1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Class definitions 12 //===----------------------------------------------------------------------===// 13 14 class ImmediateAsmOperand<string name> 15 : AsmOperandClass { 16 let Name = name; 17 let RenderMethod = "addImmOperands"; 18 } 19 class ImmediateTLSAsmOperand<string name> 20 : AsmOperandClass { 21 let Name = name; 22 let RenderMethod = "addImmTLSOperands"; 23 } 24 25 // Constructs both a DAG pattern and instruction operand for an immediate 26 // of type VT. PRED returns true if a node is acceptable and XFORM returns 27 // the operand value associated with the node. ASMOP is the name of the 28 // associated asm operand, and also forms the basis of the asm print method. 29 class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> 30 : PatLeaf<(vt imm), pred, xform>, Operand<vt> { 31 let PrintMethod = "print"##asmop##"Operand"; 32 let DecoderMethod = "decode"##asmop##"Operand"; 33 let ParserMatchClass = !cast<AsmOperandClass>(asmop); 34 } 35 36 // Constructs an asm operand for a PC-relative address. SIZE says how 37 // many bits there are. 38 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> { 39 let PredicateMethod = "isImm"; 40 let ParserMethod = "parsePCRel"##size; 41 } 42 class PCRelTLSAsmOperand<string size> 43 : ImmediateTLSAsmOperand<"PCRelTLS"##size> { 44 let PredicateMethod = "isImmTLS"; 45 let ParserMethod = "parsePCRelTLS"##size; 46 } 47 48 // Constructs an operand for a PC-relative address with address type VT. 49 // ASMOP is the associated asm operand. 50 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { 51 let PrintMethod = "printPCRelOperand"; 52 let ParserMatchClass = asmop; 53 } 54 class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { 55 let PrintMethod = "printPCRelTLSOperand"; 56 let ParserMatchClass = asmop; 57 } 58 59 // Constructs both a DAG pattern and instruction operand for a PC-relative 60 // address with address size VT. SELF is the name of the operand and 61 // ASMOP is the associated asm operand. 62 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> 63 : ComplexPattern<vt, 1, "selectPCRelAddress", 64 [z_pcrel_wrapper, z_pcrel_offset]>, 65 PCRelOperand<vt, asmop> { 66 let MIOperandInfo = (ops !cast<Operand>(self)); 67 } 68 69 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the 70 // registers as having BITSIZE bits and displacements as having DISPSIZE bits. 71 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it 72 // is "". 73 class AddressAsmOperand<string format, string bitsize, string dispsize, 74 string length = ""> 75 : AsmOperandClass { 76 let Name = format##bitsize##"Disp"##dispsize##length; 77 let ParserMethod = "parse"##format##bitsize; 78 let RenderMethod = "add"##format##"Operands"; 79 } 80 81 // Constructs an instruction operand for an addressing mode. FORMAT, 82 // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated 83 // AddressAsmOperand. OPERANDS is a list of individual operands 84 // (base register, displacement, etc.). 85 class AddressOperand<string bitsize, string dispsize, string length, 86 string format, dag operands> 87 : Operand<!cast<ValueType>("i"##bitsize)> { 88 let PrintMethod = "print"##format##"Operand"; 89 let EncoderMethod = "get"##format##dispsize##length##"Encoding"; 90 let DecoderMethod = 91 "decode"##format##bitsize##"Disp"##dispsize##length##"Operand"; 92 let MIOperandInfo = operands; 93 let ParserMatchClass = 94 !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length); 95 } 96 97 // Constructs both a DAG pattern and instruction operand for an addressing mode. 98 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated 99 // AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands 100 // (base register, displacement, etc.). SELTYPE is the type of the memory 101 // operand for selection purposes; sometimes we want different selection 102 // choices for the same underlying addressing mode. SUFFIX is similarly 103 // a suffix appended to the displacement for selection purposes; 104 // e.g. we want to reject small 20-bit displacements if a 12-bit form 105 // also exists, but we want to accept them otherwise. 