppc v4i32:$vB)))]>; 1152 1153 // i64 element comparisons. 1154 def VCMPEQUD : VCMP <199, "vcmpequd $vD, $vA, $vB" , v2i64>; 1155 def VCMPEQUDo : VCMPo<199, "vcmpequd. $vD, $vA, $vB", v2i64>; 1156 def VCMPGTSD : VCMP <967, "vcmpgtsd $vD, $vA, $vB" , v2i64>; 1157 def VCMPGTSDo : VCMPo<967, "vcmpgtsd. $vD, $vA, $vB", v2i64>; 1158 def VCMPGTUD : VCMP <711, "vcmpgtud $vD, $vA, $vB" , v2i64>; 1159 def VCMPGTUDo : VCMPo<711, "vcmpgtud. $vD, $vA, $vB", v2i64>; 1160 1161 // The cryptography instructions that do not require Category:Vector.Crypto 1162 def VPMSUMB : VX1_Int_Ty<1032, "vpmsumb", 1163 int_ppc_altivec_crypto_vpmsumb, v16i8>; 1164 def VPMSUMH : VX1_Int_Ty<1096, "vpmsumh", 1165 int_ppc_altivec_crypto_vpmsumh, v8i16>; 1166 def VPMSUMW : VX1_Int_Ty<1160, "vpmsumw", 1167 int_ppc_altivec_crypto_vpmsumw, v4i32>; 1168 def VPMSUMD : VX1_Int_Ty<1224, "vpmsumd", 1169 int_ppc_altivec_crypto_vpmsumd, v2i64>; 1170 def VPERMXOR : VA1a_Int_Ty<45, "vpermxor", 1171 int_ppc_altivec_crypto_vpermxor, v16i8>; 1172 1173 // Vector doubleword integer pack and unpack. 1174 def VPKSDSS : VX1_Int_Ty2<1486, "vpksdss", int_ppc_altivec_vpksdss, 1175 v4i32, v2i64>; 1176 def VPKSDUS : VX1_Int_Ty2<1358, "vpksdus", int_ppc_altivec_vpksdus, 1177 v4i32, v2i64>; 1178 def VPKUDUM : VXForm_1<1102, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), 1179 "vpkudum $vD, $vA, $vB", IIC_VecFP, 1180 [(set v16i8:$vD, 1181 (vpkudum_shuffle v16i8:$vA, v16i8:$vB))]>; 1182 def VPKUDUS : VX1_Int_Ty2<1230, "vpkudus", int_ppc_altivec_vpkudus, 1183 v4i32, v2i64>; 1184 def VUPKHSW : VX2_Int_Ty2<1614, "vupkhsw", int_ppc_altivec_vupkhsw, 1185 v2i64, v4i32>; 1186 def VUPKLSW : VX2_Int_Ty2<1742, "vupklsw", int_ppc_altivec_vupklsw, 1187 v2i64, v4i32>; 1188 1189 // Shuffle patterns for unary and swapped (LE) vector pack modulo. 1190 def:Pat<(vpkudum_unary_shuffle v16i8:$vA, undef), 1191 (VPKUDUM $vA, $vA)>; 1192 def:Pat<(vpkudum_swapped_shuffle v16i8:$vA, v16i8:$vB), 1193 (VPKUDUM $vB, $vA)>; 1194 1195 def VGBBD : VX2_Int_Ty2<1292, "vgbbd", int_ppc_altivec_vgbbd, v16i8, v16i8>; 1196 def VBPERMQ : VX1_Int_Ty2<1356, "vbpermq", int_ppc_altivec_vbpermq, 1197 v2i64, v16i8>; 1198 } // end HasP8Altivec 1199 1200 // Crypto instructions (from builtins) 1201 let Predicates = [HasP8Crypto] in { 1202 def VSHASIGMAW : VXCR_Int_Ty<1666, "vshasigmaw", 1203 int_ppc_altivec_crypto_vshasigmaw, v4i32>; 1204 def VSHASIGMAD : VXCR_Int_Ty<1730, "vshasigmad", 1205 int_ppc_altivec_crypto_vshasigmad, v2i64>; 1206 def VCIPHER : VX1_Int_Ty<1288, "vcipher", int_ppc_altivec_crypto_vcipher, 1207 v2i64>; 1208 def VCIPHERLAST : VX1_Int_Ty<1289, "vcipherlast", 1209 int_ppc_altivec_crypto_vcipherlast, v2i64>; 1210 def VNCIPHER : VX1_Int_Ty<1352, "vncipher", 1211 int_ppc_altivec_crypto_vncipher, v2i64>; 1212 def VNCIPHERLAST : VX1_Int_Ty<1353, "vncipherlast", 1213 int_ppc_altivec_crypto_vncipherlast, v2i64>; 1214 def VSBOX : VXBX_Int_Ty<1480, "vsbox", int_ppc_altivec_crypto_vsbox, v2i64>; 1215 } // HasP8Crypto 1216