106 class AddressingMode<string seltype, string bitsize, string dispsize, 107 string suffix, string length, int numops, string format, 108 dag operands> 109 : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, 110 "select"##seltype##dispsize##suffix##length, 111 [add, sub, or, frameindex, z_adjdynalloc]>, 112 AddressOperand<bitsize, dispsize, length, format, operands>; 113 114 // An addressing mode with a base and displacement but no index. 115 class BDMode<string type, string bitsize, string dispsize, string suffix> 116 : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", 117 (ops !cast<RegisterOperand>("ADDR"##bitsize), 118 !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; 119 120 // An addressing mode with a base, displacement and index. 121 class BDXMode<string type, string bitsize, string dispsize, string suffix> 122 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", 123 (ops !cast<RegisterOperand>("ADDR"##bitsize), 124 !cast<Immediate>("disp"##dispsize##"imm"##bitsize), 125 !cast<RegisterOperand>("ADDR"##bitsize))>; 126 127 // A BDMode paired with an immediate length operand of LENSIZE bits. 128 class BDLMode<string type, string bitsize, string dispsize, string suffix, 129 string lensize> 130 : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3, 131 "BDLAddr", 132 (ops !cast<RegisterOperand>("ADDR"##bitsize), 133 !cast<Immediate>("disp"##dispsize##"imm"##bitsize), 134 !cast<Immediate>("imm"##bitsize))>; 135 136 // An addressing mode with a base, displacement and a vector index. 137 class BDVMode<string bitsize, string dispsize> 138 : AddressOperand<bitsize, dispsize, "", "BDVAddr", 139 (ops !cast<RegisterOperand>("ADDR"##bitsize), 140 !cast<Immediate>("disp"##dispsize##"imm"##bitsize), 141 !cast<RegisterOperand>("VR128"))>; 142 143 //===----------------------------------------------------------------------===// 144 // Extracting immediate operands from nodes 145 // These all create MVT::i64 nodes to ensure the value is not sign-extended 146 // when converted from an SDNode to a MachineOperand later on. 147 //===----------------------------------------------------------------------===// 148 149 // Bits 0-15 (counting from the lsb). 150 def LL16 : SDNodeXForm<imm, [{ 151 uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; 152 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 153 }]>; 154 155 // Bits 16-31 (counting from the lsb). 156 def LH16 : SDNodeXForm<imm, [{ 157 uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; 158 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 159 }]>; 160 161 // Bits 32-47 (counting from the lsb). 162 def HL16 : SDNodeXForm<imm, [{ 163 uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; 164 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 165 }]>; 166 167 // Bits 48-63 (counting from the lsb). 168 def HH16 : SDNodeXForm<imm, [{ 169 uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; 170 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 171 }]>; 172 173 // Low 32 bits. 174 def LF32 : SDNodeXForm<imm, [{ 175 uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; 176 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 177 }]>; 178 179 // High 32 bits. 180 def HF32 : SDNodeXForm<imm, [{ 181 uint64_t Value = N->getZExtValue() >> 32; 182 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 183 }]>; 184 185 // Truncate an immediate to a 8-bit signed quantity. 186 def SIMM8 : SDNodeXForm<imm, [{ 187 return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N), 188 MVT::i64); 189 }]>; 190 191 // Truncate an immediate to a 8-bit unsigned quantity. 192 def UIMM8 : SDNodeXForm<imm, [{ 193 return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N), 194 MVT::i64); 195 }]>; 196 197 // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit. 198 def UIMM8EVEN : SDNodeXForm<imm, [{ 199 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N), 200 MVT::i64); 201 }]>; 202 203 // Truncate an immediate to a 12-bit unsigned quantity. 204 def UIMM12 : SDNodeXForm<imm, [{ 205 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N), 206 MVT::i64); 207 }]>; 208 209 // Truncate an immediate to a 16-bit signed quantity. 210 def SIMM16 : SDNodeXForm<imm, [{ 211 return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N), 212 MVT::i64); 213 }]>; 214 215 // Truncate an immediate to a 16-bit unsigned quantity. 216 def UIMM16 : SDNodeXForm<imm, [{ 217 return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N), 218 MVT::i64); 219 }]>; 220 221 // Truncate an immediate to a 32-bit signed quantity. 222 def SIMM32 : SDNodeXForm<imm, [{ 223 return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N), 224 MVT::i64); 225 }]>; 226 227 // Truncate an immediate to a 32-bit unsigned quantity. 228 def UIMM32 : SDNodeXForm<imm, [{ 229 return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N), 230 MVT::i64); 231 }]>; 232 233 // Negate and then truncate an immediate to a 32-bit unsigned quantity. 234 def NEGIMM32 : SDNodeXForm<imm, [{ 235 return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N), 236 MVT::i64); 237 }]>; 238 239 //===----------------------------------------------------------------------===// 240 // Immediate asm operands. 241 //===----------------------------------------------------------------------===// 242 243 def U1Imm : ImmediateAsmOperand<"U1Imm">; 244 def U2Imm : ImmediateAsmOperand<"U2Imm">; 245 def U3Imm : ImmediateAsmOperand<"U3Imm">; 246 def U4Imm : ImmediateAsmOperand<"U4Imm">; 247 def U6Imm : ImmediateAsmOperand<"U6Imm">; 248 def S8Imm : ImmediateAsmOperand<"S8Imm">; 249 def U8Imm : ImmediateAsmOperand<"U8Imm">; 250 def U12Imm : ImmediateAsmOperand<"U12Imm">; 251 def S16Imm : ImmediateAsmOperand<"S16Imm">; 252 def U16Imm : ImmediateAsmOperand<"U16Imm">; 253 def S32Imm : ImmediateAsmOperand<"S32Imm">; 254 def U32Imm : ImmediateAsmOperand<"U32Imm">; 255 256 //===----------------------------------------------------------------------===// 257 // i32 immediates 258 //===----------------------------------------------------------------------===// 259 260 // Immediates for the lower and upper 16 bits of an i32, with the other 261 // bits of the i32 being zero. 262 def imm32ll16 : Immediate<i32, [{ 263 return SystemZ::isImmLL(N->getZExtValue()); 264 }], LL16, "U16Imm">; 265 266 def imm32lh16 : Immediate<i32, [{ 267 return SystemZ::isImmLH(N->getZExtValue()); 268 }], LH16, "U16Imm">; 269 270 // Immediates for the lower and upper 16 bits of an i32, with the other 271 // bits of the i32 being one. 272 def imm32ll16c : Immediate<i32, [{ 273 return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); 274 }], LL16, "U16Imm">; 275 276 def imm32lh16c : Immediate<i32, [{ 277 return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); 278 }], LH16, "U16Imm">; 279 280 // Short immediates 281 def imm32zx1 : Immediate<i32, [{ 282 return isUInt<1>(N->getZExtValue()); 283 }], NOOP_SDNodeXForm, "U1Imm">; 284 285 def imm32zx2 : Immediate<i32, [{ 286 return isUInt<2>(N->getZExtValue()); 287 }], NOOP_SDNodeXForm, "U2Imm">; 288 289 def imm32zx3 : Immediate<i32, [{ 290 return isUInt<3>(N->getZExtValue()); 291 }], NOOP_SDNodeXForm, "U3Imm">; 292 293 def imm32zx4 : Immediate<i32, [{ 294 return isUInt<4>(N->getZExtValue()); 295 }], NOOP_SDNodeXForm, "U4Imm">; 296 297 // Note: this enforces an even value during code generation only. 298 // When used from the assembler, any 4-bit value is allowed. 299 def imm32zx4even : Immediate<i32, [{ 300 return isUInt<4>(N->getZExtValue()); 301 }], UIMM8EVEN, "U4Imm">; 302 303 def imm32zx6 : Immediate<i32, [{ 304 return isUInt<6>(N->getZExtValue()); 305 }], NOOP_SDNodeXForm, "U6Imm">; 306 307 def imm32sx8 : Immediate<i32, [{ 308 return isInt<8>(N->getSExtValue()); 309 }], SIMM8, "S8Imm">; 310 311 def imm32zx8 : Immediate<i32, [{ 312 return isUInt<8>(N->getZExtValue()); 313 }], UIMM8, "U8Imm">; 314 315 def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; 316 317 def imm32zx12 : Immediate<i32, [{ 318 return isUInt<12>(N->getZExtValue()); 319 }], UIMM12, "U12Imm">; 320 321 def imm32sx16 : Immediate<i32, [{ 322 return isInt<16>(N->getSExtValue()); 323 }], SIMM16, "S16Imm">; 324 325 def imm32zx16 : Immediate<i32, [{ 326 return isUInt<16>(N->getZExtValue()); 327 }], UIMM16, "U16Imm">; 328 329 def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; 330 331 // Full 32-bit immediates. we need both signed and unsigned versions 332 // because the assembler is picky. E.g. AFI requires signed operands 333 // while NILF requires unsigned ones. 334 def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; 335 def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; 336 337 def imm32 : ImmLeaf<i32, [{}]>; 338 339 //===----------------------------------------------------------------------===// 340 // 64-bit immediates 341 //===----------------------------------------------------------------------===// 342 343 // Immediates for 16-bit chunks of an i64, with the other bits of the 344 // i32 being zero. 345 def imm64ll16 : Immediate<i64, [{ 346 return SystemZ::isImmLL(N->getZExtValue()); 347 }], LL16, "U16Imm">; 348 349 def imm64lh16 : Immediate<i64, [{ 350 return SystemZ::isImmLH(N->getZExtValue()); 351 }], LH16, "U16Imm">; 352 353 def imm64hl16 : Immediate<i64, [{ 354 return SystemZ::isImmHL(N->getZExtValue()); 355 }], HL16, "U16Imm">; 356 357 def imm64hh16 : Immediate<i64, [{ 358 return SystemZ::isImmHH(N->getZExtValue()); 359 }], HH16, "U16Imm">; 360 361 // Immediates for 16-bit chunks of an i64, with the other bits of the 362 // i32 being one. 363 def imm64ll16c : Immediate<i64, [{ 364 return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); 365 }], LL16, "U16Imm">; 366 367 def imm64lh16c : Immediate<i64, [{ 368 return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); 369 }], LH16, "U16Imm">; 370 371 def imm64hl16c : Immediate<i64, [{ 372 return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); 373 }], HL16, "U16Imm">; 374 375 def imm64hh16c : Immediate<i64, [{ 376 return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); 377 }], HH16, "U16Imm">; 378 379 // Immediates for the lower and upper 32 bits of an i64, with the other 380 // bits of the i32 being zero. 381 def imm64lf32 : Immediate<i64, [{ 382 return SystemZ::isImmLF(N->getZExtValue()); 383 }], LF32, "U32Imm">; 384 385 def imm64hf32 : Immediate<i64, [{ 386 return SystemZ::isImmHF(N->getZExtValue()); 387 }], HF32, "U32Imm">; 388 389 // Immediates for the lower and upper 32 bits of an i64, with the other 390 // bits of the i32 being one. 391 def imm64lf32c : Immediate<i64, [{ 392 return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); 393 }], LF32, "U32Imm">; 394 395 def imm64hf32c : Immediate<i64, [{ 396 return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); 397 }], HF32, "U32Imm">; 398 399 // Short immediates. 400 def imm64sx8 : Immediate<i64, [{ 401 return isInt<8>(N->getSExtValue()); 402 }], SIMM8, "S8Imm">; 403 404 def imm64zx8 : Immediate<i64, [{ 405 return isUInt<8>(N->getSExtValue()); 406 }], UIMM8, "U8Imm">; 407 408 def imm64sx16 : Immediate<i64, [{ 409 return isInt<16>(N->getSExtValue()); 410 }], SIMM16, "S16Imm">; 411 412 def imm64zx16 : Immediate<i64, [{ 413 return isUInt<16>(N->getZExtValue()); 414 }], UIMM16, "U16Imm">; 415 416 def imm64sx32 : Immediate<i64, [{ 417 return isInt<32>(N->getSExtValue()); 418 }], SIMM32, "S32Imm">; 419 420 def imm64zx32 : Immediate<i64, [{ 421 return isUInt<32>(N->getZExtValue()); 422 }], UIMM32, "U32Imm">; 423 424 def imm64zx32n : Immediate<i64, [{ 425 return isUInt<32>(-N->getSExtValue()); 426 }], NEGIMM32, "U32Imm">; 427 428 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>; 429 430 //===----------------------------------------------------------------------===// 431 // Floating-point immediates 432 //===----------------------------------------------------------------------===// 433 434 // Floating-point zero. 435 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; 436 437 // Floating point negative zero. 438 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; 439 440 //===----------------------------------------------------------------------===// 441 // Symbolic address operands 442 //===----------------------------------------------------------------------===// 443 444 // PC-relative asm operands. 445 def PCRel16 : PCRelAsmOperand<"16">; 446 def PCRel32 : PCRelAsmOperand<"32">; 447 def PCRelTLS16 : PCRelTLSAsmOperand<"16">; 448 def PCRelTLS32 : PCRelTLSAsmOperand<"32">; 449 450 // PC-relative offsets of a basic block. The offset is sign-extended 451 // and multiplied by 2. 452 def brtarget16 : PCRelOperand<OtherVT, PCRel16> { 453 let EncoderMethod = "getPC16DBLEncoding"; 454 let DecoderMethod = "decodePC16DBLOperand"; 455 } 456 def brtarget32 : PCRelOperand<OtherVT, PCRel32> { 457 let EncoderMethod = "getPC32DBLEncoding"; 458 let DecoderMethod = "decodePC32DBLOperand"; 459 } 460 461 // Variants of brtarget16/32 with an optional additional TLS symbol. 462 // These are used to annotate calls to __tls_get_offset. 463 def tlssym : Operand<i64> { } 464 def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> { 465 let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym); 466 let EncoderMethod = "getPC16DBLTLSEncoding"; 467 let DecoderMethod = "decodePC16DBLOperand"; 468 } 469 def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> { 470 let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym); 471 let EncoderMethod = "getPC32DBLTLSEncoding"; 472 let DecoderMethod = "decodePC32DBLOperand"; 473 } 474 475 // A PC-relative offset of a global value. The offset is sign-extended 476 // and multiplied by 2. 477 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { 478 let EncoderMethod = "getPC32DBLEncoding"; 479 let DecoderMethod = "decodePC32DBLOperand"; 480 } 481 482 //===----------------------------------------------------------------------===// 483 // Addressing modes 484 //===----------------------------------------------------------------------===// 485 486 // 12-bit displacement operands. 487 def disp12imm32 : Operand<i32>; 488 def disp12imm64 : Operand<i64>; 489 490 // 20-bit displacement operands. 491 def disp20imm32 : Operand<i32>; 492 def disp20imm64 : Operand<i64>; 493 494 def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; 495 def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; 496 def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; 497 def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; 498 def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; 499 def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; 500 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">; 501 def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">; 502 503 // DAG patterns and operands for addressing modes. Each mode has 504 // the form <type><range><group>[<len>] where: 505 // 506 // <type> is one of: 507 // shift : base + displacement (32-bit) 508 // bdaddr : base + displacement 509 // mviaddr : like bdaddr, but reject cases with a natural index 510 // bdxaddr : base + displacement + index 511 // laaddr : like bdxaddr, but used for Load Address operations 512 // dynalloc : base + displacement + index + ADJDYNALLOC 513 // bdladdr : base + displacement with a length field 514 // bdvaddr : base + displacement with a vector index 515 // 516 // <range> is one of: 517 // 12 : the displacement is an unsigned 12-bit value 518 // 20 : the displacement is a signed 20-bit value 519 // 520 // <group> is one of: 521 // pair : used when there is an equivalent instruction with the opposite 522 // range value (12 or 20) 523 // only : used when there is no equivalent instruction with the opposite 524 // range value 525 // 526 // <len> is one of: 527 // 528 // <empty> : there is no length field 529 // len8 : the length field is 8 bits, with a range of [1, 0x100]. 530 def shift12only : BDMode <"BDAddr", "32", "12", "Only">; 531 def shift20only : BDMode <"BDAddr", "32", "20", "Only">; 532 def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; 533 def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; 534 def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; 535 def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; 536 def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">; 537 def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">; 538 def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; 539 def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; 540 def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; 541 def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; 542 def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; 543 def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; 544 def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; 545 def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; 546 def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">; 547 def bdvaddr12only : BDVMode< "64", "12">; 548 549 //===----------------------------------------------------------------------===// 550 // Miscellaneous 551 //===----------------------------------------------------------------------===// 552 553 // Access registers. At present we just use them for accessing the thread 554 // pointer, so we don't expose them as register to LLVM. 555 def AccessReg : AsmOperandClass { 556 let Name = "AccessReg"; 557 let ParserMethod = "parseAccessReg"; 558 } 559 def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }], 560 NOOP_SDNodeXForm, "AccessReg"> { 561 let ParserMatchClass = AccessReg; 562 } 563 564 // A 4-bit condition-code mask. 565 def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>, 566 Operand<i32> { 567 let PrintMethod = "printCond4Operand"; 568 } 569